| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > prodf1f | GIF version | ||
| Description: A one-valued infinite product is equal to the constant one function. (Contributed by Scott Fenton, 5-Dec-2017.) |
| Ref | Expression |
|---|---|
| prodf1.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| Ref | Expression |
|---|---|
| prodf1f | ⊢ (𝑀 ∈ ℤ → seq𝑀( · , (𝑍 × {1})) = (𝑍 × {1})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prodf1.1 | . . . . 5 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 2 | 1 | prodf1 11897 | . . . 4 ⊢ (𝑘 ∈ 𝑍 → (seq𝑀( · , (𝑍 × {1}))‘𝑘) = 1) |
| 3 | 1ex 8074 | . . . . 5 ⊢ 1 ∈ V | |
| 4 | 3 | fvconst2 5807 | . . . 4 ⊢ (𝑘 ∈ 𝑍 → ((𝑍 × {1})‘𝑘) = 1) |
| 5 | 2, 4 | eqtr4d 2242 | . . 3 ⊢ (𝑘 ∈ 𝑍 → (seq𝑀( · , (𝑍 × {1}))‘𝑘) = ((𝑍 × {1})‘𝑘)) |
| 6 | 5 | rgen 2560 | . 2 ⊢ ∀𝑘 ∈ 𝑍 (seq𝑀( · , (𝑍 × {1}))‘𝑘) = ((𝑍 × {1})‘𝑘) |
| 7 | id 19 | . . . . 5 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ ℤ) | |
| 8 | 1cnd 8095 | . . . . . . 7 ⊢ (𝑘 ∈ 𝑍 → 1 ∈ ℂ) | |
| 9 | 4, 8 | eqeltrd 2283 | . . . . . 6 ⊢ (𝑘 ∈ 𝑍 → ((𝑍 × {1})‘𝑘) ∈ ℂ) |
| 10 | 9 | adantl 277 | . . . . 5 ⊢ ((𝑀 ∈ ℤ ∧ 𝑘 ∈ 𝑍) → ((𝑍 × {1})‘𝑘) ∈ ℂ) |
| 11 | 1, 7, 10 | prodf 11893 | . . . 4 ⊢ (𝑀 ∈ ℤ → seq𝑀( · , (𝑍 × {1})):𝑍⟶ℂ) |
| 12 | 11 | ffnd 5432 | . . 3 ⊢ (𝑀 ∈ ℤ → seq𝑀( · , (𝑍 × {1})) Fn 𝑍) |
| 13 | 3 | fconst 5478 | . . . 4 ⊢ (𝑍 × {1}):𝑍⟶{1} |
| 14 | ffn 5431 | . . . 4 ⊢ ((𝑍 × {1}):𝑍⟶{1} → (𝑍 × {1}) Fn 𝑍) | |
| 15 | 13, 14 | ax-mp 5 | . . 3 ⊢ (𝑍 × {1}) Fn 𝑍 |
| 16 | eqfnfv 5684 | . . 3 ⊢ ((seq𝑀( · , (𝑍 × {1})) Fn 𝑍 ∧ (𝑍 × {1}) Fn 𝑍) → (seq𝑀( · , (𝑍 × {1})) = (𝑍 × {1}) ↔ ∀𝑘 ∈ 𝑍 (seq𝑀( · , (𝑍 × {1}))‘𝑘) = ((𝑍 × {1})‘𝑘))) | |
| 17 | 12, 15, 16 | sylancl 413 | . 2 ⊢ (𝑀 ∈ ℤ → (seq𝑀( · , (𝑍 × {1})) = (𝑍 × {1}) ↔ ∀𝑘 ∈ 𝑍 (seq𝑀( · , (𝑍 × {1}))‘𝑘) = ((𝑍 × {1})‘𝑘))) |
| 18 | 6, 17 | mpbiri 168 | 1 ⊢ (𝑀 ∈ ℤ → seq𝑀( · , (𝑍 × {1})) = (𝑍 × {1})) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1373 ∈ wcel 2177 ∀wral 2485 {csn 3634 × cxp 4677 Fn wfn 5271 ⟶wf 5272 ‘cfv 5276 ℂcc 7930 1c1 7933 · cmul 7937 ℤcz 9379 ℤ≥cuz 9655 seqcseq 10599 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4163 ax-sep 4166 ax-nul 4174 ax-pow 4222 ax-pr 4257 ax-un 4484 ax-setind 4589 ax-iinf 4640 ax-cnex 8023 ax-resscn 8024 ax-1cn 8025 ax-1re 8026 ax-icn 8027 ax-addcl 8028 ax-addrcl 8029 ax-mulcl 8030 ax-addcom 8032 ax-mulcom 8033 ax-addass 8034 ax-mulass 8035 ax-distr 8036 ax-i2m1 8037 ax-0lt1 8038 ax-1rid 8039 ax-0id 8040 ax-rnegex 8041 ax-cnre 8043 ax-pre-ltirr 8044 ax-pre-ltwlin 8045 ax-pre-lttrn 8046 ax-pre-ltadd 8048 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3000 df-csb 3095 df-dif 3169 df-un 3171 df-in 3173 df-ss 3180 df-nul 3462 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-int 3888 df-iun 3931 df-br 4048 df-opab 4110 df-mpt 4111 df-tr 4147 df-id 4344 df-iord 4417 df-on 4419 df-ilim 4420 df-suc 4422 df-iom 4643 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-rn 4690 df-res 4691 df-ima 4692 df-iota 5237 df-fun 5278 df-fn 5279 df-f 5280 df-f1 5281 df-fo 5282 df-f1o 5283 df-fv 5284 df-riota 5906 df-ov 5954 df-oprab 5955 df-mpo 5956 df-1st 6233 df-2nd 6234 df-recs 6398 df-frec 6484 df-pnf 8116 df-mnf 8117 df-xr 8118 df-ltxr 8119 df-le 8120 df-sub 8252 df-neg 8253 df-inn 9044 df-n0 9303 df-z 9380 df-uz 9656 df-fz 10138 df-fzo 10272 df-seqfrec 10600 |
| This theorem is referenced by: prodfclim1 11899 |
| Copyright terms: Public domain | W3C validator |