Step | Hyp | Ref
| Expression |
1 | | iswomninn 14082 |
. 2
⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ WOmni ↔ ∀𝑔 ∈ ({0, 1}
↑𝑚 𝐴)DECID ∀𝑥 ∈ 𝐴 (𝑔‘𝑥) = 1)) |
2 | | simpr 109 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝑓 ∈ ({0, 1} ↑𝑚
𝐴)) ∧ 𝑧 ∈ 𝐴) ∧ (𝑓‘𝑧) = 0) → (𝑓‘𝑧) = 0) |
3 | 2 | oveq2d 5869 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝑓 ∈ ({0, 1} ↑𝑚
𝐴)) ∧ 𝑧 ∈ 𝐴) ∧ (𝑓‘𝑧) = 0) → (1 − (𝑓‘𝑧)) = (1 − 0)) |
4 | | 1m0e1 8991 |
. . . . . . . . . . 11
⊢ (1
− 0) = 1 |
5 | 3, 4 | eqtrdi 2219 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝑓 ∈ ({0, 1} ↑𝑚
𝐴)) ∧ 𝑧 ∈ 𝐴) ∧ (𝑓‘𝑧) = 0) → (1 − (𝑓‘𝑧)) = 1) |
6 | | 1ex 7915 |
. . . . . . . . . . 11
⊢ 1 ∈
V |
7 | 6 | prid2 3690 |
. . . . . . . . . 10
⊢ 1 ∈
{0, 1} |
8 | 5, 7 | eqeltrdi 2261 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝑓 ∈ ({0, 1} ↑𝑚
𝐴)) ∧ 𝑧 ∈ 𝐴) ∧ (𝑓‘𝑧) = 0) → (1 − (𝑓‘𝑧)) ∈ {0, 1}) |
9 | | simpr 109 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝑓 ∈ ({0, 1} ↑𝑚
𝐴)) ∧ 𝑧 ∈ 𝐴) ∧ (𝑓‘𝑧) = 1) → (𝑓‘𝑧) = 1) |
10 | 9 | oveq2d 5869 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝑓 ∈ ({0, 1} ↑𝑚
𝐴)) ∧ 𝑧 ∈ 𝐴) ∧ (𝑓‘𝑧) = 1) → (1 − (𝑓‘𝑧)) = (1 − 1)) |
11 | | 1m1e0 8947 |
. . . . . . . . . . 11
⊢ (1
− 1) = 0 |
12 | 10, 11 | eqtrdi 2219 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝑓 ∈ ({0, 1} ↑𝑚
𝐴)) ∧ 𝑧 ∈ 𝐴) ∧ (𝑓‘𝑧) = 1) → (1 − (𝑓‘𝑧)) = 0) |
13 | | c0ex 7914 |
. . . . . . . . . . 11
⊢ 0 ∈
V |
14 | 13 | prid1 3689 |
. . . . . . . . . 10
⊢ 0 ∈
{0, 1} |
15 | 12, 14 | eqeltrdi 2261 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝑓 ∈ ({0, 1} ↑𝑚
𝐴)) ∧ 𝑧 ∈ 𝐴) ∧ (𝑓‘𝑧) = 1) → (1 − (𝑓‘𝑧)) ∈ {0, 1}) |
16 | | elmapi 6648 |
. . . . . . . . . . . 12
⊢ (𝑓 ∈ ({0, 1}
↑𝑚 𝐴) → 𝑓:𝐴⟶{0, 1}) |
17 | 16 | ad2antlr 486 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑓 ∈ ({0, 1} ↑𝑚
𝐴)) ∧ 𝑧 ∈ 𝐴) → 𝑓:𝐴⟶{0, 1}) |
18 | | simpr 109 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑓 ∈ ({0, 1} ↑𝑚
𝐴)) ∧ 𝑧 ∈ 𝐴) → 𝑧 ∈ 𝐴) |
