Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  iswomni0 GIF version

Theorem iswomni0 14083
Description: Weak omniscience stated in terms of equality with 0. Like iswomninn 14082 but with zero in place of one. (Contributed by Jim Kingdon, 24-Jul-2024.)
Assertion
Ref Expression
iswomni0 (𝐴𝑉 → (𝐴 ∈ WOmni ↔ ∀𝑓 ∈ ({0, 1} ↑𝑚 𝐴)DECID𝑥𝐴 (𝑓𝑥) = 0))
Distinct variable groups:   𝐴,𝑓,𝑥   𝑓,𝑉,𝑥

Proof of Theorem iswomni0
Dummy variables 𝑔 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iswomninn 14082 . 2 (𝐴𝑉 → (𝐴 ∈ WOmni ↔ ∀𝑔 ∈ ({0, 1} ↑𝑚 𝐴)DECID𝑥𝐴 (𝑔𝑥) = 1))
2 simpr 109 . . . . . . . . . . . 12 ((((𝐴𝑉𝑓 ∈ ({0, 1} ↑𝑚 𝐴)) ∧ 𝑧𝐴) ∧ (𝑓𝑧) = 0) → (𝑓𝑧) = 0)
32oveq2d 5869 . . . . . . . . . . 11 ((((𝐴𝑉𝑓 ∈ ({0, 1} ↑𝑚 𝐴)) ∧ 𝑧𝐴) ∧ (𝑓𝑧) = 0) → (1 − (𝑓𝑧)) = (1 − 0))
4 1m0e1 8991 . . . . . . . . . . 11 (1 − 0) = 1
53, 4eqtrdi 2219 . . . . . . . . . 10 ((((𝐴𝑉𝑓 ∈ ({0, 1} ↑𝑚 𝐴)) ∧ 𝑧𝐴) ∧ (𝑓𝑧) = 0) → (1 − (𝑓𝑧)) = 1)
6 1ex 7915 . . . . . . . . . . 11 1 ∈ V
76prid2 3690 . . . . . . . . . 10 1 ∈ {0, 1}
85, 7eqeltrdi 2261 . . . . . . . . 9 ((((𝐴𝑉𝑓 ∈ ({0, 1} ↑𝑚 𝐴)) ∧ 𝑧𝐴) ∧ (𝑓𝑧) = 0) → (1 − (𝑓𝑧)) ∈ {0, 1})
9 simpr 109 . . . . . . . . . . . 12 ((((𝐴𝑉𝑓 ∈ ({0, 1} ↑𝑚 𝐴)) ∧ 𝑧𝐴) ∧ (𝑓𝑧) = 1) → (𝑓𝑧) = 1)
109oveq2d 5869 . . . . . . . . . . 11 ((((𝐴𝑉𝑓 ∈ ({0, 1} ↑𝑚 𝐴)) ∧ 𝑧𝐴) ∧ (𝑓𝑧) = 1) → (1 − (𝑓𝑧)) = (1 − 1))
11 1m1e0 8947 . . . . . . . . . . 11 (1 − 1) = 0
1210, 11eqtrdi 2219 . . . . . . . . . 10 ((((𝐴𝑉𝑓 ∈ ({0, 1} ↑𝑚 𝐴)) ∧ 𝑧𝐴) ∧ (𝑓𝑧) = 1) → (1 − (𝑓𝑧)) = 0)
13 c0ex 7914 . . . . . . . . . . 11 0 ∈ V
1413prid1 3689 . . . . . . . . . 10 0 ∈ {0, 1}
