| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xrex | GIF version | ||
| Description: The set of extended reals exists. (Contributed by NM, 24-Dec-2006.) |
| Ref | Expression |
|---|---|
| xrex | ⊢ ℝ* ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-xr 8193 | . 2 ⊢ ℝ* = (ℝ ∪ {+∞, -∞}) | |
| 2 | reex 8141 | . . 3 ⊢ ℝ ∈ V | |
| 3 | pnfxr 8207 | . . . 4 ⊢ +∞ ∈ ℝ* | |
| 4 | mnfxr 8211 | . . . 4 ⊢ -∞ ∈ ℝ* | |
| 5 | prexg 4295 | . . . 4 ⊢ ((+∞ ∈ ℝ* ∧ -∞ ∈ ℝ*) → {+∞, -∞} ∈ V) | |
| 6 | 3, 4, 5 | mp2an 426 | . . 3 ⊢ {+∞, -∞} ∈ V |
| 7 | 2, 6 | unex 4532 | . 2 ⊢ (ℝ ∪ {+∞, -∞}) ∈ V |
| 8 | 1, 7 | eqeltri 2302 | 1 ⊢ ℝ* ∈ V |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2200 Vcvv 2799 ∪ cun 3195 {cpr 3667 ℝcr 8006 +∞cpnf 8186 -∞cmnf 8187 ℝ*cxr 8188 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-cnex 8098 ax-resscn 8099 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-uni 3889 df-pnf 8191 df-mnf 8192 df-xr 8193 |
| This theorem is referenced by: ixxval 10100 ixxf 10102 ixxex 10103 blfn 14523 cnfldstr 14530 cnfldle 14539 znval 14608 znle 14609 znbaslemnn 14611 ispsmet 15005 isxmet 15027 xmetunirn 15040 blfvalps 15067 blex 15069 |
| Copyright terms: Public domain | W3C validator |