19 | 17, 18 | ffvelrnd 5632 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑓 ∈ ({0, 1} ↑𝑚
𝐴)) ∧ 𝑧 ∈ 𝐴) → (𝑓‘𝑧) ∈ {0, 1}) |
20 | | elpri 3606 |
. . . . . . . . . 10
⊢ ((𝑓‘𝑧) ∈ {0, 1} → ((𝑓‘𝑧) = 0 ∨ (𝑓‘𝑧) = 1)) |
21 | 19, 20 | syl 14 |
. . . . . . . . 9
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑓 ∈ ({0, 1} ↑𝑚
𝐴)) ∧ 𝑧 ∈ 𝐴) → ((𝑓‘𝑧) = 0 ∨ (𝑓‘𝑧) = 1)) |
22 | 8, 15, 21 | mpjaodan 793 |
. . . . . . . 8
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑓 ∈ ({0, 1} ↑𝑚
𝐴)) ∧ 𝑧 ∈ 𝐴) → (1 − (𝑓‘𝑧)) ∈ {0, 1}) |
23 | 22 | fmpttd 5651 |
. . . . . . 7
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑓 ∈ ({0, 1} ↑𝑚
𝐴)) → (𝑧 ∈ 𝐴 ↦ (1 − (𝑓‘𝑧))):𝐴⟶{0, 1}) |
24 | | 0nn0 9150 |
. . . . . . . . . 10
⊢ 0 ∈
ℕ0 |
25 | | 1nn0 9151 |
. . . . . . . . . 10
⊢ 1 ∈
ℕ0 |
26 | | prexg 4196 |
. . . . . . . . . 10
⊢ ((0
∈ ℕ0 ∧ 1 ∈ ℕ0) → {0, 1}
∈ V) |
27 | 24, 25, 26 | mp2an 424 |
. . . . . . . . 9
⊢ {0, 1}
∈ V |
28 | 27 | a1i 9 |
. . . . . . . 8
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑓 ∈ ({0, 1} ↑𝑚
𝐴)) → {0, 1} ∈
V) |
29 | | simpl 108 |
. . . . . . . 8
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑓 ∈ ({0, 1} ↑𝑚
𝐴)) → 𝐴 ∈ 𝑉) |
30 | 28, 29 | elmapd 6640 |
. . . . . . 7
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑓 ∈ ({0, 1} ↑𝑚
𝐴)) → ((𝑧 ∈ 𝐴 ↦ (1 − (𝑓‘𝑧))) ∈ ({0, 1} ↑𝑚
𝐴) ↔ (𝑧 ∈ 𝐴 ↦ (1 − (𝑓‘𝑧))):𝐴⟶{0, 1})) |
31 | 23, 30 | mpbird 166 |
. . . . . 6
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑓 ∈ ({0, 1} ↑𝑚
𝐴)) → (𝑧 ∈ 𝐴 ↦ (1 − (𝑓‘𝑧))) ∈ ({0, 1} ↑𝑚
𝐴)) |
32 | | fveq1 5495 |
. . . . . . . . . 10
⊢ (𝑔 = (𝑧 ∈ 𝐴 ↦ (1 − (𝑓‘𝑧))) → (𝑔‘𝑥) = ((𝑧 ∈ 𝐴 ↦ (1 − (𝑓‘𝑧)))‘𝑥)) |
33 | 32 | eqeq1d 2179 |
. . . . . . . . 9
⊢ (𝑔 = (𝑧 ∈ 𝐴 ↦ (1 − (𝑓‘𝑧))) → ((𝑔‘𝑥) = 1 ↔ ((𝑧 ∈ 𝐴 ↦ (1 − (𝑓‘𝑧)))‘𝑥) = 1)) |
34 | 33 | ralbidv 2470 |
. . . . . . . 8
⊢ (𝑔 = (𝑧 ∈ 𝐴 ↦ (1 − (𝑓‘𝑧))) → (∀𝑥 ∈ 𝐴 (𝑔‘𝑥) = 1 ↔ ∀𝑥 ∈ 𝐴 ((𝑧 ∈ 𝐴 ↦ (1 − (𝑓‘𝑧)))‘𝑥) = 1)) |
35 | 34 | dcbid 833 |
. . . . . . 7
⊢ (𝑔 = (𝑧 ∈ 𝐴 ↦ (1 − (𝑓‘𝑧))) → (DECID
∀𝑥 ∈ 𝐴 (𝑔‘𝑥) = 1 ↔ DECID
∀𝑥 ∈ 𝐴 ((𝑧 ∈ 𝐴 ↦ (1 − (𝑓‘𝑧)))‘𝑥) = 1)) |