1512, 14eqeltrdi 2261 . . . . . . . . 9 ((((𝐴𝑉𝑓 ∈ ({0, 1} ↑𝑚 𝐴)) ∧ 𝑧𝐴) ∧ (𝑓𝑧) = 1) → (1 − (𝑓𝑧)) ∈ {0, 1})
16 elmapi 6648 . . . . . . . . . . . 12 (𝑓 ∈ ({0, 1} ↑𝑚 𝐴) → 𝑓:𝐴⟶{0, 1})
1716ad2antlr 486 . . . . . . . . . . 11 (((𝐴𝑉𝑓 ∈ ({0, 1} ↑𝑚 𝐴)) ∧ 𝑧𝐴) → 𝑓:𝐴⟶{0, 1})
18 simpr 109 . . . . . . . . . . 11 (((𝐴𝑉𝑓 ∈ ({0, 1} ↑𝑚 𝐴)) ∧ 𝑧𝐴) → 𝑧𝐴)
1917, 18ffvelrnd 5632 . . . . . . . . . 10 (((𝐴𝑉𝑓 ∈ ({0, 1} ↑𝑚 𝐴)) ∧ 𝑧𝐴) → (𝑓𝑧) ∈ {0, 1})
20 elpri 3606 . . . . . . . . . 10 ((𝑓𝑧) ∈ {0, 1} → ((𝑓𝑧) = 0 ∨ (𝑓𝑧) = 1))
2119, 20syl 14 . . . . . . . . 9 (((𝐴𝑉𝑓 ∈ ({0, 1} ↑𝑚 𝐴)) ∧ 𝑧𝐴) → ((𝑓𝑧) = 0 ∨ (𝑓𝑧) = 1))
228, 15, 21mpjaodan 793 . . . . . . . 8 (((𝐴𝑉𝑓 ∈ ({0, 1} ↑𝑚 𝐴)) ∧ 𝑧𝐴) → (1 − (𝑓𝑧)) ∈ {0, 1})
2322fmpttd 5651 . . . . . . 7 ((𝐴𝑉𝑓 ∈ ({0, 1} ↑𝑚 𝐴)) → (𝑧𝐴 ↦ (1 − (𝑓𝑧))):𝐴⟶{0, 1})
24 0nn0 9150 . . . . . . . . . 10 0 ∈ ℕ0
25 1nn0 9151 . . . . . . . . . 10 1 ∈ ℕ0
26 prexg 4196 . . . . . . . . . 10 ((0 ∈ ℕ0 ∧ 1 ∈ ℕ0) → {0, 1} ∈ V)
2724, 25, 26mp2an 424 . . . . . . . . 9 {0, 1} ∈ V
2827a1i 9 . . . . . . . 8 ((𝐴𝑉𝑓 ∈ ({0, 1} ↑𝑚 𝐴)) → {0, 1} ∈ V)
29 simpl 108 . . . . . . . 8 ((𝐴𝑉𝑓 ∈ ({0, 1} ↑𝑚 𝐴)) → 𝐴𝑉)
3028, 29elmapd 6640 . . . . . . 7 ((𝐴𝑉𝑓 ∈ ({0, 1} ↑𝑚 𝐴)) → ((𝑧𝐴 ↦ (1 − (𝑓𝑧))) ∈ ({0, 1} ↑𝑚 𝐴) ↔ (𝑧𝐴 ↦ (1 − (𝑓𝑧))):𝐴⟶{0, 1}))
3123, 30mpbird 166 . . . . . 6 ((𝐴𝑉𝑓 ∈ ({0, 1} ↑𝑚 𝐴)) → (𝑧𝐴 ↦ (1 − (𝑓𝑧))) ∈ ({0, 1} ↑𝑚 𝐴))
32 fveq1 5495 . . . . . . . . . 10 (𝑔 = (𝑧𝐴 ↦ (1 − (𝑓𝑧))) → (𝑔𝑥) = ((𝑧𝐴 ↦ (1 − (𝑓𝑧)))‘𝑥))
3332eqeq1d 2179 . . . . . . . . 9 (𝑔 = (𝑧𝐴 ↦ (1 − (𝑓𝑧))) → ((𝑔𝑥) = 1 ↔ ((𝑧𝐴 ↦ (1 − (𝑓𝑧)))‘𝑥) = 1))
