| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xrex | GIF version | ||
| Description: The set of extended reals exists. (Contributed by NM, 24-Dec-2006.) |
| Ref | Expression |
|---|---|
| xrex | ⊢ ℝ* ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-xr 8153 | . 2 ⊢ ℝ* = (ℝ ∪ {+∞, -∞}) | |
| 2 | reex 8101 | . . 3 ⊢ ℝ ∈ V | |
| 3 | pnfxr 8167 | . . . 4 ⊢ +∞ ∈ ℝ* | |
| 4 | mnfxr 8171 | . . . 4 ⊢ -∞ ∈ ℝ* | |
| 5 | prexg 4274 | . . . 4 ⊢ ((+∞ ∈ ℝ* ∧ -∞ ∈ ℝ*) → {+∞, -∞} ∈ V) | |
| 6 | 3, 4, 5 | mp2an 426 | . . 3 ⊢ {+∞, -∞} ∈ V |
| 7 | 2, 6 | unex 4509 | . 2 ⊢ (ℝ ∪ {+∞, -∞}) ∈ V |
| 8 | 1, 7 | eqeltri 2282 | 1 ⊢ ℝ* ∈ V |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2180 Vcvv 2779 ∪ cun 3175 {cpr 3647 ℝcr 7966 +∞cpnf 8146 -∞cmnf 8147 ℝ*cxr 8148 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-sep 4181 ax-pow 4237 ax-pr 4272 ax-un 4501 ax-cnex 8058 ax-resscn 8059 |
| This theorem depends on definitions: df-bi 117 df-tru 1378 df-nf 1487 df-sb 1789 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-rex 2494 df-v 2781 df-un 3181 df-in 3183 df-ss 3190 df-pw 3631 df-sn 3652 df-pr 3653 df-uni 3868 df-pnf 8151 df-mnf 8152 df-xr 8153 |
| This theorem is referenced by: ixxval 10060 ixxf 10062 ixxex 10063 blfn 14480 cnfldstr 14487 cnfldle 14496 znval 14565 znle 14566 znbaslemnn 14568 ispsmet 14962 isxmet 14984 xmetunirn 14997 blfvalps 15024 blex 15026 |
| Copyright terms: Public domain | W3C validator |