36 | 35 | rspcv 2830 |
. . . . . 6
⊢ ((𝑧 ∈ 𝐴 ↦ (1 − (𝑓‘𝑧))) ∈ ({0, 1} ↑𝑚
𝐴) → (∀𝑔 ∈ ({0, 1}
↑𝑚 𝐴)DECID ∀𝑥 ∈ 𝐴 (𝑔‘𝑥) = 1 → DECID
∀𝑥 ∈ 𝐴 ((𝑧 ∈ 𝐴 ↦ (1 − (𝑓‘𝑧)))‘𝑥) = 1)) |
37 | 31, 36 | syl 14 |
. . . . 5
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑓 ∈ ({0, 1} ↑𝑚
𝐴)) → (∀𝑔 ∈ ({0, 1}
↑𝑚 𝐴)DECID ∀𝑥 ∈ 𝐴 (𝑔‘𝑥) = 1 → DECID
∀𝑥 ∈ 𝐴 ((𝑧 ∈ 𝐴 ↦ (1 − (𝑓‘𝑧)))‘𝑥) = 1)) |
38 | | eqid 2170 |
. . . . . . . . . . 11
⊢ (𝑧 ∈ 𝐴 ↦ (1 − (𝑓‘𝑧))) = (𝑧 ∈ 𝐴 ↦ (1 − (𝑓‘𝑧))) |
39 | | fveq2 5496 |
. . . . . . . . . . . 12
⊢ (𝑧 = 𝑥 → (𝑓‘𝑧) = (𝑓‘𝑥)) |
40 | 39 | oveq2d 5869 |
. . . . . . . . . . 11
⊢ (𝑧 = 𝑥 → (1 − (𝑓‘𝑧)) = (1 − (𝑓‘𝑥))) |
41 | | simpr 109 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑓 ∈ ({0, 1} ↑𝑚
𝐴)) ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐴) |
42 | 22 | ralrimiva 2543 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑓 ∈ ({0, 1} ↑𝑚
𝐴)) → ∀𝑧 ∈ 𝐴 (1 − (𝑓‘𝑧)) ∈ {0, 1}) |
43 | 40 | eleq1d 2239 |
. . . . . . . . . . . . . 14
⊢ (𝑧 = 𝑥 → ((1 − (𝑓‘𝑧)) ∈ {0, 1} ↔ (1 − (𝑓‘𝑥)) ∈ {0, 1})) |
44 | 43 | cbvralv 2696 |
. . . . . . . . . . . . 13
⊢
(∀𝑧 ∈
𝐴 (1 − (𝑓‘𝑧)) ∈ {0, 1} ↔ ∀𝑥 ∈ 𝐴 (1 − (𝑓‘𝑥)) ∈ {0, 1}) |
45 | 42, 44 | sylib 121 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑓 ∈ ({0, 1} ↑𝑚
𝐴)) → ∀𝑥 ∈ 𝐴 (1 − (𝑓‘𝑥)) ∈ {0, 1}) |
46 | 45 | r19.21bi 2558 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑓 ∈ ({0, 1} ↑𝑚
𝐴)) ∧ 𝑥 ∈ 𝐴) → (1 − (𝑓‘𝑥)) ∈ {0, 1}) |
47 | 38, 40, 41, 46 | fvmptd3 5589 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑓 ∈ ({0, 1} ↑𝑚
𝐴)) ∧ 𝑥 ∈ 𝐴) → ((𝑧 ∈ 𝐴 ↦ (1 − (𝑓‘𝑧)))‘𝑥) = (1 − (𝑓‘𝑥))) |
48 | 47 | eqeq1d 2179 |
. . . . . . . . 9
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑓 ∈ ({0, 1} ↑𝑚
𝐴)) ∧ 𝑥 ∈ 𝐴) → (((𝑧 ∈ 𝐴 ↦ (1 − (𝑓‘𝑧)))‘𝑥) = 1 ↔ (1 − (𝑓‘𝑥)) = 1)) |
49 | | 1cnd 7936 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑓 ∈ ({0, 1} ↑𝑚
𝐴)) ∧ 𝑥 ∈ 𝐴) → 1 ∈ ℂ) |
50 | | 0z 9223 |
. . . . . . . . . . . . 13
⊢ 0 ∈
ℤ |
51 | | 1z 9238 |
. . . . . . . . . . . . 13
⊢ 1 ∈
ℤ |
52 | | prssi 3738 |