3433ralbidv 2470 . . . . . . . 8 (𝑔 = (𝑧𝐴 ↦ (1 − (𝑓𝑧))) → (∀𝑥𝐴 (𝑔𝑥) = 1 ↔ ∀𝑥𝐴 ((𝑧𝐴 ↦ (1 − (𝑓𝑧)))‘𝑥) = 1))
3534dcbid 833 . . . . . . 7 (𝑔 = (𝑧𝐴 ↦ (1 − (𝑓𝑧))) → (DECID𝑥𝐴 (𝑔𝑥) = 1 ↔ DECID𝑥𝐴 ((𝑧𝐴 ↦ (1 − (𝑓𝑧)))‘𝑥) = 1))
3635rspcv 2830 . . . . . 6 ((𝑧𝐴 ↦ (1 − (𝑓𝑧))) ∈ ({0, 1} ↑𝑚 𝐴) → (∀𝑔 ∈ ({0, 1} ↑𝑚 𝐴)DECID𝑥𝐴 (𝑔𝑥) = 1 → DECID𝑥𝐴 ((𝑧𝐴 ↦ (1 − (𝑓𝑧)))‘𝑥) = 1))
3731, 36syl 14 . . . . 5 ((𝐴𝑉𝑓 ∈ ({0, 1} ↑𝑚 𝐴)) → (∀𝑔 ∈ ({0, 1} ↑𝑚 𝐴)DECID𝑥𝐴 (𝑔𝑥) = 1 → DECID𝑥𝐴 ((𝑧𝐴 ↦ (1 − (𝑓𝑧)))‘𝑥) = 1))
38 eqid 2170 . . . . . . . . . . 11 (𝑧𝐴 ↦ (1 − (𝑓𝑧))) = (𝑧𝐴 ↦ (1 − (𝑓𝑧)))
39 fveq2 5496 . . . . . . . . . . . 12 (𝑧 = 𝑥 → (𝑓𝑧) = (𝑓𝑥))
4039oveq2d 5869 . . . . . . . . . . 11 (𝑧 = 𝑥 → (1 − (𝑓𝑧)) = (1 − (𝑓𝑥)))
41 simpr 109 . . . . . . . . . . 11 (((𝐴𝑉𝑓 ∈ ({0, 1} ↑𝑚 𝐴)) ∧ 𝑥𝐴) → 𝑥𝐴)
4222ralrimiva 2543 . . . . . . . . . . . . 13 ((𝐴𝑉𝑓 ∈ ({0, 1} ↑𝑚 𝐴)) → ∀𝑧𝐴 (1 − (𝑓𝑧)) ∈ {0, 1})
4340eleq1d 2239 . . . . . . . . . . . . . 14 (𝑧 = 𝑥 → ((1 − (𝑓𝑧)) ∈ {0, 1} ↔ (1 − (𝑓𝑥)) ∈ {0, 1}))
4443cbvralv 2696 . . . . . . . . . . . . 13 (∀𝑧𝐴 (1 − (𝑓𝑧)) ∈ {0, 1} ↔ ∀𝑥𝐴 (1 − (𝑓𝑥)) ∈ {0, 1})
4542, 44sylib 121 . . . . . . . . . . . 12 ((𝐴𝑉𝑓 ∈ ({0, 1} ↑𝑚 𝐴)) → ∀𝑥𝐴 (1 − (𝑓𝑥)) ∈ {0, 1})
4645r19.21bi 2558 . . . . . . . . . . 11 (((𝐴𝑉𝑓 ∈ ({0, 1} ↑𝑚 𝐴)) ∧ 𝑥𝐴) → (1 − (𝑓𝑥)) ∈ {0, 1})
4738, 40, 41, 46fvmptd3 5589 . . . . . . . . . 10 (((𝐴𝑉𝑓 ∈ ({0, 1} ↑𝑚 𝐴)) ∧ 𝑥𝐴) → ((𝑧𝐴 ↦ (1 − (𝑓𝑧)))‘𝑥) = (1 − (𝑓𝑥)))
4847eqeq1d 2179 . . . . . . . . 9 (((𝐴𝑉𝑓 ∈ ({0, 1} ↑𝑚 𝐴)) ∧ 𝑥𝐴) → (((𝑧𝐴 ↦ (1 − (𝑓𝑧)))‘𝑥) = 1 ↔ (1 − (𝑓𝑥)) = 1))
49 1cnd 7936 . . . . . . . . . 10 (((𝐴𝑉𝑓 ∈ ({0, 1} ↑𝑚 𝐴)) ∧ 𝑥𝐴) → 1 ∈ ℂ)
