ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  blex Unicode version

Theorem blex 14555
Description: A ball is a set. (Contributed by Jim Kingdon, 4-May-2023.)
Assertion
Ref Expression
blex  |-  ( D  e.  ( *Met `  X )  ->  ( ball `  D )  e. 
_V )

Proof of Theorem blex
Dummy variables  r  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 blfval 14554 . 2  |-  ( D  e.  ( *Met `  X )  ->  ( ball `  D )  =  ( x  e.  X ,  r  e.  RR*  |->  { y  e.  X  |  ( x D y )  <  r } ) )
2 xmetrel 14511 . . . 4  |-  Rel  *Met
3 relelfvdm 5586 . . . 4  |-  ( ( Rel  *Met  /\  D  e.  ( *Met `  X ) )  ->  X  e.  dom  *Met )
42, 3mpan 424 . . 3  |-  ( D  e.  ( *Met `  X )  ->  X  e.  dom  *Met )
5 xrex 9922 . . 3  |-  RR*  e.  _V
6 mpoexga 6265 . . 3  |-  ( ( X  e.  dom  *Met  /\  RR*  e.  _V )  ->  ( x  e.  X ,  r  e. 
RR*  |->  { y  e.  X  |  ( x D y )  < 
r } )  e. 
_V )
74, 5, 6sylancl 413 . 2  |-  ( D  e.  ( *Met `  X )  ->  (
x  e.  X , 
r  e.  RR*  |->  { y  e.  X  |  ( x D y )  <  r } )  e.  _V )
81, 7eqeltrd 2270 1  |-  ( D  e.  ( *Met `  X )  ->  ( ball `  D )  e. 
_V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2164   {crab 2476   _Vcvv 2760   class class class wbr 4029   dom cdm 4659   Rel wrel 4664   ` cfv 5254  (class class class)co 5918    e. cmpo 5920   RR*cxr 8053    < clt 8054   *Metcxmet 14032   ballcbl 14034
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-map 6704  df-pnf 8056  df-mnf 8057  df-xr 8058  df-psmet 14039  df-xmet 14040  df-bl 14042
This theorem is referenced by:  blbas  14601  metrest  14674  xmettxlem  14677  xmettx  14678  tgioo  14714
  Copyright terms: Public domain W3C validator