ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prodf1f GIF version

Theorem prodf1f 11725
Description: A one-valued infinite product is equal to the constant one function. (Contributed by Scott Fenton, 5-Dec-2017.)
Hypothesis
Ref Expression
prodf1.1 𝑍 = (ℤ𝑀)
Assertion
Ref Expression
prodf1f (𝑀 ∈ ℤ → seq𝑀( · , (𝑍 × {1})) = (𝑍 × {1}))

Proof of Theorem prodf1f
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 prodf1.1 . . . . 5 𝑍 = (ℤ𝑀)
21prodf1 11724 . . . 4 (𝑘𝑍 → (seq𝑀( · , (𝑍 × {1}))‘𝑘) = 1)
3 1ex 8038 . . . . 5 1 ∈ V
43fvconst2 5781 . . . 4 (𝑘𝑍 → ((𝑍 × {1})‘𝑘) = 1)
52, 4eqtr4d 2232 . . 3 (𝑘𝑍 → (seq𝑀( · , (𝑍 × {1}))‘𝑘) = ((𝑍 × {1})‘𝑘))
65rgen 2550 . 2 𝑘𝑍 (seq𝑀( · , (𝑍 × {1}))‘𝑘) = ((𝑍 × {1})‘𝑘)
7 id 19 . . . . 5 (𝑀 ∈ ℤ → 𝑀 ∈ ℤ)
8 1cnd 8059 . . . . . . 7 (𝑘𝑍 → 1 ∈ ℂ)
94, 8eqeltrd 2273 . . . . . 6 (𝑘𝑍 → ((𝑍 × {1})‘𝑘) ∈ ℂ)
109adantl 277 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑘𝑍) → ((𝑍 × {1})‘𝑘) ∈ ℂ)
111, 7, 10prodf 11720 . . . 4 (𝑀 ∈ ℤ → seq𝑀( · , (𝑍 × {1})):𝑍⟶ℂ)
1211ffnd 5411 . . 3 (𝑀 ∈ ℤ → seq𝑀( · , (𝑍 × {1})) Fn 𝑍)
133fconst 5456 . . . 4 (𝑍 × {1}):𝑍⟶{1}
14 ffn 5410 . . . 4 ((𝑍 × {1}):𝑍⟶{1} → (𝑍 × {1}) Fn 𝑍)
1513, 14ax-mp 5 . . 3 (𝑍 × {1}) Fn 𝑍
16 eqfnfv 5662 . . 3 ((seq𝑀( · , (𝑍 × {1})) Fn 𝑍 ∧ (𝑍 × {1}) Fn 𝑍) → (seq𝑀( · , (𝑍 × {1})) = (𝑍 × {1}) ↔ ∀𝑘𝑍 (seq𝑀( · , (𝑍 × {1}))‘𝑘) = ((𝑍 × {1})‘𝑘)))
1712, 15, 16sylancl 413 . 2 (𝑀 ∈ ℤ → (seq𝑀( · , (𝑍 × {1})) = (𝑍 × {1}) ↔ ∀𝑘𝑍 (seq𝑀( · , (𝑍 × {1}))‘𝑘) = ((𝑍 × {1})‘𝑘)))
186, 17mpbiri 168 1 (𝑀 ∈ ℤ → seq𝑀( · , (𝑍 × {1})) = (𝑍 × {1}))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1364  wcel 2167  wral 2475  {csn 3623   × cxp 4662   Fn wfn 5254  wf 5255  cfv 5259  cc 7894  1c1 7897   · cmul 7901  cz 9343  cuz 9618  seqcseq 10556
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-mulass 7999  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-1rid 8003  ax-0id 8004  ax-rnegex 8005  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-ltadd 8012
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-frec 6458  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-inn 9008  df-n0 9267  df-z 9344  df-uz 9619  df-fz 10101  df-fzo 10235  df-seqfrec 10557
This theorem is referenced by:  prodfclim1  11726
  Copyright terms: Public domain W3C validator