50 0z 9223 . . . . . . . . . . . . 13 0 ∈ ℤ
51 1z 9238 . . . . . . . . . . . . 13 1 ∈ ℤ
52 prssi 3738 . . . . . . . . . . . . 13 ((0 ∈ ℤ ∧ 1 ∈ ℤ) → {0, 1} ⊆ ℤ)
5350, 51, 52mp2an 424 . . . . . . . . . . . 12 {0, 1} ⊆ ℤ
5416adantl 275 . . . . . . . . . . . . 13 ((𝐴𝑉𝑓 ∈ ({0, 1} ↑𝑚 𝐴)) → 𝑓:𝐴⟶{0, 1})
5554ffvelrnda 5631 . . . . . . . . . . . 12 (((𝐴𝑉𝑓 ∈ ({0, 1} ↑𝑚 𝐴)) ∧ 𝑥𝐴) → (𝑓𝑥) ∈ {0, 1})
5653, 55sselid 3145 . . . . . . . . . . 11 (((𝐴𝑉𝑓 ∈ ({0, 1} ↑𝑚 𝐴)) ∧ 𝑥𝐴) → (𝑓𝑥) ∈ ℤ)
5756zcnd 9335 . . . . . . . . . 10 (((𝐴𝑉𝑓 ∈ ({0, 1} ↑𝑚 𝐴)) ∧ 𝑥𝐴) → (𝑓𝑥) ∈ ℂ)
58 subsub23 8124 . . . . . . . . . 10 ((1 ∈ ℂ ∧ (𝑓𝑥) ∈ ℂ ∧ 1 ∈ ℂ) → ((1 − (𝑓𝑥)) = 1 ↔ (1 − 1) = (𝑓𝑥)))
5949, 57, 49, 58syl3anc 1233 . . . . . . . . 9 (((𝐴𝑉𝑓 ∈ ({0, 1} ↑𝑚 𝐴)) ∧ 𝑥𝐴) → ((1 − (𝑓𝑥)) = 1 ↔ (1 − 1) = (𝑓𝑥)))
6048, 59bitrd 187 . . . . . . . 8 (((𝐴𝑉𝑓 ∈ ({0, 1} ↑𝑚 𝐴)) ∧ 𝑥𝐴) → (((𝑧𝐴 ↦ (1 − (𝑓𝑧)))‘𝑥) = 1 ↔ (1 − 1) = (𝑓𝑥)))
6111eqeq1i 2178 . . . . . . . . 9 ((1 − 1) = (𝑓𝑥) ↔ 0 = (𝑓𝑥))
62 eqcom 2172 . . . . . . . . 9 (0 = (𝑓𝑥) ↔ (𝑓𝑥) = 0)
6361, 62bitri 183 . . . . . . . 8 ((1 − 1) = (𝑓𝑥) ↔ (𝑓𝑥) = 0)
6460, 63bitrdi 195 . . . . . . 7 (((𝐴𝑉𝑓 ∈ ({0, 1} ↑𝑚 𝐴)) ∧ 𝑥𝐴) → (((𝑧𝐴 ↦ (1 − (𝑓𝑧)))‘𝑥) = 1 ↔ (𝑓𝑥) = 0))
6564ralbidva 2466 . . . . . 6 ((𝐴𝑉𝑓 ∈ ({0, 1} ↑𝑚 𝐴)) → (∀𝑥𝐴 ((𝑧𝐴 ↦ (1 − (𝑓𝑧)))‘𝑥) = 1 ↔ ∀𝑥𝐴 (𝑓𝑥) = 0))
6665dcbid 833 . . . . 5 ((𝐴𝑉𝑓 ∈ ({0, 1} ↑𝑚 𝐴)) → (DECID𝑥𝐴 ((𝑧𝐴 ↦ (1 − (𝑓𝑧)))‘𝑥) = 1 ↔ DECID𝑥𝐴 (𝑓𝑥) = 0))
6737, 66sylibd 148 . . . 4 ((𝐴𝑉𝑓 ∈ ({0, 1} ↑𝑚 𝐴)) → (∀𝑔 ∈ ({0, 1} ↑𝑚 𝐴)DECID𝑥𝐴 (𝑔𝑥) = 1 → DECID𝑥𝐴 (𝑓𝑥) = 0))
