![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > xrex | GIF version |
Description: The set of extended reals exists. (Contributed by NM, 24-Dec-2006.) |
Ref | Expression |
---|---|
xrex | ⊢ ℝ* ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-xr 8009 | . 2 ⊢ ℝ* = (ℝ ∪ {+∞, -∞}) | |
2 | reex 7958 | . . 3 ⊢ ℝ ∈ V | |
3 | pnfxr 8023 | . . . 4 ⊢ +∞ ∈ ℝ* | |
4 | mnfxr 8027 | . . . 4 ⊢ -∞ ∈ ℝ* | |
5 | prexg 4223 | . . . 4 ⊢ ((+∞ ∈ ℝ* ∧ -∞ ∈ ℝ*) → {+∞, -∞} ∈ V) | |
6 | 3, 4, 5 | mp2an 426 | . . 3 ⊢ {+∞, -∞} ∈ V |
7 | 2, 6 | unex 4453 | . 2 ⊢ (ℝ ∪ {+∞, -∞}) ∈ V |
8 | 1, 7 | eqeltri 2260 | 1 ⊢ ℝ* ∈ V |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2158 Vcvv 2749 ∪ cun 3139 {cpr 3605 ℝcr 7823 +∞cpnf 8002 -∞cmnf 8003 ℝ*cxr 8004 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-13 2160 ax-14 2161 ax-ext 2169 ax-sep 4133 ax-pow 4186 ax-pr 4221 ax-un 4445 ax-cnex 7915 ax-resscn 7916 |
This theorem depends on definitions: df-bi 117 df-tru 1366 df-nf 1471 df-sb 1773 df-clab 2174 df-cleq 2180 df-clel 2183 df-nfc 2318 df-rex 2471 df-v 2751 df-un 3145 df-in 3147 df-ss 3154 df-pw 3589 df-sn 3610 df-pr 3611 df-uni 3822 df-pnf 8007 df-mnf 8008 df-xr 8009 |
This theorem is referenced by: ixxval 9909 ixxf 9911 ixxex 9912 ispsmet 14094 isxmet 14116 xmetunirn 14129 blfvalps 14156 blex 14158 |
Copyright terms: Public domain | W3C validator |