![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > prodf1f | GIF version |
Description: A one-valued infinite product is equal to the constant one function. (Contributed by Scott Fenton, 5-Dec-2017.) |
Ref | Expression |
---|---|
prodf1.1 | β’ π = (β€β₯βπ) |
Ref | Expression |
---|---|
prodf1f | β’ (π β β€ β seqπ( Β· , (π Γ {1})) = (π Γ {1})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prodf1.1 | . . . . 5 β’ π = (β€β₯βπ) | |
2 | 1 | prodf1 11552 | . . . 4 β’ (π β π β (seqπ( Β· , (π Γ {1}))βπ) = 1) |
3 | 1ex 7954 | . . . . 5 β’ 1 β V | |
4 | 3 | fvconst2 5734 | . . . 4 β’ (π β π β ((π Γ {1})βπ) = 1) |
5 | 2, 4 | eqtr4d 2213 | . . 3 β’ (π β π β (seqπ( Β· , (π Γ {1}))βπ) = ((π Γ {1})βπ)) |
6 | 5 | rgen 2530 | . 2 β’ βπ β π (seqπ( Β· , (π Γ {1}))βπ) = ((π Γ {1})βπ) |
7 | id 19 | . . . . 5 β’ (π β β€ β π β β€) | |
8 | 1cnd 7975 | . . . . . . 7 β’ (π β π β 1 β β) | |
9 | 4, 8 | eqeltrd 2254 | . . . . . 6 β’ (π β π β ((π Γ {1})βπ) β β) |
10 | 9 | adantl 277 | . . . . 5 β’ ((π β β€ β§ π β π) β ((π Γ {1})βπ) β β) |
11 | 1, 7, 10 | prodf 11548 | . . . 4 β’ (π β β€ β seqπ( Β· , (π Γ {1})):πβΆβ) |
12 | 11 | ffnd 5368 | . . 3 β’ (π β β€ β seqπ( Β· , (π Γ {1})) Fn π) |
13 | 3 | fconst 5413 | . . . 4 β’ (π Γ {1}):πβΆ{1} |
14 | ffn 5367 | . . . 4 β’ ((π Γ {1}):πβΆ{1} β (π Γ {1}) Fn π) | |
15 | 13, 14 | ax-mp 5 | . . 3 β’ (π Γ {1}) Fn π |
16 | eqfnfv 5615 | . . 3 β’ ((seqπ( Β· , (π Γ {1})) Fn π β§ (π Γ {1}) Fn π) β (seqπ( Β· , (π Γ {1})) = (π Γ {1}) β βπ β π (seqπ( Β· , (π Γ {1}))βπ) = ((π Γ {1})βπ))) | |
17 | 12, 15, 16 | sylancl 413 | . 2 β’ (π β β€ β (seqπ( Β· , (π Γ {1})) = (π Γ {1}) β βπ β π (seqπ( Β· , (π Γ {1}))βπ) = ((π Γ {1})βπ))) |
18 | 6, 17 | mpbiri 168 | 1 β’ (π β β€ β seqπ( Β· , (π Γ {1})) = (π Γ {1})) |
Colors of variables: wff set class |
Syntax hints: β wi 4 β wb 105 = wceq 1353 β wcel 2148 βwral 2455 {csn 3594 Γ cxp 4626 Fn wfn 5213 βΆwf 5214 βcfv 5218 βcc 7811 1c1 7814 Β· cmul 7818 β€cz 9255 β€β₯cuz 9530 seqcseq 10447 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-coll 4120 ax-sep 4123 ax-nul 4131 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-setind 4538 ax-iinf 4589 ax-cnex 7904 ax-resscn 7905 ax-1cn 7906 ax-1re 7907 ax-icn 7908 ax-addcl 7909 ax-addrcl 7910 ax-mulcl 7911 ax-addcom 7913 ax-mulcom 7914 ax-addass 7915 ax-mulass 7916 ax-distr 7917 ax-i2m1 7918 ax-0lt1 7919 ax-1rid 7920 ax-0id 7921 ax-rnegex 7922 ax-cnre 7924 ax-pre-ltirr 7925 ax-pre-ltwlin 7926 ax-pre-lttrn 7927 ax-pre-ltadd 7929 |
This theorem depends on definitions: df-bi 117 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-reu 2462 df-rab 2464 df-v 2741 df-sbc 2965 df-csb 3060 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-nul 3425 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-int 3847 df-iun 3890 df-br 4006 df-opab 4067 df-mpt 4068 df-tr 4104 df-id 4295 df-iord 4368 df-on 4370 df-ilim 4371 df-suc 4373 df-iom 4592 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-ima 4641 df-iota 5180 df-fun 5220 df-fn 5221 df-f 5222 df-f1 5223 df-fo 5224 df-f1o 5225 df-fv 5226 df-riota 5833 df-ov 5880 df-oprab 5881 df-mpo 5882 df-1st 6143 df-2nd 6144 df-recs 6308 df-frec 6394 df-pnf 7996 df-mnf 7997 df-xr 7998 df-ltxr 7999 df-le 8000 df-sub 8132 df-neg 8133 df-inn 8922 df-n0 9179 df-z 9256 df-uz 9531 df-fz 10011 df-fzo 10145 df-seqfrec 10448 |
This theorem is referenced by: prodfclim1 11554 |
Copyright terms: Public domain | W3C validator |