6867ralrimdva 2550 . . 3 (𝐴𝑉 → (∀𝑔 ∈ ({0, 1} ↑𝑚 𝐴)DECID𝑥𝐴 (𝑔𝑥) = 1 → ∀𝑓 ∈ ({0, 1} ↑𝑚 𝐴)DECID𝑥𝐴 (𝑓𝑥) = 0))
69 simpr 109 . . . . . . . . . . . 12 ((((𝐴𝑉𝑔 ∈ ({0, 1} ↑𝑚 𝐴)) ∧ 𝑧𝐴) ∧ (𝑔𝑧) = 0) → (𝑔𝑧) = 0)
7069oveq2d 5869 . . . . . . . . . . 11 ((((𝐴𝑉𝑔 ∈ ({0, 1} ↑𝑚 𝐴)) ∧ 𝑧𝐴) ∧ (𝑔𝑧) = 0) → (1 − (𝑔𝑧)) = (1 − 0))
7170, 4eqtrdi 2219 . . . . . . . . . 10 ((((𝐴𝑉𝑔 ∈ ({0, 1} ↑𝑚 𝐴)) ∧ 𝑧𝐴) ∧ (𝑔𝑧) = 0) → (1 − (𝑔𝑧)) = 1)
7271, 7eqeltrdi 2261 . . . . . . . . 9 ((((𝐴𝑉𝑔 ∈ ({0, 1} ↑𝑚 𝐴)) ∧ 𝑧𝐴) ∧ (𝑔𝑧) = 0) → (1 − (𝑔𝑧)) ∈ {0, 1})
73 simpr 109 . . . . . . . . . . . 12 ((((𝐴𝑉𝑔 ∈ ({0, 1} ↑𝑚 𝐴)) ∧ 𝑧𝐴) ∧ (𝑔𝑧) = 1) → (𝑔𝑧) = 1)
7473oveq2d 5869 . . . . . . . . . . 11 ((((𝐴𝑉𝑔 ∈ ({0, 1} ↑𝑚 𝐴)) ∧ 𝑧𝐴) ∧ (𝑔𝑧) = 1) → (1 − (𝑔𝑧)) = (1 − 1))
7574, 11eqtrdi 2219 . . . . . . . . . 10 ((((𝐴𝑉𝑔 ∈ ({0, 1} ↑𝑚 𝐴)) ∧ 𝑧𝐴) ∧ (𝑔𝑧) = 1) → (1 − (𝑔𝑧)) = 0)
7675, 14eqeltrdi 2261 . . . . . . . . 9 ((((𝐴𝑉𝑔 ∈ ({0, 1} ↑𝑚 𝐴)) ∧ 𝑧𝐴) ∧ (𝑔𝑧) = 1) → (1 − (𝑔𝑧)) ∈ {0, 1})
77 elmapi 6648 . . . . . . . . . . . 12 (𝑔 ∈ ({0, 1} ↑𝑚 𝐴) → 𝑔:𝐴⟶{0, 1})
7877adantl 275 . . . . . . . . . . 11 ((𝐴𝑉𝑔 ∈ ({0, 1} ↑𝑚 𝐴)) → 𝑔:𝐴⟶{0, 1})
7978ffvelrnda 5631 . . . . . . . . . 10 (((𝐴𝑉𝑔 ∈ ({0, 1} ↑𝑚 𝐴)) ∧ 𝑧𝐴) → (𝑔𝑧) ∈ {0, 1})
80 elpri 3606 . . . . . . . . . 10 ((𝑔𝑧) ∈ {0, 1} → ((𝑔𝑧) = 0 ∨ (𝑔𝑧) = 1))
8179, 80syl 14 . . . . . . . . 9 (((𝐴𝑉𝑔 ∈ ({0, 1} ↑𝑚 𝐴)) ∧ 𝑧𝐴) → ((𝑔𝑧) = 0 ∨ (𝑔𝑧) = 1))
8272, 76, 81mpjaodan 793 . . . . . . . 8 (((𝐴𝑉𝑔 ∈ ({0, 1} ↑𝑚 𝐴)) ∧ 𝑧𝐴) → (1 − (𝑔𝑧)) ∈ {0, 1})
8382fmpttd 5651 . . . . . . 7 ((𝐴𝑉𝑔 ∈ ({0, 1} ↑𝑚 𝐴)) → (𝑧𝐴 ↦ (1 − (𝑔𝑧))):𝐴⟶{0, 1})
8427a1i 9 . . . . . . . 8 ((𝐴𝑉𝑔 ∈ ({0, 1} ↑𝑚 𝐴)) → {0, 1} ∈ V)
