ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prodf1f GIF version

Theorem prodf1f 11493
Description: A one-valued infinite product is equal to the constant one function. (Contributed by Scott Fenton, 5-Dec-2017.)
Hypothesis
Ref Expression
prodf1.1 𝑍 = (ℤ𝑀)
Assertion
Ref Expression
prodf1f (𝑀 ∈ ℤ → seq𝑀( · , (𝑍 × {1})) = (𝑍 × {1}))

Proof of Theorem prodf1f
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 prodf1.1 . . . . 5 𝑍 = (ℤ𝑀)
21prodf1 11492 . . . 4 (𝑘𝑍 → (seq𝑀( · , (𝑍 × {1}))‘𝑘) = 1)
3 1ex 7902 . . . . 5 1 ∈ V
43fvconst2 5709 . . . 4 (𝑘𝑍 → ((𝑍 × {1})‘𝑘) = 1)
52, 4eqtr4d 2206 . . 3 (𝑘𝑍 → (seq𝑀( · , (𝑍 × {1}))‘𝑘) = ((𝑍 × {1})‘𝑘))
65rgen 2523 . 2 𝑘𝑍 (seq𝑀( · , (𝑍 × {1}))‘𝑘) = ((𝑍 × {1})‘𝑘)
7 id 19 . . . . 5 (𝑀 ∈ ℤ → 𝑀 ∈ ℤ)
8 1cnd 7923 . . . . . . 7 (𝑘𝑍 → 1 ∈ ℂ)
94, 8eqeltrd 2247 . . . . . 6 (𝑘𝑍 → ((𝑍 × {1})‘𝑘) ∈ ℂ)
109adantl 275 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑘𝑍) → ((𝑍 × {1})‘𝑘) ∈ ℂ)
111, 7, 10prodf 11488 . . . 4 (𝑀 ∈ ℤ → seq𝑀( · , (𝑍 × {1})):𝑍⟶ℂ)
1211ffnd 5346 . . 3 (𝑀 ∈ ℤ → seq𝑀( · , (𝑍 × {1})) Fn 𝑍)
133fconst 5391 . . . 4 (𝑍 × {1}):𝑍⟶{1}
14 ffn 5345 . . . 4 ((𝑍 × {1}):𝑍⟶{1} → (𝑍 × {1}) Fn 𝑍)
1513, 14ax-mp 5 . . 3 (𝑍 × {1}) Fn 𝑍
16 eqfnfv 5591 . . 3 ((seq𝑀( · , (𝑍 × {1})) Fn 𝑍 ∧ (𝑍 × {1}) Fn 𝑍) → (seq𝑀( · , (𝑍 × {1})) = (𝑍 × {1}) ↔ ∀𝑘𝑍 (seq𝑀( · , (𝑍 × {1}))‘𝑘) = ((𝑍 × {1})‘𝑘)))
1712, 15, 16sylancl 411 . 2 (𝑀 ∈ ℤ → (seq𝑀( · , (𝑍 × {1})) = (𝑍 × {1}) ↔ ∀𝑘𝑍 (seq𝑀( · , (𝑍 × {1}))‘𝑘) = ((𝑍 × {1})‘𝑘)))
186, 17mpbiri 167 1 (𝑀 ∈ ℤ → seq𝑀( · , (𝑍 × {1})) = (𝑍 × {1}))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104   = wceq 1348  wcel 2141  wral 2448  {csn 3581   × cxp 4607   Fn wfn 5191  wf 5192  cfv 5196  cc 7759  1c1 7762   · cmul 7766  cz 9199  cuz 9474  seqcseq 10388
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4102  ax-sep 4105  ax-nul 4113  ax-pow 4158  ax-pr 4192  ax-un 4416  ax-setind 4519  ax-iinf 4570  ax-cnex 7852  ax-resscn 7853  ax-1cn 7854  ax-1re 7855  ax-icn 7856  ax-addcl 7857  ax-addrcl 7858  ax-mulcl 7859  ax-addcom 7861  ax-mulcom 7862  ax-addass 7863  ax-mulass 7864  ax-distr 7865  ax-i2m1 7866  ax-0lt1 7867  ax-1rid 7868  ax-0id 7869  ax-rnegex 7870  ax-cnre 7872  ax-pre-ltirr 7873  ax-pre-ltwlin 7874  ax-pre-lttrn 7875  ax-pre-ltadd 7877
This theorem depends on definitions:  df-bi 116  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3795  df-int 3830  df-iun 3873  df-br 3988  df-opab 4049  df-mpt 4050  df-tr 4086  df-id 4276  df-iord 4349  df-on 4351  df-ilim 4352  df-suc 4354  df-iom 4573  df-xp 4615  df-rel 4616  df-cnv 4617  df-co 4618  df-dm 4619  df-rn 4620  df-res 4621  df-ima 4622  df-iota 5158  df-fun 5198  df-fn 5199  df-f 5200  df-f1 5201  df-fo 5202  df-f1o 5203  df-fv 5204  df-riota 5806  df-ov 5853  df-oprab 5854  df-mpo 5855  df-1st 6116  df-2nd 6117  df-recs 6281  df-frec 6367  df-pnf 7943  df-mnf 7944  df-xr 7945  df-ltxr 7946  df-le 7947  df-sub 8079  df-neg 8080  df-inn 8866  df-n0 9123  df-z 9200  df-uz 9475  df-fz 9953  df-fzo 10086  df-seqfrec 10389
This theorem is referenced by:  prodfclim1  11494
  Copyright terms: Public domain W3C validator