| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > opelxp | GIF version | ||
| Description: Ordered pair membership in a cross product. (Contributed by NM, 15-Nov-1994.) (Proof shortened by Andrew Salmon, 12-Aug-2011.) (Revised by Mario Carneiro, 26-Apr-2015.) |
| Ref | Expression |
|---|---|
| opelxp | ⊢ (〈𝐴, 𝐵〉 ∈ (𝐶 × 𝐷) ↔ (𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elxp2 4736 | . 2 ⊢ (〈𝐴, 𝐵〉 ∈ (𝐶 × 𝐷) ↔ ∃𝑥 ∈ 𝐶 ∃𝑦 ∈ 𝐷 〈𝐴, 𝐵〉 = 〈𝑥, 𝑦〉) | |
| 2 | vex 2802 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
| 3 | vex 2802 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
| 4 | 2, 3 | opth2 4325 | . . . . . 6 ⊢ (〈𝐴, 𝐵〉 = 〈𝑥, 𝑦〉 ↔ (𝐴 = 𝑥 ∧ 𝐵 = 𝑦)) |
| 5 | eleq1 2292 | . . . . . . 7 ⊢ (𝐴 = 𝑥 → (𝐴 ∈ 𝐶 ↔ 𝑥 ∈ 𝐶)) | |
| 6 | eleq1 2292 | . . . . . . 7 ⊢ (𝐵 = 𝑦 → (𝐵 ∈ 𝐷 ↔ 𝑦 ∈ 𝐷)) | |
| 7 | 5, 6 | bi2anan9 608 | . . . . . 6 ⊢ ((𝐴 = 𝑥 ∧ 𝐵 = 𝑦) → ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) ↔ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷))) |
| 8 | 4, 7 | sylbi 121 | . . . . 5 ⊢ (〈𝐴, 𝐵〉 = 〈𝑥, 𝑦〉 → ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) ↔ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷))) |
| 9 | 8 | biimprcd 160 | . . . 4 ⊢ ((𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷) → (〈𝐴, 𝐵〉 = 〈𝑥, 𝑦〉 → (𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷))) |
| 10 | 9 | rexlimivv 2654 | . . 3 ⊢ (∃𝑥 ∈ 𝐶 ∃𝑦 ∈ 𝐷 〈𝐴, 𝐵〉 = 〈𝑥, 𝑦〉 → (𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷)) |
| 11 | eqid 2229 | . . . 4 ⊢ 〈𝐴, 𝐵〉 = 〈𝐴, 𝐵〉 | |
| 12 | opeq1 3856 | . . . . . 6 ⊢ (𝑥 = 𝐴 → 〈𝑥, 𝑦〉 = 〈𝐴, 𝑦〉) | |
| 13 | 12 | eqeq2d 2241 | . . . . 5 ⊢ (𝑥 = 𝐴 → (〈𝐴, 𝐵〉 = 〈𝑥, 𝑦〉 ↔ 〈𝐴, 𝐵〉 = 〈𝐴, 𝑦〉)) |
| 14 | opeq2 3857 | . . . . . 6 ⊢ (𝑦 = 𝐵 → 〈𝐴, 𝑦〉 = 〈𝐴, 𝐵〉) | |
| 15 | 14 | eqeq2d 2241 | . . . . 5 ⊢ (𝑦 = 𝐵 → (〈𝐴, 𝐵〉 = 〈𝐴, 𝑦〉 ↔ 〈𝐴, 𝐵〉 = 〈𝐴, 𝐵〉)) |
| 16 | 13, 15 | rspc2ev 2922 | . . . 4 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ∧ 〈𝐴, 𝐵〉 = 〈𝐴, 𝐵〉) → ∃𝑥 ∈ 𝐶 ∃𝑦 ∈ 𝐷 〈𝐴, 𝐵〉 = 〈𝑥, 𝑦〉) |
| 17 | 11, 16 | mp3an3 1360 | . . 3 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → ∃𝑥 ∈ 𝐶 ∃𝑦 ∈ 𝐷 〈𝐴, 𝐵〉 = 〈𝑥, 𝑦〉) |
| 18 | 10, 17 | impbii 126 | . 2 ⊢ (∃𝑥 ∈ 𝐶 ∃𝑦 ∈ 𝐷 〈𝐴, 𝐵〉 = 〈𝑥, 𝑦〉 ↔ (𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷)) |
| 19 | 1, 18 | bitri 184 | 1 ⊢ (〈𝐴, 𝐵〉 ∈ (𝐶 × 𝐷) ↔ (𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷)) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 = wceq 1395 ∈ wcel 2200 ∃wrex 2509 〈cop 3669 × cxp 4716 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-opab 4145 df-xp 4724 |
| This theorem is referenced by: brxp 4749 opelxpi 4750 opelxp1 4752 opelxp2 4753 opthprc 4769 elxp3 4772 opeliunxp 4773 optocl 4794 xpiindim 4858 opelres 5009 resiexg 5049 restidsing 5060 codir 5116 qfto 5117 xpmlem 5148 rnxpid 5162 ssrnres 5170 dfco2 5227 relssdmrn 5248 ressn 5268 opelf 5495 fnovex 6033 oprab4 6074 resoprab 6099 elmpocl 6199 fo1stresm 6305 fo2ndresm 6306 dfoprab4 6336 xporderlem 6375 f1od2 6379 brecop 6770 xpdom2 6986 djulclb 7218 djuss 7233 enq0enq 7614 enq0sym 7615 enq0tr 7617 nqnq0pi 7621 nnnq0lem1 7629 elinp 7657 genipv 7692 prsrlem1 7925 gt0srpr 7931 opelcn 8009 opelreal 8010 elreal2 8013 frecuzrdgrrn 10625 frec2uzrdg 10626 frecuzrdgrcl 10627 frecuzrdgsuc 10631 frecuzrdgrclt 10632 frecuzrdgsuctlem 10640 fisumcom2 11944 fprodcom2fi 12132 sqpweven 12692 2sqpwodd 12693 phimullem 12742 relelbasov 13090 txuni2 14924 txcnp 14939 txcnmpt 14941 txdis1cn 14946 txlm 14947 xmeterval 15103 limccnp2lem 15344 limccnp2cntop 15345 lgsquadlem1 15750 lgsquadlem2 15751 |
| Copyright terms: Public domain | W3C validator |