| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xrex | GIF version | ||
| Description: The set of extended reals exists. (Contributed by NM, 24-Dec-2006.) |
| Ref | Expression |
|---|---|
| xrex | ⊢ ℝ* ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-xr 8065 | . 2 ⊢ ℝ* = (ℝ ∪ {+∞, -∞}) | |
| 2 | reex 8013 | . . 3 ⊢ ℝ ∈ V | |
| 3 | pnfxr 8079 | . . . 4 ⊢ +∞ ∈ ℝ* | |
| 4 | mnfxr 8083 | . . . 4 ⊢ -∞ ∈ ℝ* | |
| 5 | prexg 4244 | . . . 4 ⊢ ((+∞ ∈ ℝ* ∧ -∞ ∈ ℝ*) → {+∞, -∞} ∈ V) | |
| 6 | 3, 4, 5 | mp2an 426 | . . 3 ⊢ {+∞, -∞} ∈ V |
| 7 | 2, 6 | unex 4476 | . 2 ⊢ (ℝ ∪ {+∞, -∞}) ∈ V |
| 8 | 1, 7 | eqeltri 2269 | 1 ⊢ ℝ* ∈ V |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2167 Vcvv 2763 ∪ cun 3155 {cpr 3623 ℝcr 7878 +∞cpnf 8058 -∞cmnf 8059 ℝ*cxr 8060 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-cnex 7970 ax-resscn 7971 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-uni 3840 df-pnf 8063 df-mnf 8064 df-xr 8065 |
| This theorem is referenced by: ixxval 9971 ixxf 9973 ixxex 9974 blfn 14107 cnfldstr 14114 cnfldle 14123 znval 14192 znle 14193 znbaslemnn 14195 ispsmet 14559 isxmet 14581 xmetunirn 14594 blfvalps 14621 blex 14623 |
| Copyright terms: Public domain | W3C validator |