| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > prodf1f | GIF version | ||
| Description: A one-valued infinite product is equal to the constant one function. (Contributed by Scott Fenton, 5-Dec-2017.) |
| Ref | Expression |
|---|---|
| prodf1.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| Ref | Expression |
|---|---|
| prodf1f | ⊢ (𝑀 ∈ ℤ → seq𝑀( · , (𝑍 × {1})) = (𝑍 × {1})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prodf1.1 | . . . . 5 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 2 | 1 | prodf1 12019 | . . . 4 ⊢ (𝑘 ∈ 𝑍 → (seq𝑀( · , (𝑍 × {1}))‘𝑘) = 1) |
| 3 | 1ex 8109 | . . . . 5 ⊢ 1 ∈ V | |
| 4 | 3 | fvconst2 5828 | . . . 4 ⊢ (𝑘 ∈ 𝑍 → ((𝑍 × {1})‘𝑘) = 1) |
| 5 | 2, 4 | eqtr4d 2245 | . . 3 ⊢ (𝑘 ∈ 𝑍 → (seq𝑀( · , (𝑍 × {1}))‘𝑘) = ((𝑍 × {1})‘𝑘)) |
| 6 | 5 | rgen 2563 | . 2 ⊢ ∀𝑘 ∈ 𝑍 (seq𝑀( · , (𝑍 × {1}))‘𝑘) = ((𝑍 × {1})‘𝑘) |
| 7 | id 19 | . . . . 5 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ ℤ) | |
| 8 | 1cnd 8130 | . . . . . . 7 ⊢ (𝑘 ∈ 𝑍 → 1 ∈ ℂ) | |
| 9 | 4, 8 | eqeltrd 2286 | . . . . . 6 ⊢ (𝑘 ∈ 𝑍 → ((𝑍 × {1})‘𝑘) ∈ ℂ) |
| 10 | 9 | adantl 277 | . . . . 5 ⊢ ((𝑀 ∈ ℤ ∧ 𝑘 ∈ 𝑍) → ((𝑍 × {1})‘𝑘) ∈ ℂ) |
| 11 | 1, 7, 10 | prodf 12015 | . . . 4 ⊢ (𝑀 ∈ ℤ → seq𝑀( · , (𝑍 × {1})):𝑍⟶ℂ) |
| 12 | 11 | ffnd 5450 | . . 3 ⊢ (𝑀 ∈ ℤ → seq𝑀( · , (𝑍 × {1})) Fn 𝑍) |
| 13 | 3 | fconst 5497 | . . . 4 ⊢ (𝑍 × {1}):𝑍⟶{1} |
| 14 | ffn 5449 | . . . 4 ⊢ ((𝑍 × {1}):𝑍⟶{1} → (𝑍 × {1}) Fn 𝑍) | |
| 15 | 13, 14 | ax-mp 5 | . . 3 ⊢ (𝑍 × {1}) Fn 𝑍 |
| 16 | eqfnfv 5705 | . . 3 ⊢ ((seq𝑀( · , (𝑍 × {1})) Fn 𝑍 ∧ (𝑍 × {1}) Fn 𝑍) → (seq𝑀( · , (𝑍 × {1})) = (𝑍 × {1}) ↔ ∀𝑘 ∈ 𝑍 (seq𝑀( · , (𝑍 × {1}))‘𝑘) = ((𝑍 × {1})‘𝑘))) | |
| 17 | 12, 15, 16 | sylancl 413 | . 2 ⊢ (𝑀 ∈ ℤ → (seq𝑀( · , (𝑍 × {1})) = (𝑍 × {1}) ↔ ∀𝑘 ∈ 𝑍 (seq𝑀( · , (𝑍 × {1}))‘𝑘) = ((𝑍 × {1})‘𝑘))) |
| 18 | 6, 17 | mpbiri 168 | 1 ⊢ (𝑀 ∈ ℤ → seq𝑀( · , (𝑍 × {1})) = (𝑍 × {1})) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1375 ∈ wcel 2180 ∀wral 2488 {csn 3646 × cxp 4694 Fn wfn 5289 ⟶wf 5290 ‘cfv 5294 ℂcc 7965 1c1 7968 · cmul 7972 ℤcz 9414 ℤ≥cuz 9690 seqcseq 10636 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-coll 4178 ax-sep 4181 ax-nul 4189 ax-pow 4237 ax-pr 4272 ax-un 4501 ax-setind 4606 ax-iinf 4657 ax-cnex 8058 ax-resscn 8059 ax-1cn 8060 ax-1re 8061 ax-icn 8062 ax-addcl 8063 ax-addrcl 8064 ax-mulcl 8065 ax-addcom 8067 ax-mulcom 8068 ax-addass 8069 ax-mulass 8070 ax-distr 8071 ax-i2m1 8072 ax-0lt1 8073 ax-1rid 8074 ax-0id 8075 ax-rnegex 8076 ax-cnre 8078 ax-pre-ltirr 8079 ax-pre-ltwlin 8080 ax-pre-lttrn 8081 ax-pre-ltadd 8083 |
| This theorem depends on definitions: df-bi 117 df-3or 984 df-3an 985 df-tru 1378 df-fal 1381 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ne 2381 df-nel 2476 df-ral 2493 df-rex 2494 df-reu 2495 df-rab 2497 df-v 2781 df-sbc 3009 df-csb 3105 df-dif 3179 df-un 3181 df-in 3183 df-ss 3190 df-nul 3472 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-int 3903 df-iun 3946 df-br 4063 df-opab 4125 df-mpt 4126 df-tr 4162 df-id 4361 df-iord 4434 df-on 4436 df-ilim 4437 df-suc 4439 df-iom 4660 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-res 4708 df-ima 4709 df-iota 5254 df-fun 5296 df-fn 5297 df-f 5298 df-f1 5299 df-fo 5300 df-f1o 5301 df-fv 5302 df-riota 5927 df-ov 5977 df-oprab 5978 df-mpo 5979 df-1st 6256 df-2nd 6257 df-recs 6421 df-frec 6507 df-pnf 8151 df-mnf 8152 df-xr 8153 df-ltxr 8154 df-le 8155 df-sub 8287 df-neg 8288 df-inn 9079 df-n0 9338 df-z 9415 df-uz 9691 df-fz 10173 df-fzo 10307 df-seqfrec 10637 |
| This theorem is referenced by: prodfclim1 12021 |
| Copyright terms: Public domain | W3C validator |