![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > xrex | GIF version |
Description: The set of extended reals exists. (Contributed by NM, 24-Dec-2006.) |
Ref | Expression |
---|---|
xrex | ⊢ ℝ* ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-xr 8060 | . 2 ⊢ ℝ* = (ℝ ∪ {+∞, -∞}) | |
2 | reex 8008 | . . 3 ⊢ ℝ ∈ V | |
3 | pnfxr 8074 | . . . 4 ⊢ +∞ ∈ ℝ* | |
4 | mnfxr 8078 | . . . 4 ⊢ -∞ ∈ ℝ* | |
5 | prexg 4241 | . . . 4 ⊢ ((+∞ ∈ ℝ* ∧ -∞ ∈ ℝ*) → {+∞, -∞} ∈ V) | |
6 | 3, 4, 5 | mp2an 426 | . . 3 ⊢ {+∞, -∞} ∈ V |
7 | 2, 6 | unex 4473 | . 2 ⊢ (ℝ ∪ {+∞, -∞}) ∈ V |
8 | 1, 7 | eqeltri 2266 | 1 ⊢ ℝ* ∈ V |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2164 Vcvv 2760 ∪ cun 3152 {cpr 3620 ℝcr 7873 +∞cpnf 8053 -∞cmnf 8054 ℝ*cxr 8055 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-cnex 7965 ax-resscn 7966 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-rex 2478 df-v 2762 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-uni 3837 df-pnf 8058 df-mnf 8059 df-xr 8060 |
This theorem is referenced by: ixxval 9965 ixxf 9967 ixxex 9968 blfn 14050 cnfldstr 14057 cnfldle 14066 znval 14135 znle 14136 znbaslemnn 14138 ispsmet 14502 isxmet 14524 xmetunirn 14537 blfvalps 14564 blex 14566 |
Copyright terms: Public domain | W3C validator |