. . . . . . . . . . . . 13
⊢ ((0
∈ ℤ ∧ 1 ∈ ℤ) → {0, 1} ⊆
ℤ) |
53 | 50, 51, 52 | mp2an 424 |
. . . . . . . . . . . 12
⊢ {0, 1}
⊆ ℤ |
54 | 16 | adantl 275 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑓 ∈ ({0, 1} ↑𝑚
𝐴)) → 𝑓:𝐴⟶{0, 1}) |
55 | 54 | ffvelrnda 5631 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑓 ∈ ({0, 1} ↑𝑚
𝐴)) ∧ 𝑥 ∈ 𝐴) → (𝑓‘𝑥) ∈ {0, 1}) |
56 | 53, 55 | sselid 3145 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑓 ∈ ({0, 1} ↑𝑚
𝐴)) ∧ 𝑥 ∈ 𝐴) → (𝑓‘𝑥) ∈ ℤ) |
57 | 56 | zcnd 9335 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑓 ∈ ({0, 1} ↑𝑚
𝐴)) ∧ 𝑥 ∈ 𝐴) → (𝑓‘𝑥) ∈ ℂ) |
58 | | subsub23 8124 |
. . . . . . . . . 10
⊢ ((1
∈ ℂ ∧ (𝑓‘𝑥) ∈ ℂ ∧ 1 ∈ ℂ)
→ ((1 − (𝑓‘𝑥)) = 1 ↔ (1 − 1) = (𝑓‘𝑥))) |
59 | 49, 57, 49, 58 | syl3anc 1233 |
. . . . . . . . 9
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑓 ∈ ({0, 1} ↑𝑚
𝐴)) ∧ 𝑥 ∈ 𝐴) → ((1 − (𝑓‘𝑥)) = 1 ↔ (1 − 1) = (𝑓‘𝑥))) |
60 | 48, 59 | bitrd 187 |
. . . . . . . 8
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑓 ∈ ({0, 1} ↑𝑚
𝐴)) ∧ 𝑥 ∈ 𝐴) → (((𝑧 ∈ 𝐴 ↦ (1 − (𝑓‘𝑧)))‘𝑥) = 1 ↔ (1 − 1) = (𝑓‘𝑥))) |
61 | 11 | eqeq1i 2178 |
. . . . . . . . 9
⊢ ((1
− 1) = (𝑓‘𝑥) ↔ 0 = (𝑓‘𝑥)) |
62 | | eqcom 2172 |
. . . . . . . . 9
⊢ (0 =
(𝑓‘𝑥) ↔ (𝑓‘𝑥) = 0) |
63 | 61, 62 | bitri 183 |
. . . . . . . 8
⊢ ((1
− 1) = (𝑓‘𝑥) ↔ (𝑓‘𝑥) = 0) |
64 | 60, 63 | bitrdi 195 |
. . . . . . 7
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑓 ∈ ({0, 1} ↑𝑚
𝐴)) ∧ 𝑥 ∈ 𝐴) → (((𝑧 ∈ 𝐴 ↦ (1 − (𝑓‘𝑧)))‘𝑥) = 1 ↔ (𝑓‘𝑥) = 0)) |
65 | 64 | ralbidva 2466 |
. . . . . 6
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑓 ∈ ({0, 1} ↑𝑚
𝐴)) → (∀𝑥 ∈ 𝐴 ((𝑧 ∈ 𝐴 ↦ (1 − (𝑓‘𝑧)))‘𝑥) = 1 ↔ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 0)) |
66 | 65 | dcbid 833 |
. . . . 5
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑓 ∈ ({0, 1} ↑𝑚
𝐴)) →
(DECID ∀𝑥 ∈ 𝐴 ((𝑧 ∈ 𝐴 ↦ (1 − (𝑓‘𝑧)))‘𝑥) = 1 ↔ DECID
∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 0)) |
67 | 37, 66 | sylibd 148 |
. . . 4
