Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > xrex | GIF version |
Description: The set of extended reals exists. (Contributed by NM, 24-Dec-2006.) |
Ref | Expression |
---|---|
xrex | ⊢ ℝ* ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-xr 7937 | . 2 ⊢ ℝ* = (ℝ ∪ {+∞, -∞}) | |
2 | reex 7887 | . . 3 ⊢ ℝ ∈ V | |
3 | pnfxr 7951 | . . . 4 ⊢ +∞ ∈ ℝ* | |
4 | mnfxr 7955 | . . . 4 ⊢ -∞ ∈ ℝ* | |
5 | prexg 4189 | . . . 4 ⊢ ((+∞ ∈ ℝ* ∧ -∞ ∈ ℝ*) → {+∞, -∞} ∈ V) | |
6 | 3, 4, 5 | mp2an 423 | . . 3 ⊢ {+∞, -∞} ∈ V |
7 | 2, 6 | unex 4419 | . 2 ⊢ (ℝ ∪ {+∞, -∞}) ∈ V |
8 | 1, 7 | eqeltri 2239 | 1 ⊢ ℝ* ∈ V |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2136 Vcvv 2726 ∪ cun 3114 {cpr 3577 ℝcr 7752 +∞cpnf 7930 -∞cmnf 7931 ℝ*cxr 7932 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-cnex 7844 ax-resscn 7845 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-rex 2450 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-uni 3790 df-pnf 7935 df-mnf 7936 df-xr 7937 |
This theorem is referenced by: ixxval 9832 ixxf 9834 ixxex 9835 ispsmet 12963 isxmet 12985 xmetunirn 12998 blfvalps 13025 blex 13027 |
Copyright terms: Public domain | W3C validator |