| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > opelxp | GIF version | ||
| Description: Ordered pair membership in a cross product. (Contributed by NM, 15-Nov-1994.) (Proof shortened by Andrew Salmon, 12-Aug-2011.) (Revised by Mario Carneiro, 26-Apr-2015.) |
| Ref | Expression |
|---|---|
| opelxp | ⊢ (〈𝐴, 𝐵〉 ∈ (𝐶 × 𝐷) ↔ (𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elxp2 4706 | . 2 ⊢ (〈𝐴, 𝐵〉 ∈ (𝐶 × 𝐷) ↔ ∃𝑥 ∈ 𝐶 ∃𝑦 ∈ 𝐷 〈𝐴, 𝐵〉 = 〈𝑥, 𝑦〉) | |
| 2 | vex 2776 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
| 3 | vex 2776 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
| 4 | 2, 3 | opth2 4297 | . . . . . 6 ⊢ (〈𝐴, 𝐵〉 = 〈𝑥, 𝑦〉 ↔ (𝐴 = 𝑥 ∧ 𝐵 = 𝑦)) |
| 5 | eleq1 2269 | . . . . . . 7 ⊢ (𝐴 = 𝑥 → (𝐴 ∈ 𝐶 ↔ 𝑥 ∈ 𝐶)) | |
| 6 | eleq1 2269 | . . . . . . 7 ⊢ (𝐵 = 𝑦 → (𝐵 ∈ 𝐷 ↔ 𝑦 ∈ 𝐷)) | |
| 7 | 5, 6 | bi2anan9 606 | . . . . . 6 ⊢ ((𝐴 = 𝑥 ∧ 𝐵 = 𝑦) → ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) ↔ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷))) |
| 8 | 4, 7 | sylbi 121 | . . . . 5 ⊢ (〈𝐴, 𝐵〉 = 〈𝑥, 𝑦〉 → ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) ↔ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷))) |
| 9 | 8 | biimprcd 160 | . . . 4 ⊢ ((𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷) → (〈𝐴, 𝐵〉 = 〈𝑥, 𝑦〉 → (𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷))) |
| 10 | 9 | rexlimivv 2630 | . . 3 ⊢ (∃𝑥 ∈ 𝐶 ∃𝑦 ∈ 𝐷 〈𝐴, 𝐵〉 = 〈𝑥, 𝑦〉 → (𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷)) |
| 11 | eqid 2206 | . . . 4 ⊢ 〈𝐴, 𝐵〉 = 〈𝐴, 𝐵〉 | |
| 12 | opeq1 3828 | . . . . . 6 ⊢ (𝑥 = 𝐴 → 〈𝑥, 𝑦〉 = 〈𝐴, 𝑦〉) | |
| 13 | 12 | eqeq2d 2218 | . . . . 5 ⊢ (𝑥 = 𝐴 → (〈𝐴, 𝐵〉 = 〈𝑥, 𝑦〉 ↔ 〈𝐴, 𝐵〉 = 〈𝐴, 𝑦〉)) |
| 14 | opeq2 3829 | . . . . . 6 ⊢ (𝑦 = 𝐵 → 〈𝐴, 𝑦〉 = 〈𝐴, 𝐵〉) | |
| 15 | 14 | eqeq2d 2218 | . . . . 5 ⊢ (𝑦 = 𝐵 → (〈𝐴, 𝐵〉 = 〈𝐴, 𝑦〉 ↔ 〈𝐴, 𝐵〉 = 〈𝐴, 𝐵〉)) |
| 16 | 13, 15 | rspc2ev 2896 | . . . 4 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ∧ 〈𝐴, 𝐵〉 = 〈𝐴, 𝐵〉) → ∃𝑥 ∈ 𝐶 ∃𝑦 ∈ 𝐷 〈𝐴, 𝐵〉 = 〈𝑥, 𝑦〉) |
| 17 | 11, 16 | mp3an3 1339 | . . 3 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → ∃𝑥 ∈ 𝐶 ∃𝑦 ∈ 𝐷 〈𝐴, 𝐵〉 = 〈𝑥, 𝑦〉) |
| 18 | 10, 17 | impbii 126 | . 2 ⊢ (∃𝑥 ∈ 𝐶 ∃𝑦 ∈ 𝐷 〈𝐴, 𝐵〉 = 〈𝑥, 𝑦〉 ↔ (𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷)) |
| 19 | 1, 18 | bitri 184 | 1 ⊢ (〈𝐴, 𝐵〉 ∈ (𝐶 × 𝐷) ↔ (𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷)) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 = wceq 1373 ∈ wcel 2177 ∃wrex 2486 〈cop 3641 × cxp 4686 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4173 ax-pow 4229 ax-pr 4264 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-opab 4117 df-xp 4694 |
| This theorem is referenced by: brxp 4719 opelxpi 4720 opelxp1 4722 opelxp2 4723 opthprc 4739 elxp3 4742 opeliunxp 4743 optocl 4764 xpiindim 4828 opelres 4978 resiexg 5018 restidsing 5029 codir 5085 qfto 5086 xpmlem 5117 rnxpid 5131 ssrnres 5139 dfco2 5196 relssdmrn 5217 ressn 5237 opelf 5463 fnovex 5995 oprab4 6034 resoprab 6059 elmpocl 6159 fo1stresm 6265 fo2ndresm 6266 dfoprab4 6296 xporderlem 6335 f1od2 6339 brecop 6730 xpdom2 6946 djulclb 7178 djuss 7193 enq0enq 7574 enq0sym 7575 enq0tr 7577 nqnq0pi 7581 nnnq0lem1 7589 elinp 7617 genipv 7652 prsrlem1 7885 gt0srpr 7891 opelcn 7969 opelreal 7970 elreal2 7973 frecuzrdgrrn 10585 frec2uzrdg 10586 frecuzrdgrcl 10587 frecuzrdgsuc 10591 frecuzrdgrclt 10592 frecuzrdgsuctlem 10600 fisumcom2 11834 fprodcom2fi 12022 sqpweven 12582 2sqpwodd 12583 phimullem 12632 relelbasov 12979 txuni2 14813 txcnp 14828 txcnmpt 14830 txdis1cn 14835 txlm 14836 xmeterval 14992 limccnp2lem 15233 limccnp2cntop 15234 lgsquadlem1 15639 lgsquadlem2 15640 |
| Copyright terms: Public domain | W3C validator |