ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  blex Unicode version

Theorem blex 13181
Description: A ball is a set. (Contributed by Jim Kingdon, 4-May-2023.)
Assertion
Ref Expression
blex  |-  ( D  e.  ( *Met `  X )  ->  ( ball `  D )  e. 
_V )

Proof of Theorem blex
Dummy variables  r  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 blfval 13180 . 2  |-  ( D  e.  ( *Met `  X )  ->  ( ball `  D )  =  ( x  e.  X ,  r  e.  RR*  |->  { y  e.  X  |  ( x D y )  <  r } ) )
2 xmetrel 13137 . . . 4  |-  Rel  *Met
3 relelfvdm 5528 . . . 4  |-  ( ( Rel  *Met  /\  D  e.  ( *Met `  X ) )  ->  X  e.  dom  *Met )
42, 3mpan 422 . . 3  |-  ( D  e.  ( *Met `  X )  ->  X  e.  dom  *Met )
5 xrex 9813 . . 3  |-  RR*  e.  _V
6 mpoexga 6191 . . 3  |-  ( ( X  e.  dom  *Met  /\  RR*  e.  _V )  ->  ( x  e.  X ,  r  e. 
RR*  |->  { y  e.  X  |  ( x D y )  < 
r } )  e. 
_V )
74, 5, 6sylancl 411 . 2  |-  ( D  e.  ( *Met `  X )  ->  (
x  e.  X , 
r  e.  RR*  |->  { y  e.  X  |  ( x D y )  <  r } )  e.  _V )
81, 7eqeltrd 2247 1  |-  ( D  e.  ( *Met `  X )  ->  ( ball `  D )  e. 
_V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2141   {crab 2452   _Vcvv 2730   class class class wbr 3989   dom cdm 4611   Rel wrel 4616   ` cfv 5198  (class class class)co 5853    e. cmpo 5855   RR*cxr 7953    < clt 7954   *Metcxmet 12774   ballcbl 12776
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-cnex 7865  ax-resscn 7866
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-map 6628  df-pnf 7956  df-mnf 7957  df-xr 7958  df-psmet 12781  df-xmet 12782  df-bl 12784
This theorem is referenced by:  blbas  13227  metrest  13300  xmettxlem  13303  xmettx  13304  tgioo  13340
  Copyright terms: Public domain W3C validator