85 simpl 108 . . . . . . . 8 ((𝐴𝑉𝑔 ∈ ({0, 1} ↑𝑚 𝐴)) → 𝐴𝑉)
8684, 85elmapd 6640 . . . . . . 7 ((𝐴𝑉𝑔 ∈ ({0, 1} ↑𝑚 𝐴)) → ((𝑧𝐴 ↦ (1 − (𝑔𝑧))) ∈ ({0, 1} ↑𝑚 𝐴) ↔ (𝑧𝐴 ↦ (1 − (𝑔𝑧))):𝐴⟶{0, 1}))
8783, 86mpbird 166 . . . . . 6 ((𝐴𝑉𝑔 ∈ ({0, 1} ↑𝑚 𝐴)) → (𝑧𝐴 ↦ (1 − (𝑔𝑧))) ∈ ({0, 1} ↑𝑚 𝐴))
88 fveq1 5495 . . . . . . . . . 10 (𝑓 = (𝑧𝐴 ↦ (1 − (𝑔𝑧))) → (𝑓𝑥) = ((𝑧𝐴 ↦ (1 − (𝑔𝑧)))‘𝑥))
8988eqeq1d 2179 . . . . . . . . 9 (𝑓 = (𝑧𝐴 ↦ (1 − (𝑔𝑧))) → ((𝑓𝑥) = 0 ↔ ((𝑧𝐴 ↦ (1 − (𝑔𝑧)))‘𝑥) = 0))
9089ralbidv 2470 . . . . . . . 8 (𝑓 = (𝑧𝐴 ↦ (1 − (𝑔𝑧))) → (∀𝑥𝐴 (𝑓𝑥) = 0 ↔ ∀𝑥𝐴 ((𝑧𝐴 ↦ (1 − (𝑔𝑧)))‘𝑥) = 0))
9190dcbid 833 . . . . . . 7 (𝑓 = (𝑧𝐴 ↦ (1 − (𝑔𝑧))) → (DECID𝑥𝐴 (𝑓𝑥) = 0 ↔ DECID𝑥𝐴 ((𝑧𝐴 ↦ (1 − (𝑔𝑧)))‘𝑥) = 0))
9291rspcv 2830 . . . . . 6 ((𝑧𝐴 ↦ (1 − (𝑔𝑧))) ∈ ({0, 1} ↑𝑚 𝐴) → (∀𝑓 ∈ ({0, 1} ↑𝑚 𝐴)DECID𝑥𝐴 (𝑓𝑥) = 0 → DECID𝑥𝐴 ((𝑧𝐴 ↦ (1 − (𝑔𝑧)))‘𝑥) = 0))
9387, 92syl 14 . . . . 5 ((𝐴𝑉𝑔 ∈ ({0, 1} ↑𝑚 𝐴)) → (∀𝑓 ∈ ({0, 1} ↑𝑚 𝐴)DECID𝑥𝐴 (𝑓𝑥) = 0 → DECID𝑥𝐴 ((𝑧𝐴 ↦ (1 − (𝑔𝑧)))‘𝑥) = 0))
94 eqid 2170 . . . . . . . . . . 11 (𝑧𝐴 ↦ (1 − (𝑔𝑧))) = (𝑧𝐴 ↦ (1 − (𝑔𝑧)))
95 fveq2 5496 . . . . . . . . . . . 12 (𝑧 = 𝑥 → (𝑔𝑧) = (𝑔𝑥))
9695oveq2d 5869 . . . . . . . . . . 11 (𝑧 = 𝑥 → (1 − (𝑔𝑧)) = (1 − (𝑔𝑥)))
97 simpr 109 . . . . . . . . . . 11 (((𝐴𝑉𝑔 ∈ ({0, 1} ↑𝑚 𝐴)) ∧ 𝑥𝐴) → 𝑥𝐴)
9882ralrimiva 2543 . . . . . . . . . . . . 13 ((𝐴𝑉𝑔 ∈ ({0, 1} ↑𝑚 𝐴)) → ∀𝑧𝐴 (1 − (𝑔𝑧)) ∈ {0, 1})
9996eleq1d 2239 . . . . . . . . . . . . . 14 (𝑧 = 𝑥 → ((1 − (𝑔𝑧)) ∈ {0, 1} ↔ (1 − (𝑔𝑥)) ∈ {0, 1}))
10099cbvralv 2696 . . . . . . . . . . . . 13 (∀𝑧𝐴 (1 − (𝑔𝑧)) ∈ {0, 1} ↔ ∀𝑥𝐴 (1 − (𝑔𝑥)) ∈ {0, 1})
