ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opelxp GIF version

Theorem opelxp 4694
Description: Ordered pair membership in a cross product. (Contributed by NM, 15-Nov-1994.) (Proof shortened by Andrew Salmon, 12-Aug-2011.) (Revised by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
opelxp (⟨𝐴, 𝐵⟩ ∈ (𝐶 × 𝐷) ↔ (𝐴𝐶𝐵𝐷))

Proof of Theorem opelxp
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elxp2 4682 . 2 (⟨𝐴, 𝐵⟩ ∈ (𝐶 × 𝐷) ↔ ∃𝑥𝐶𝑦𝐷𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩)
2 vex 2766 . . . . . . 7 𝑥 ∈ V
3 vex 2766 . . . . . . 7 𝑦 ∈ V
42, 3opth2 4274 . . . . . 6 (⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ↔ (𝐴 = 𝑥𝐵 = 𝑦))
5 eleq1 2259 . . . . . . 7 (𝐴 = 𝑥 → (𝐴𝐶𝑥𝐶))
6 eleq1 2259 . . . . . . 7 (𝐵 = 𝑦 → (𝐵𝐷𝑦𝐷))
75, 6bi2anan9 606 . . . . . 6 ((𝐴 = 𝑥𝐵 = 𝑦) → ((𝐴𝐶𝐵𝐷) ↔ (𝑥𝐶𝑦𝐷)))
84, 7sylbi 121 . . . . 5 (⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ → ((𝐴𝐶𝐵𝐷) ↔ (𝑥𝐶𝑦𝐷)))
98biimprcd 160 . . . 4 ((𝑥𝐶𝑦𝐷) → (⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ → (𝐴𝐶𝐵𝐷)))
109rexlimivv 2620 . . 3 (∃𝑥𝐶𝑦𝐷𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ → (𝐴𝐶𝐵𝐷))
11 eqid 2196 . . . 4 𝐴, 𝐵⟩ = ⟨𝐴, 𝐵
12 opeq1 3809 . . . . . 6 (𝑥 = 𝐴 → ⟨𝑥, 𝑦⟩ = ⟨𝐴, 𝑦⟩)
1312eqeq2d 2208 . . . . 5 (𝑥 = 𝐴 → (⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ↔ ⟨𝐴, 𝐵⟩ = ⟨𝐴, 𝑦⟩))
14 opeq2 3810 . . . . . 6 (𝑦 = 𝐵 → ⟨𝐴, 𝑦⟩ = ⟨𝐴, 𝐵⟩)
1514eqeq2d 2208 . . . . 5 (𝑦 = 𝐵 → (⟨𝐴, 𝐵⟩ = ⟨𝐴, 𝑦⟩ ↔ ⟨𝐴, 𝐵⟩ = ⟨𝐴, 𝐵⟩))
1613, 15rspc2ev 2883 . . . 4 ((𝐴𝐶𝐵𝐷 ∧ ⟨𝐴, 𝐵⟩ = ⟨𝐴, 𝐵⟩) → ∃𝑥𝐶𝑦𝐷𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩)
1711, 16mp3an3 1337 . . 3 ((𝐴𝐶𝐵𝐷) → ∃𝑥𝐶𝑦𝐷𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩)
1810, 17impbii 126 . 2 (∃𝑥𝐶𝑦𝐷𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ↔ (𝐴𝐶𝐵𝐷))
191, 18bitri 184 1 (⟨𝐴, 𝐵⟩ ∈ (𝐶 × 𝐷) ↔ (𝐴𝐶𝐵𝐷))
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105   = wceq 1364  wcel 2167  wrex 2476  cop 3626   × cxp 4662
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-opab 4096  df-xp 4670
This theorem is referenced by:  brxp  4695  opelxpi  4696  opelxp1  4698  opelxp2  4699  opthprc  4715  elxp3  4718  opeliunxp  4719  optocl  4740  xpiindim  4804  opelres  4952  resiexg  4992  restidsing  5003  codir  5059  qfto  5060  xpmlem  5091  rnxpid  5105  ssrnres  5113  dfco2  5170  relssdmrn  5191  ressn  5211  opelf  5432  fnovex  5958  oprab4  5997  resoprab  6022  elmpocl  6122  fo1stresm  6228  fo2ndresm  6229  dfoprab4  6259  xporderlem  6298  f1od2  6302  brecop  6693  xpdom2  6899  djulclb  7130  djuss  7145  enq0enq  7517  enq0sym  7518  enq0tr  7520  nqnq0pi  7524  nnnq0lem1  7532  elinp  7560  genipv  7595  prsrlem1  7828  gt0srpr  7834  opelcn  7912  opelreal  7913  elreal2  7916  frecuzrdgrrn  10519  frec2uzrdg  10520  frecuzrdgrcl  10521  frecuzrdgsuc  10525  frecuzrdgrclt  10526  frecuzrdgsuctlem  10534  fisumcom2  11622  fprodcom2fi  11810  sqpweven  12370  2sqpwodd  12371  phimullem  12420  relelbasov  12767  txuni2  14600  txcnp  14615  txcnmpt  14617  txdis1cn  14622  txlm  14623  xmeterval  14779  limccnp2lem  15020  limccnp2cntop  15021  lgsquadlem1  15426  lgsquadlem2  15427
  Copyright terms: Public domain W3C validator