![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > opelxp | GIF version |
Description: Ordered pair membership in a cross product. (Contributed by NM, 15-Nov-1994.) (Proof shortened by Andrew Salmon, 12-Aug-2011.) (Revised by Mario Carneiro, 26-Apr-2015.) |
Ref | Expression |
---|---|
opelxp | ⊢ (〈𝐴, 𝐵〉 ∈ (𝐶 × 𝐷) ↔ (𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elxp2 4659 | . 2 ⊢ (〈𝐴, 𝐵〉 ∈ (𝐶 × 𝐷) ↔ ∃𝑥 ∈ 𝐶 ∃𝑦 ∈ 𝐷 〈𝐴, 𝐵〉 = 〈𝑥, 𝑦〉) | |
2 | vex 2755 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
3 | vex 2755 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
4 | 2, 3 | opth2 4255 | . . . . . 6 ⊢ (〈𝐴, 𝐵〉 = 〈𝑥, 𝑦〉 ↔ (𝐴 = 𝑥 ∧ 𝐵 = 𝑦)) |
5 | eleq1 2252 | . . . . . . 7 ⊢ (𝐴 = 𝑥 → (𝐴 ∈ 𝐶 ↔ 𝑥 ∈ 𝐶)) | |
6 | eleq1 2252 | . . . . . . 7 ⊢ (𝐵 = 𝑦 → (𝐵 ∈ 𝐷 ↔ 𝑦 ∈ 𝐷)) | |
7 | 5, 6 | bi2anan9 606 | . . . . . 6 ⊢ ((𝐴 = 𝑥 ∧ 𝐵 = 𝑦) → ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) ↔ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷))) |
8 | 4, 7 | sylbi 121 | . . . . 5 ⊢ (〈𝐴, 𝐵〉 = 〈𝑥, 𝑦〉 → ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) ↔ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷))) |
9 | 8 | biimprcd 160 | . . . 4 ⊢ ((𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷) → (〈𝐴, 𝐵〉 = 〈𝑥, 𝑦〉 → (𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷))) |
10 | 9 | rexlimivv 2613 | . . 3 ⊢ (∃𝑥 ∈ 𝐶 ∃𝑦 ∈ 𝐷 〈𝐴, 𝐵〉 = 〈𝑥, 𝑦〉 → (𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷)) |
11 | eqid 2189 | . . . 4 ⊢ 〈𝐴, 𝐵〉 = 〈𝐴, 𝐵〉 | |
12 | opeq1 3793 | . . . . . 6 ⊢ (𝑥 = 𝐴 → 〈𝑥, 𝑦〉 = 〈𝐴, 𝑦〉) | |
13 | 12 | eqeq2d 2201 | . . . . 5 ⊢ (𝑥 = 𝐴 → (〈𝐴, 𝐵〉 = 〈𝑥, 𝑦〉 ↔ 〈𝐴, 𝐵〉 = 〈𝐴, 𝑦〉)) |
14 | opeq2 3794 | . . . . . 6 ⊢ (𝑦 = 𝐵 → 〈𝐴, 𝑦〉 = 〈𝐴, 𝐵〉) | |
15 | 14 | eqeq2d 2201 | . . . . 5 ⊢ (𝑦 = 𝐵 → (〈𝐴, 𝐵〉 = 〈𝐴, 𝑦〉 ↔ 〈𝐴, 𝐵〉 = 〈𝐴, 𝐵〉)) |
16 | 13, 15 | rspc2ev 2871 | . . . 4 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ∧ 〈𝐴, 𝐵〉 = 〈𝐴, 𝐵〉) → ∃𝑥 ∈ 𝐶 ∃𝑦 ∈ 𝐷 〈𝐴, 𝐵〉 = 〈𝑥, 𝑦〉) |
17 | 11, 16 | mp3an3 1337 | . . 3 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → ∃𝑥 ∈ 𝐶 ∃𝑦 ∈ 𝐷 〈𝐴, 𝐵〉 = 〈𝑥, 𝑦〉) |
18 | 10, 17 | impbii 126 | . 2 ⊢ (∃𝑥 ∈ 𝐶 ∃𝑦 ∈ 𝐷 〈𝐴, 𝐵〉 = 〈𝑥, 𝑦〉 ↔ (𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷)) |
19 | 1, 18 | bitri 184 | 1 ⊢ (〈𝐴, 𝐵〉 ∈ (𝐶 × 𝐷) ↔ (𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷)) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 ↔ wb 105 = wceq 1364 ∈ wcel 2160 ∃wrex 2469 〈cop 3610 × cxp 4639 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2163 ax-ext 2171 ax-sep 4136 ax-pow 4189 ax-pr 4224 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ral 2473 df-rex 2474 df-v 2754 df-un 3148 df-in 3150 df-ss 3157 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-opab 4080 df-xp 4647 |
This theorem is referenced by: brxp 4672 opelxpi 4673 opelxp1 4675 opelxp2 4676 opthprc 4692 elxp3 4695 opeliunxp 4696 optocl 4717 xpiindim 4779 opelres 4927 resiexg 4967 restidsing 4978 codir 5032 qfto 5033 xpmlem 5064 rnxpid 5078 ssrnres 5086 dfco2 5143 relssdmrn 5164 ressn 5184 opelf 5403 fnovex 5925 oprab4 5963 resoprab 5988 elmpocl 6087 fo1stresm 6181 fo2ndresm 6182 dfoprab4 6212 xporderlem 6251 f1od2 6255 brecop 6646 xpdom2 6852 djulclb 7079 djuss 7094 enq0enq 7455 enq0sym 7456 enq0tr 7458 nqnq0pi 7462 nnnq0lem1 7470 elinp 7498 genipv 7533 prsrlem1 7766 gt0srpr 7772 opelcn 7850 opelreal 7851 elreal2 7854 frecuzrdgrrn 10434 frec2uzrdg 10435 frecuzrdgrcl 10436 frecuzrdgsuc 10440 frecuzrdgrclt 10441 frecuzrdgsuctlem 10449 fisumcom2 11473 fprodcom2fi 11661 sqpweven 12202 2sqpwodd 12203 phimullem 12252 txuni2 14193 txcnp 14208 txcnmpt 14210 txdis1cn 14215 txlm 14216 xmeterval 14372 limccnp2lem 14582 limccnp2cntop 14583 |
Copyright terms: Public domain | W3C validator |