10198, 100sylib 121 . . . . . . . . . . . 12 ((𝐴𝑉𝑔 ∈ ({0, 1} ↑𝑚 𝐴)) → ∀𝑥𝐴 (1 − (𝑔𝑥)) ∈ {0, 1})
102101r19.21bi 2558 . . . . . . . . . . 11 (((𝐴𝑉𝑔 ∈ ({0, 1} ↑𝑚 𝐴)) ∧ 𝑥𝐴) → (1 − (𝑔𝑥)) ∈ {0, 1})
10394, 96, 97, 102fvmptd3 5589 . . . . . . . . . 10 (((𝐴𝑉𝑔 ∈ ({0, 1} ↑𝑚 𝐴)) ∧ 𝑥𝐴) → ((𝑧𝐴 ↦ (1 − (𝑔𝑧)))‘𝑥) = (1 − (𝑔𝑥)))
104103eqeq1d 2179 . . . . . . . . 9 (((𝐴𝑉𝑔 ∈ ({0, 1} ↑𝑚 𝐴)) ∧ 𝑥𝐴) → (((𝑧𝐴 ↦ (1 − (𝑔𝑧)))‘𝑥) = 0 ↔ (1 − (𝑔𝑥)) = 0))
105 1cnd 7936 . . . . . . . . . 10 (((𝐴𝑉𝑔 ∈ ({0, 1} ↑𝑚 𝐴)) ∧ 𝑥𝐴) → 1 ∈ ℂ)
10678ffvelrnda 5631 . . . . . . . . . . . 12 (((𝐴𝑉𝑔 ∈ ({0, 1} ↑𝑚 𝐴)) ∧ 𝑥𝐴) → (𝑔𝑥) ∈ {0, 1})
10753, 106sselid 3145 . . . . . . . . . . 11 (((𝐴𝑉𝑔 ∈ ({0, 1} ↑𝑚 𝐴)) ∧ 𝑥𝐴) → (𝑔𝑥) ∈ ℤ)
108107zcnd 9335 . . . . . . . . . 10 (((𝐴𝑉𝑔 ∈ ({0, 1} ↑𝑚 𝐴)) ∧ 𝑥𝐴) → (𝑔𝑥) ∈ ℂ)
109 0cnd 7913 . . . . . . . . . 10 (((𝐴𝑉𝑔 ∈ ({0, 1} ↑𝑚 𝐴)) ∧ 𝑥𝐴) → 0 ∈ ℂ)
110 subsub23 8124 . . . . . . . . . 10 ((1 ∈ ℂ ∧ (𝑔𝑥) ∈ ℂ ∧ 0 ∈ ℂ) → ((1 − (𝑔𝑥)) = 0 ↔ (1 − 0) = (𝑔𝑥)))
111105, 108, 109, 110syl3anc 1233 . . . . . . . . 9 (((𝐴𝑉𝑔 ∈ ({0, 1} ↑𝑚 𝐴)) ∧ 𝑥𝐴) → ((1 − (𝑔𝑥)) = 0 ↔ (1 − 0) = (𝑔𝑥)))
112104, 111bitrd 187 . . . . . . . 8 (((𝐴𝑉𝑔 ∈ ({0, 1} ↑𝑚 𝐴)) ∧ 𝑥𝐴) → (((𝑧𝐴 ↦ (1 − (𝑔𝑧)))‘𝑥) = 0 ↔ (1 − 0) = (𝑔𝑥)))
1134eqeq1i 2178 . . . . . . . . 9 ((1 − 0) = (𝑔𝑥) ↔ 1 = (𝑔𝑥))
114 eqcom 2172 . . . . . . . . 9 (1 = (𝑔𝑥) ↔ (𝑔𝑥) = 1)
115113, 114bitri 183 . . . . . . . 8 ((1 − 0) = (𝑔𝑥) ↔ (𝑔𝑥) = 1)
116112, 115bitrdi 195 . . . . . . 7 (((𝐴𝑉𝑔 ∈ ({0, 1} ↑𝑚 𝐴)) ∧ 𝑥𝐴) → (((𝑧𝐴 ↦ (1 − (𝑔𝑧)))‘𝑥) = 0 ↔ (𝑔𝑥) = 1))
