ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opelxp GIF version

Theorem opelxp 4704
Description: Ordered pair membership in a cross product. (Contributed by NM, 15-Nov-1994.) (Proof shortened by Andrew Salmon, 12-Aug-2011.) (Revised by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
opelxp (⟨𝐴, 𝐵⟩ ∈ (𝐶 × 𝐷) ↔ (𝐴𝐶𝐵𝐷))

Proof of Theorem opelxp
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elxp2 4692 . 2 (⟨𝐴, 𝐵⟩ ∈ (𝐶 × 𝐷) ↔ ∃𝑥𝐶𝑦𝐷𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩)
2 vex 2774 . . . . . . 7 𝑥 ∈ V
3 vex 2774 . . . . . . 7 𝑦 ∈ V
42, 3opth2 4283 . . . . . 6 (⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ↔ (𝐴 = 𝑥𝐵 = 𝑦))
5 eleq1 2267 . . . . . . 7 (𝐴 = 𝑥 → (𝐴𝐶𝑥𝐶))
6 eleq1 2267 . . . . . . 7 (𝐵 = 𝑦 → (𝐵𝐷𝑦𝐷))
75, 6bi2anan9 606 . . . . . 6 ((𝐴 = 𝑥𝐵 = 𝑦) → ((𝐴𝐶𝐵𝐷) ↔ (𝑥𝐶𝑦𝐷)))
84, 7sylbi 121 . . . . 5 (⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ → ((𝐴𝐶𝐵𝐷) ↔ (𝑥𝐶𝑦𝐷)))
98biimprcd 160 . . . 4 ((𝑥𝐶𝑦𝐷) → (⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ → (𝐴𝐶𝐵𝐷)))
109rexlimivv 2628 . . 3 (∃𝑥𝐶𝑦𝐷𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ → (𝐴𝐶𝐵𝐷))
11 eqid 2204 . . . 4 𝐴, 𝐵⟩ = ⟨𝐴, 𝐵
12 opeq1 3818 . . . . . 6 (𝑥 = 𝐴 → ⟨𝑥, 𝑦⟩ = ⟨𝐴, 𝑦⟩)
1312eqeq2d 2216 . . . . 5 (𝑥 = 𝐴 → (⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ↔ ⟨𝐴, 𝐵⟩ = ⟨𝐴, 𝑦⟩))
14 opeq2 3819 . . . . . 6 (𝑦 = 𝐵 → ⟨𝐴, 𝑦⟩ = ⟨𝐴, 𝐵⟩)
1514eqeq2d 2216 . . . . 5 (𝑦 = 𝐵 → (⟨𝐴, 𝐵⟩ = ⟨𝐴, 𝑦⟩ ↔ ⟨𝐴, 𝐵⟩ = ⟨𝐴, 𝐵⟩))
1613, 15rspc2ev 2891 . . . 4 ((𝐴𝐶𝐵𝐷 ∧ ⟨𝐴, 𝐵⟩ = ⟨𝐴, 𝐵⟩) → ∃𝑥𝐶𝑦𝐷𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩)
1711, 16mp3an3 1338 . . 3 ((𝐴𝐶𝐵𝐷) → ∃𝑥𝐶𝑦𝐷𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩)
1810, 17impbii 126 . 2 (∃𝑥𝐶𝑦𝐷𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ↔ (𝐴𝐶𝐵𝐷))
191, 18bitri 184 1 (⟨𝐴, 𝐵⟩ ∈ (𝐶 × 𝐷) ↔ (𝐴𝐶𝐵𝐷))
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105   = wceq 1372  wcel 2175  wrex 2484  cop 3635   × cxp 4672
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-v 2773  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-opab 4105  df-xp 4680
This theorem is referenced by:  brxp  4705  opelxpi  4706  opelxp1  4708  opelxp2  4709  opthprc  4725  elxp3  4728  opeliunxp  4729  optocl  4750  xpiindim  4814  opelres  4963  resiexg  5003  restidsing  5014  codir  5070  qfto  5071  xpmlem  5102  rnxpid  5116  ssrnres  5124  dfco2  5181  relssdmrn  5202  ressn  5222  opelf  5446  fnovex  5976  oprab4  6015  resoprab  6040  elmpocl  6140  fo1stresm  6246  fo2ndresm  6247  dfoprab4  6277  xporderlem  6316  f1od2  6320  brecop  6711  xpdom2  6925  djulclb  7156  djuss  7171  enq0enq  7543  enq0sym  7544  enq0tr  7546  nqnq0pi  7550  nnnq0lem1  7558  elinp  7586  genipv  7621  prsrlem1  7854  gt0srpr  7860  opelcn  7938  opelreal  7939  elreal2  7942  frecuzrdgrrn  10551  frec2uzrdg  10552  frecuzrdgrcl  10553  frecuzrdgsuc  10557  frecuzrdgrclt  10558  frecuzrdgsuctlem  10566  fisumcom2  11720  fprodcom2fi  11908  sqpweven  12468  2sqpwodd  12469  phimullem  12518  relelbasov  12865  txuni2  14699  txcnp  14714  txcnmpt  14716  txdis1cn  14721  txlm  14722  xmeterval  14878  limccnp2lem  15119  limccnp2cntop  15120  lgsquadlem1  15525  lgsquadlem2  15526
  Copyright terms: Public domain W3C validator