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑓 ∈ ({0, 1} ↑𝑚
𝐴)) → (∀𝑔 ∈ ({0, 1}
↑𝑚 𝐴)DECID ∀𝑥 ∈ 𝐴 (𝑔‘𝑥) = 1 → DECID
∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 0)) |
68 | 67 | ralrimdva 2550 |
. . 3
⊢ (𝐴 ∈ 𝑉 → (∀𝑔 ∈ ({0, 1} ↑𝑚
𝐴)DECID
∀𝑥 ∈ 𝐴 (𝑔‘𝑥) = 1 → ∀𝑓 ∈ ({0, 1} ↑𝑚
𝐴)DECID
∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 0)) |
69 | | simpr 109 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝑔 ∈ ({0, 1} ↑𝑚
𝐴)) ∧ 𝑧 ∈ 𝐴) ∧ (𝑔‘𝑧) = 0) → (𝑔‘𝑧) = 0) |
70 | 69 | oveq2d 5869 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝑔 ∈ ({0, 1} ↑𝑚
𝐴)) ∧ 𝑧 ∈ 𝐴) ∧ (𝑔‘𝑧) = 0) → (1 − (𝑔‘𝑧)) = (1 − 0)) |
71 | 70, 4 | eqtrdi 2219 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝑔 ∈ ({0, 1} ↑𝑚
𝐴)) ∧ 𝑧 ∈ 𝐴) ∧ (𝑔‘𝑧) = 0) → (1 − (𝑔‘𝑧)) = 1) |
72 | 71, 7 | eqeltrdi 2261 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝑔 ∈ ({0, 1} ↑𝑚
𝐴)) ∧ 𝑧 ∈ 𝐴) ∧ (𝑔‘𝑧) = 0) → (1 − (𝑔‘𝑧)) ∈ {0, 1}) |
73 | | simpr 109 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝑔 ∈ ({0, 1} ↑𝑚
𝐴)) ∧ 𝑧 ∈ 𝐴) ∧ (𝑔‘𝑧) = 1) → (𝑔‘𝑧) = 1) |
74 | 73 | oveq2d 5869 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝑔 ∈ ({0, 1} ↑𝑚
𝐴)) ∧ 𝑧 ∈ 𝐴) ∧ (𝑔‘𝑧) = 1) → (1 − (𝑔‘𝑧)) = (1 − 1)) |
75 | 74, 11 | eqtrdi 2219 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝑔 ∈ ({0, 1} ↑𝑚
𝐴)) ∧ 𝑧 ∈ 𝐴) ∧ (𝑔‘𝑧) = 1) → (1 − (𝑔‘𝑧)) = 0) |
76 | 75, 14 | eqeltrdi 2261 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝑔 ∈ ({0, 1} ↑𝑚
𝐴)) ∧ 𝑧 ∈ 𝐴) ∧ (𝑔‘𝑧) = 1) → (1 − (𝑔‘𝑧)) ∈ {0, 1}) |
77 | | elmapi 6648 |
. . . . . . . . . . . 12
⊢ (𝑔 ∈ ({0, 1}
↑𝑚 𝐴) → 𝑔:𝐴⟶{0, 1}) |
78 | 77 | adantl 275 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑔 ∈ ({0, 1} ↑𝑚
𝐴)) → 𝑔:𝐴⟶{0, 1}) |
79 | 78 | ffvelrnda 5631 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑔 ∈ ({0, 1} ↑𝑚
𝐴)) ∧ 𝑧 ∈ 𝐴) → (𝑔‘𝑧) ∈ {0, 1}) |
80 | | elpri 3606 |
. . . . . . . . . 10
⊢ ((𝑔‘𝑧) ∈ {0, 1} → ((𝑔‘𝑧) = 0 ∨ (𝑔‘𝑧) = 1)) |
81 | 79, 80 | syl 14 |
. . . . . . . . 9
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑔 ∈ ({0, 1} ↑𝑚
