| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xrex | GIF version | ||
| Description: The set of extended reals exists. (Contributed by NM, 24-Dec-2006.) |
| Ref | Expression |
|---|---|
| xrex | ⊢ ℝ* ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-xr 8082 | . 2 ⊢ ℝ* = (ℝ ∪ {+∞, -∞}) | |
| 2 | reex 8030 | . . 3 ⊢ ℝ ∈ V | |
| 3 | pnfxr 8096 | . . . 4 ⊢ +∞ ∈ ℝ* | |
| 4 | mnfxr 8100 | . . . 4 ⊢ -∞ ∈ ℝ* | |
| 5 | prexg 4245 | . . . 4 ⊢ ((+∞ ∈ ℝ* ∧ -∞ ∈ ℝ*) → {+∞, -∞} ∈ V) | |
| 6 | 3, 4, 5 | mp2an 426 | . . 3 ⊢ {+∞, -∞} ∈ V |
| 7 | 2, 6 | unex 4477 | . 2 ⊢ (ℝ ∪ {+∞, -∞}) ∈ V |
| 8 | 1, 7 | eqeltri 2269 | 1 ⊢ ℝ* ∈ V |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2167 Vcvv 2763 ∪ cun 3155 {cpr 3624 ℝcr 7895 +∞cpnf 8075 -∞cmnf 8076 ℝ*cxr 8077 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-cnex 7987 ax-resscn 7988 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-uni 3841 df-pnf 8080 df-mnf 8081 df-xr 8082 |
| This theorem is referenced by: ixxval 9988 ixxf 9990 ixxex 9991 blfn 14183 cnfldstr 14190 cnfldle 14199 znval 14268 znle 14269 znbaslemnn 14271 ispsmet 14643 isxmet 14665 xmetunirn 14678 blfvalps 14705 blex 14707 |
| Copyright terms: Public domain | W3C validator |