![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > opelxp | GIF version |
Description: Ordered pair membership in a cross product. (Contributed by NM, 15-Nov-1994.) (Proof shortened by Andrew Salmon, 12-Aug-2011.) (Revised by Mario Carneiro, 26-Apr-2015.) |
Ref | Expression |
---|---|
opelxp | ⊢ (⟨𝐴, 𝐵⟩ ∈ (𝐶 × 𝐷) ↔ (𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elxp2 4646 | . 2 ⊢ (⟨𝐴, 𝐵⟩ ∈ (𝐶 × 𝐷) ↔ ∃𝑥 ∈ 𝐶 ∃𝑦 ∈ 𝐷 ⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩) | |
2 | vex 2742 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
3 | vex 2742 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
4 | 2, 3 | opth2 4242 | . . . . . 6 ⊢ (⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ↔ (𝐴 = 𝑥 ∧ 𝐵 = 𝑦)) |
5 | eleq1 2240 | . . . . . . 7 ⊢ (𝐴 = 𝑥 → (𝐴 ∈ 𝐶 ↔ 𝑥 ∈ 𝐶)) | |
6 | eleq1 2240 | . . . . . . 7 ⊢ (𝐵 = 𝑦 → (𝐵 ∈ 𝐷 ↔ 𝑦 ∈ 𝐷)) | |
7 | 5, 6 | bi2anan9 606 | . . . . . 6 ⊢ ((𝐴 = 𝑥 ∧ 𝐵 = 𝑦) → ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) ↔ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷))) |
8 | 4, 7 | sylbi 121 | . . . . 5 ⊢ (⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ → ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) ↔ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷))) |
9 | 8 | biimprcd 160 | . . . 4 ⊢ ((𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷) → (⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ → (𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷))) |
10 | 9 | rexlimivv 2600 | . . 3 ⊢ (∃𝑥 ∈ 𝐶 ∃𝑦 ∈ 𝐷 ⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ → (𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷)) |
11 | eqid 2177 | . . . 4 ⊢ ⟨𝐴, 𝐵⟩ = ⟨𝐴, 𝐵⟩ | |
12 | opeq1 3780 | . . . . . 6 ⊢ (𝑥 = 𝐴 → ⟨𝑥, 𝑦⟩ = ⟨𝐴, 𝑦⟩) | |
13 | 12 | eqeq2d 2189 | . . . . 5 ⊢ (𝑥 = 𝐴 → (⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ↔ ⟨𝐴, 𝐵⟩ = ⟨𝐴, 𝑦⟩)) |
14 | opeq2 3781 | . . . . . 6 ⊢ (𝑦 = 𝐵 → ⟨𝐴, 𝑦⟩ = ⟨𝐴, 𝐵⟩) | |
15 | 14 | eqeq2d 2189 | . . . . 5 ⊢ (𝑦 = 𝐵 → (⟨𝐴, 𝐵⟩ = ⟨𝐴, 𝑦⟩ ↔ ⟨𝐴, 𝐵⟩ = ⟨𝐴, 𝐵⟩)) |
16 | 13, 15 | rspc2ev 2858 | . . . 4 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ∧ ⟨𝐴, 𝐵⟩ = ⟨𝐴, 𝐵⟩) → ∃𝑥 ∈ 𝐶 ∃𝑦 ∈ 𝐷 ⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩) |
17 | 11, 16 | mp3an3 1326 | . . 3 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → ∃𝑥 ∈ 𝐶 ∃𝑦 ∈ 𝐷 ⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩) |
18 | 10, 17 | impbii 126 | . 2 ⊢ (∃𝑥 ∈ 𝐶 ∃𝑦 ∈ 𝐷 ⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ↔ (𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷)) |
19 | 1, 18 | bitri 184 | 1 ⊢ (⟨𝐴, 𝐵⟩ ∈ (𝐶 × 𝐷) ↔ (𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷)) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 ↔ wb 105 = wceq 1353 ∈ wcel 2148 ∃wrex 2456 ⟨cop 3597 × cxp 4626 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-v 2741 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-opab 4067 df-xp 4634 |
This theorem is referenced by: brxp 4659 opelxpi 4660 opelxp1 4662 opelxp2 4663 opthprc 4679 elxp3 4682 opeliunxp 4683 optocl 4704 xpiindim 4766 opelres 4914 resiexg 4954 restidsing 4965 codir 5019 qfto 5020 xpmlem 5051 rnxpid 5065 ssrnres 5073 dfco2 5130 relssdmrn 5151 ressn 5171 opelf 5389 fnovex 5910 oprab4 5948 resoprab 5973 elmpocl 6071 fo1stresm 6164 fo2ndresm 6165 dfoprab4 6195 xporderlem 6234 f1od2 6238 brecop 6627 xpdom2 6833 djulclb 7056 djuss 7071 enq0enq 7432 enq0sym 7433 enq0tr 7435 nqnq0pi 7439 nnnq0lem1 7447 elinp 7475 genipv 7510 prsrlem1 7743 gt0srpr 7749 opelcn 7827 opelreal 7828 elreal2 7831 frecuzrdgrrn 10410 frec2uzrdg 10411 frecuzrdgrcl 10412 frecuzrdgsuc 10416 frecuzrdgrclt 10417 frecuzrdgsuctlem 10425 fisumcom2 11448 fprodcom2fi 11636 sqpweven 12177 2sqpwodd 12178 phimullem 12227 txuni2 13795 txcnp 13810 txcnmpt 13812 txdis1cn 13817 txlm 13818 xmeterval 13974 limccnp2lem 14184 limccnp2cntop 14185 |
Copyright terms: Public domain | W3C validator |