𝐴)) ∧ 𝑧 ∈ 𝐴) → ((𝑔‘𝑧) = 0 ∨ (𝑔‘𝑧) = 1)) |
82 | 72, 76, 81 | mpjaodan 793 |
. . . . . . . 8
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑔 ∈ ({0, 1} ↑𝑚
𝐴)) ∧ 𝑧 ∈ 𝐴) → (1 − (𝑔‘𝑧)) ∈ {0, 1}) |
83 | 82 | fmpttd 5651 |
. . . . . . 7
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑔 ∈ ({0, 1} ↑𝑚
𝐴)) → (𝑧 ∈ 𝐴 ↦ (1 − (𝑔‘𝑧))):𝐴⟶{0, 1}) |
84 | 27 | a1i 9 |
. . . . . . . 8
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑔 ∈ ({0, 1} ↑𝑚
𝐴)) → {0, 1} ∈
V) |
85 | | simpl 108 |
. . . . . . . 8
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑔 ∈ ({0, 1} ↑𝑚
𝐴)) → 𝐴 ∈ 𝑉) |
86 | 84, 85 | elmapd 6640 |
. . . . . . 7
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑔 ∈ ({0, 1} ↑𝑚
𝐴)) → ((𝑧 ∈ 𝐴 ↦ (1 − (𝑔‘𝑧))) ∈ ({0, 1} ↑𝑚
𝐴) ↔ (𝑧 ∈ 𝐴 ↦ (1 − (𝑔‘𝑧))):𝐴⟶{0, 1})) |
87 | 83, 86 | mpbird 166 |
. . . . . 6
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑔 ∈ ({0, 1} ↑𝑚
𝐴)) → (𝑧 ∈ 𝐴 ↦ (1 − (𝑔‘𝑧))) ∈ ({0, 1} ↑𝑚
𝐴)) |
88 | | fveq1 5495 |
. . . . . . . . . 10
⊢ (𝑓 = (𝑧 ∈ 𝐴 ↦ (1 − (𝑔‘𝑧))) → (𝑓‘𝑥) = ((𝑧 ∈ 𝐴 ↦ (1 − (𝑔‘𝑧)))‘𝑥)) |
89 | 88 | eqeq1d 2179 |
. . . . . . . . 9
⊢ (𝑓 = (𝑧 ∈ 𝐴 ↦ (1 − (𝑔‘𝑧))) → ((𝑓‘𝑥) = 0 ↔ ((𝑧 ∈ 𝐴 ↦ (1 − (𝑔‘𝑧)))‘𝑥) = 0)) |
90 | 89 | ralbidv 2470 |
. . . . . . . 8
⊢ (𝑓 = (𝑧 ∈ 𝐴 ↦ (1 − (𝑔‘𝑧))) → (∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 0 ↔ ∀𝑥 ∈ 𝐴 ((𝑧 ∈ 𝐴 ↦ (1 − (𝑔‘𝑧)))‘𝑥) = 0)) |
91 | 90 | dcbid 833 |
. . . . . . 7
⊢ (𝑓 = (𝑧 ∈ 𝐴 ↦ (1 − (𝑔‘𝑧))) → (DECID
∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 0 ↔ DECID
∀𝑥 ∈ 𝐴 ((𝑧 ∈ 𝐴 ↦ (1 − (𝑔‘𝑧)))‘𝑥) = 0)) |
92 | 91 | rspcv 2830 |
. . . . . 6
⊢ ((𝑧 ∈ 𝐴 ↦ (1 − (𝑔‘𝑧))) ∈ ({0, 1} ↑𝑚
𝐴) → (∀𝑓 ∈ ({0, 1}
↑𝑚 𝐴)DECID ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 0 → DECID
∀𝑥 ∈ 𝐴 ((𝑧 ∈ 𝐴 ↦ (1 − (𝑔‘𝑧)))‘𝑥) = 0)) |
93 | 87, 92 | syl 14 |
. . . . 5
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑔 ∈ ({0, 1} ↑𝑚
𝐴)) → (∀𝑓 ∈ ({0, 1}
↑𝑚 𝐴)DECID ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 0 → DECID
∀𝑥 ∈ 𝐴 ((𝑧 ∈ 𝐴 ↦ (1 − (𝑔‘𝑧)))‘𝑥) = 0)) |
