| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > opelxp | GIF version | ||
| Description: Ordered pair membership in a cross product. (Contributed by NM, 15-Nov-1994.) (Proof shortened by Andrew Salmon, 12-Aug-2011.) (Revised by Mario Carneiro, 26-Apr-2015.) |
| Ref | Expression |
|---|---|
| opelxp | ⊢ (〈𝐴, 𝐵〉 ∈ (𝐶 × 𝐷) ↔ (𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elxp2 4693 | . 2 ⊢ (〈𝐴, 𝐵〉 ∈ (𝐶 × 𝐷) ↔ ∃𝑥 ∈ 𝐶 ∃𝑦 ∈ 𝐷 〈𝐴, 𝐵〉 = 〈𝑥, 𝑦〉) | |
| 2 | vex 2775 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
| 3 | vex 2775 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
| 4 | 2, 3 | opth2 4284 | . . . . . 6 ⊢ (〈𝐴, 𝐵〉 = 〈𝑥, 𝑦〉 ↔ (𝐴 = 𝑥 ∧ 𝐵 = 𝑦)) |
| 5 | eleq1 2268 | . . . . . . 7 ⊢ (𝐴 = 𝑥 → (𝐴 ∈ 𝐶 ↔ 𝑥 ∈ 𝐶)) | |
| 6 | eleq1 2268 | . . . . . . 7 ⊢ (𝐵 = 𝑦 → (𝐵 ∈ 𝐷 ↔ 𝑦 ∈ 𝐷)) | |
| 7 | 5, 6 | bi2anan9 606 | . . . . . 6 ⊢ ((𝐴 = 𝑥 ∧ 𝐵 = 𝑦) → ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) ↔ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷))) |
| 8 | 4, 7 | sylbi 121 | . . . . 5 ⊢ (〈𝐴, 𝐵〉 = 〈𝑥, 𝑦〉 → ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) ↔ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷))) |
| 9 | 8 | biimprcd 160 | . . . 4 ⊢ ((𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷) → (〈𝐴, 𝐵〉 = 〈𝑥, 𝑦〉 → (𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷))) |
| 10 | 9 | rexlimivv 2629 | . . 3 ⊢ (∃𝑥 ∈ 𝐶 ∃𝑦 ∈ 𝐷 〈𝐴, 𝐵〉 = 〈𝑥, 𝑦〉 → (𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷)) |
| 11 | eqid 2205 | . . . 4 ⊢ 〈𝐴, 𝐵〉 = 〈𝐴, 𝐵〉 | |
| 12 | opeq1 3819 | . . . . . 6 ⊢ (𝑥 = 𝐴 → 〈𝑥, 𝑦〉 = 〈𝐴, 𝑦〉) | |
| 13 | 12 | eqeq2d 2217 | . . . . 5 ⊢ (𝑥 = 𝐴 → (〈𝐴, 𝐵〉 = 〈𝑥, 𝑦〉 ↔ 〈𝐴, 𝐵〉 = 〈𝐴, 𝑦〉)) |
| 14 | opeq2 3820 | . . . . . 6 ⊢ (𝑦 = 𝐵 → 〈𝐴, 𝑦〉 = 〈𝐴, 𝐵〉) | |
| 15 | 14 | eqeq2d 2217 | . . . . 5 ⊢ (𝑦 = 𝐵 → (〈𝐴, 𝐵〉 = 〈𝐴, 𝑦〉 ↔ 〈𝐴, 𝐵〉 = 〈𝐴, 𝐵〉)) |
| 16 | 13, 15 | rspc2ev 2892 | . . . 4 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ∧ 〈𝐴, 𝐵〉 = 〈𝐴, 𝐵〉) → ∃𝑥 ∈ 𝐶 ∃𝑦 ∈ 𝐷 〈𝐴, 𝐵〉 = 〈𝑥, 𝑦〉) |
| 17 | 11, 16 | mp3an3 1339 | . . 3 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → ∃𝑥 ∈ 𝐶 ∃𝑦 ∈ 𝐷 〈𝐴, 𝐵〉 = 〈𝑥, 𝑦〉) |
| 18 | 10, 17 | impbii 126 | . 2 ⊢ (∃𝑥 ∈ 𝐶 ∃𝑦 ∈ 𝐷 〈𝐴, 𝐵〉 = 〈𝑥, 𝑦〉 ↔ (𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷)) |
| 19 | 1, 18 | bitri 184 | 1 ⊢ (〈𝐴, 𝐵〉 ∈ (𝐶 × 𝐷) ↔ (𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷)) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 = wceq 1373 ∈ wcel 2176 ∃wrex 2485 〈cop 3636 × cxp 4673 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-opab 4106 df-xp 4681 |
| This theorem is referenced by: brxp 4706 opelxpi 4707 opelxp1 4709 opelxp2 4710 opthprc 4726 elxp3 4729 opeliunxp 4730 optocl 4751 xpiindim 4815 opelres 4964 resiexg 5004 restidsing 5015 codir 5071 qfto 5072 xpmlem 5103 rnxpid 5117 ssrnres 5125 dfco2 5182 relssdmrn 5203 ressn 5223 opelf 5447 fnovex 5977 oprab4 6016 resoprab 6041 elmpocl 6141 fo1stresm 6247 fo2ndresm 6248 dfoprab4 6278 xporderlem 6317 f1od2 6321 brecop 6712 xpdom2 6926 djulclb 7157 djuss 7172 enq0enq 7544 enq0sym 7545 enq0tr 7547 nqnq0pi 7551 nnnq0lem1 7559 elinp 7587 genipv 7622 prsrlem1 7855 gt0srpr 7861 opelcn 7939 opelreal 7940 elreal2 7943 frecuzrdgrrn 10553 frec2uzrdg 10554 frecuzrdgrcl 10555 frecuzrdgsuc 10559 frecuzrdgrclt 10560 frecuzrdgsuctlem 10568 fisumcom2 11749 fprodcom2fi 11937 sqpweven 12497 2sqpwodd 12498 phimullem 12547 relelbasov 12894 txuni2 14728 txcnp 14743 txcnmpt 14745 txdis1cn 14750 txlm 14751 xmeterval 14907 limccnp2lem 15148 limccnp2cntop 15149 lgsquadlem1 15554 lgsquadlem2 15555 |
| Copyright terms: Public domain | W3C validator |