117116ralbidva 2466 . . . . . 6 ((𝐴𝑉𝑔 ∈ ({0, 1} ↑𝑚 𝐴)) → (∀𝑥𝐴 ((𝑧𝐴 ↦ (1 − (𝑔𝑧)))‘𝑥) = 0 ↔ ∀𝑥𝐴 (𝑔𝑥) = 1))
118117dcbid 833 . . . . 5 ((𝐴𝑉𝑔 ∈ ({0, 1} ↑𝑚 𝐴)) → (DECID𝑥𝐴 ((𝑧𝐴 ↦ (1 − (𝑔𝑧)))‘𝑥) = 0 ↔ DECID𝑥𝐴 (𝑔𝑥) = 1))
11993, 118sylibd 148 . . . 4 ((𝐴𝑉𝑔 ∈ ({0, 1} ↑𝑚 𝐴)) → (∀𝑓 ∈ ({0, 1} ↑𝑚 𝐴)DECID𝑥𝐴 (𝑓𝑥) = 0 → DECID𝑥𝐴 (𝑔𝑥) = 1))
120119ralrimdva 2550 . . 3 (𝐴𝑉 → (∀𝑓 ∈ ({0, 1} ↑𝑚 𝐴)DECID𝑥𝐴 (𝑓𝑥) = 0 → ∀𝑔 ∈ ({0, 1} ↑𝑚 𝐴)DECID𝑥𝐴 (𝑔𝑥) = 1))
12168, 120impbid 128 . 2 (𝐴𝑉 → (∀𝑔 ∈ ({0, 1} ↑𝑚 𝐴)DECID𝑥𝐴 (𝑔𝑥) = 1 ↔ ∀𝑓 ∈ ({0, 1} ↑𝑚 𝐴)DECID𝑥𝐴 (𝑓𝑥) = 0))
1221, 121bitrd 187 1 (𝐴𝑉 → (𝐴 ∈ WOmni ↔ ∀𝑓 ∈ ({0, 1} ↑𝑚 𝐴)DECID𝑥𝐴 (𝑓𝑥) = 0))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wo 703  DECID wdc 829   = wceq 1348  wcel 2141  wral 2448  Vcvv 2730  wss 3121  {cpr 3584  cmpt 4050  wf 5194  cfv 5198  (class class class)co 5853  𝑚 cmap 6626  WOmnicwomni 7139  cc 7772  0cc0 7774  1c1 7775  cmin 8090  0cn0 9135  cz 9212
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-addcom 7874  ax-addass 7876  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-0id 7882  ax-rnegex 7883  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-ltadd 7890
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-iord 4351  df-on 4353  df-ilim 4354  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-recs 6284  df-frec 6370  df-1o 6395  df-2o 6396  df-map 6628  df-womni 7140  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-inn 8879  df-n0 9136  df-z 9213  df-uz 9488
This theorem is referenced by:  nconstwlpo  14097
  Copyright terms: Public domain W3C validator