94 | | eqid 2170 |
. . . . . . . . . . 11
⊢ (𝑧 ∈ 𝐴 ↦ (1 − (𝑔‘𝑧))) = (𝑧 ∈ 𝐴 ↦ (1 − (𝑔‘𝑧))) |
95 | | fveq2 5496 |
. . . . . . . . . . . 12
⊢ (𝑧 = 𝑥 → (𝑔‘𝑧) = (𝑔‘𝑥)) |
96 | 95 | oveq2d 5869 |
. . . . . . . . . . 11
⊢ (𝑧 = 𝑥 → (1 − (𝑔‘𝑧)) = (1 − (𝑔‘𝑥))) |
97 | | simpr 109 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑔 ∈ ({0, 1} ↑𝑚
𝐴)) ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐴) |
98 | 82 | ralrimiva 2543 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑔 ∈ ({0, 1} ↑𝑚
𝐴)) → ∀𝑧 ∈ 𝐴 (1 − (𝑔‘𝑧)) ∈ {0, 1}) |
99 | 96 | eleq1d 2239 |
. . . . . . . . . . . . . 14
⊢ (𝑧 = 𝑥 → ((1 − (𝑔‘𝑧)) ∈ {0, 1} ↔ (1 − (𝑔‘𝑥)) ∈ {0, 1})) |
100 | 99 | cbvralv 2696 |
. . . . . . . . . . . . 13
⊢
(∀𝑧 ∈
𝐴 (1 − (𝑔‘𝑧)) ∈ {0, 1} ↔ ∀𝑥 ∈ 𝐴 (1 − (𝑔‘𝑥)) ∈ {0, 1}) |
101 | 98, 100 | sylib 121 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑔 ∈ ({0, 1} ↑𝑚
𝐴)) → ∀𝑥 ∈ 𝐴 (1 − (𝑔‘𝑥)) ∈ {0, 1}) |
102 | 101 | r19.21bi 2558 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑔 ∈ ({0, 1} ↑𝑚
𝐴)) ∧ 𝑥 ∈ 𝐴) → (1 − (𝑔‘𝑥)) ∈ {0, 1}) |
103 | 94, 96, 97, 102 | fvmptd3 5589 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑔 ∈ ({0, 1} ↑𝑚
𝐴)) ∧ 𝑥 ∈ 𝐴) → ((𝑧 ∈ 𝐴 ↦ (1 − (𝑔‘𝑧)))‘𝑥) = (1 − (𝑔‘𝑥))) |
104 | 103 | eqeq1d 2179 |
. . . . . . . . 9
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑔 ∈ ({0, 1} ↑𝑚
𝐴)) ∧ 𝑥 ∈ 𝐴) → (((𝑧 ∈ 𝐴 ↦ (1 − (𝑔‘𝑧)))‘𝑥) = 0 ↔ (1 − (𝑔‘𝑥)) = 0)) |
105 | | 1cnd 7936 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑔 ∈ ({0, 1} ↑𝑚
𝐴)) ∧ 𝑥 ∈ 𝐴) → 1 ∈ ℂ) |
106 | 78 | ffvelrnda 5631 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑔 ∈ ({0, 1} ↑𝑚
𝐴)) ∧ 𝑥 ∈ 𝐴) → (𝑔‘𝑥) ∈ {0, 1}) |
107 | 53, 106 | sselid 3145 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑔 ∈ ({0, 1} ↑𝑚
𝐴)) ∧ 𝑥 ∈ 𝐴) → (𝑔‘𝑥) ∈ ℤ) |
108 | 107 | zcnd 9335 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑔 ∈ ({0, 1} ↑𝑚
𝐴)) ∧ 𝑥 ∈ 𝐴) → (𝑔‘𝑥) ∈ ℂ) |
109 | | 0cnd 7913 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑔 ∈ ({0, 1} ↑𝑚
𝐴)) ∧ 𝑥 ∈ 𝐴) → 0 ∈ ℂ) |
