![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > prhash2ex | GIF version |
Description: There is (at least) one set with two different elements: the unordered pair containing 0 and 1. In contrast to pr0hash2ex 10797, numbers are used instead of sets because their representation is shorter (and more comprehensive). (Contributed by AV, 29-Jan-2020.) |
Ref | Expression |
---|---|
prhash2ex | ⊢ (♯‘{0, 1}) = 2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ne1 8988 | . 2 ⊢ 0 ≠ 1 | |
2 | c0ex 7953 | . . 3 ⊢ 0 ∈ V | |
3 | 1ex 7954 | . . 3 ⊢ 1 ∈ V | |
4 | hashprg 10790 | . . . 4 ⊢ ((0 ∈ V ∧ 1 ∈ V) → (0 ≠ 1 ↔ (♯‘{0, 1}) = 2)) | |
5 | 4 | bicomd 141 | . . 3 ⊢ ((0 ∈ V ∧ 1 ∈ V) → ((♯‘{0, 1}) = 2 ↔ 0 ≠ 1)) |
6 | 2, 3, 5 | mp2an 426 | . 2 ⊢ ((♯‘{0, 1}) = 2 ↔ 0 ≠ 1) |
7 | 1, 6 | mpbir 146 | 1 ⊢ (♯‘{0, 1}) = 2 |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 ↔ wb 105 = wceq 1353 ∈ wcel 2148 ≠ wne 2347 Vcvv 2739 {cpr 3595 ‘cfv 5218 0cc0 7813 1c1 7814 2c2 8972 ♯chash 10757 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-coll 4120 ax-sep 4123 ax-nul 4131 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-setind 4538 ax-iinf 4589 ax-cnex 7904 ax-resscn 7905 ax-1cn 7906 ax-1re 7907 ax-icn 7908 ax-addcl 7909 ax-addrcl 7910 ax-mulcl 7911 ax-addcom 7913 ax-addass 7915 ax-distr 7917 ax-i2m1 7918 ax-0lt1 7919 ax-0id 7921 ax-rnegex 7922 ax-cnre 7924 ax-pre-ltirr 7925 ax-pre-ltwlin 7926 ax-pre-lttrn 7927 ax-pre-apti 7928 ax-pre-ltadd 7929 |
This theorem depends on definitions: df-bi 117 df-dc 835 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-reu 2462 df-rab 2464 df-v 2741 df-sbc 2965 df-csb 3060 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-nul 3425 df-if 3537 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-int 3847 df-iun 3890 df-br 4006 df-opab 4067 df-mpt 4068 df-tr 4104 df-id 4295 df-iord 4368 df-on 4370 df-ilim 4371 df-suc 4373 df-iom 4592 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-ima 4641 df-iota 5180 df-fun 5220 df-fn 5221 df-f 5222 df-f1 5223 df-fo 5224 df-f1o 5225 df-fv 5226 df-riota 5833 df-ov 5880 df-oprab 5881 df-mpo 5882 df-1st 6143 df-2nd 6144 df-recs 6308 df-irdg 6373 df-frec 6394 df-1o 6419 df-oadd 6423 df-er 6537 df-en 6743 df-dom 6744 df-fin 6745 df-pnf 7996 df-mnf 7997 df-xr 7998 df-ltxr 7999 df-le 8000 df-sub 8132 df-neg 8133 df-inn 8922 df-2 8980 df-n0 9179 df-z 9256 df-uz 9531 df-fz 10011 df-ihash 10758 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |