Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > xrex | GIF version |
Description: The set of extended reals exists. (Contributed by NM, 24-Dec-2006.) |
Ref | Expression |
---|---|
xrex | ⊢ ℝ* ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-xr 7958 | . 2 ⊢ ℝ* = (ℝ ∪ {+∞, -∞}) | |
2 | reex 7908 | . . 3 ⊢ ℝ ∈ V | |
3 | pnfxr 7972 | . . . 4 ⊢ +∞ ∈ ℝ* | |
4 | mnfxr 7976 | . . . 4 ⊢ -∞ ∈ ℝ* | |
5 | prexg 4196 | . . . 4 ⊢ ((+∞ ∈ ℝ* ∧ -∞ ∈ ℝ*) → {+∞, -∞} ∈ V) | |
6 | 3, 4, 5 | mp2an 424 | . . 3 ⊢ {+∞, -∞} ∈ V |
7 | 2, 6 | unex 4426 | . 2 ⊢ (ℝ ∪ {+∞, -∞}) ∈ V |
8 | 1, 7 | eqeltri 2243 | 1 ⊢ ℝ* ∈ V |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2141 Vcvv 2730 ∪ cun 3119 {cpr 3584 ℝcr 7773 +∞cpnf 7951 -∞cmnf 7952 ℝ*cxr 7953 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-cnex 7865 ax-resscn 7866 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-rex 2454 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-uni 3797 df-pnf 7956 df-mnf 7957 df-xr 7958 |
This theorem is referenced by: ixxval 9853 ixxf 9855 ixxex 9856 ispsmet 13117 isxmet 13139 xmetunirn 13152 blfvalps 13179 blex 13181 |
Copyright terms: Public domain | W3C validator |