110 | | subsub23 8124 |
. . . . . . . . . 10
⊢ ((1
∈ ℂ ∧ (𝑔‘𝑥) ∈ ℂ ∧ 0 ∈ ℂ)
→ ((1 − (𝑔‘𝑥)) = 0 ↔ (1 − 0) = (𝑔‘𝑥))) |
111 | 105, 108,
109, 110 | syl3anc 1233 |
. . . . . . . . 9
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑔 ∈ ({0, 1} ↑𝑚
𝐴)) ∧ 𝑥 ∈ 𝐴) → ((1 − (𝑔‘𝑥)) = 0 ↔ (1 − 0) = (𝑔‘𝑥))) |
112 | 104, 111 | bitrd 187 |
. . . . . . . 8
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑔 ∈ ({0, 1} ↑𝑚
𝐴)) ∧ 𝑥 ∈ 𝐴) → (((𝑧 ∈ 𝐴 ↦ (1 − (𝑔‘𝑧)))‘𝑥) = 0 ↔ (1 − 0) = (𝑔‘𝑥))) |
113 | 4 | eqeq1i 2178 |
. . . . . . . . 9
⊢ ((1
− 0) = (𝑔‘𝑥) ↔ 1 = (𝑔‘𝑥)) |
114 | | eqcom 2172 |
. . . . . . . . 9
⊢ (1 =
(𝑔‘𝑥) ↔ (𝑔‘𝑥) = 1) |
115 | 113, 114 | bitri 183 |
. . . . . . . 8
⊢ ((1
− 0) = (𝑔‘𝑥) ↔ (𝑔‘𝑥) = 1) |
116 | 112, 115 | bitrdi 195 |
. . . . . . 7
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑔 ∈ ({0, 1} ↑𝑚
𝐴)) ∧ 𝑥 ∈ 𝐴) → (((𝑧 ∈ 𝐴 ↦ (1 − (𝑔‘𝑧)))‘𝑥) = 0 ↔ (𝑔‘𝑥) = 1)) |
117 | 116 | ralbidva 2466 |
. . . . . 6
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑔 ∈ ({0, 1} ↑𝑚
𝐴)) → (∀𝑥 ∈ 𝐴 ((𝑧 ∈ 𝐴 ↦ (1 − (𝑔‘𝑧)))‘𝑥) = 0 ↔ ∀𝑥 ∈ 𝐴 (𝑔‘𝑥) = 1)) |
118 | 117 | dcbid 833 |
. . . . 5
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑔 ∈ ({0, 1} ↑𝑚
𝐴)) →
(DECID ∀𝑥 ∈ 𝐴 ((𝑧 ∈ 𝐴 ↦ (1 − (𝑔‘𝑧)))‘𝑥) = 0 ↔ DECID
∀𝑥 ∈ 𝐴 (𝑔‘𝑥) = 1)) |
119 | 93, 118 | sylibd 148 |
. . . 4
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑔 ∈ ({0, 1} ↑𝑚
𝐴)) → (∀𝑓 ∈ ({0, 1}
↑𝑚 𝐴)DECID ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 0 → DECID
∀𝑥 ∈ 𝐴 (𝑔‘𝑥) = 1)) |
120 | 119 | ralrimdva 2550 |
. . 3
⊢ (𝐴 ∈ 𝑉 → (∀𝑓 ∈ ({0, 1} ↑𝑚
𝐴)DECID
∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 0 → ∀𝑔 ∈ ({0, 1} ↑𝑚
𝐴)DECID
∀𝑥 ∈ 𝐴 (𝑔‘𝑥) = 1)) |
121 | 68, 120 | impbid 128 |
. 2
⊢ (𝐴 ∈ 𝑉 → (∀𝑔 ∈ ({0, 1} ↑𝑚
𝐴)DECID
∀𝑥 ∈ 𝐴 (𝑔‘𝑥) = 1 ↔ ∀𝑓 ∈ ({0, 1} ↑𝑚
𝐴)DECID
∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 0)) |
122 | 1, 121 | bitrd 187 |
1
⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ WOmni ↔ ∀𝑓 ∈ ({0, 1}
↑𝑚 𝐴)DECID ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 0)) |