Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  iswomni0 GIF version

Theorem iswomni0 16064
Description: Weak omniscience stated in terms of equality with 0. Like iswomninn 16063 but with zero in place of one. (Contributed by Jim Kingdon, 24-Jul-2024.)
Assertion
Ref Expression
iswomni0 (𝐴𝑉 → (𝐴 ∈ WOmni ↔ ∀𝑓 ∈ ({0, 1} ↑𝑚 𝐴)DECID𝑥𝐴 (𝑓𝑥) = 0))
Distinct variable groups:   𝐴,𝑓,𝑥   𝑓,𝑉,𝑥

Proof of Theorem iswomni0
Dummy variables 𝑔 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iswomninn 16063 . 2 (𝐴𝑉 → (𝐴 ∈ WOmni ↔ ∀𝑔 ∈ ({0, 1} ↑𝑚 𝐴)DECID𝑥𝐴 (𝑔𝑥) = 1))
2 simpr 110 . . . . . . . . . . . 12 ((((𝐴𝑉𝑓 ∈ ({0, 1} ↑𝑚 𝐴)) ∧ 𝑧𝐴) ∧ (𝑓𝑧) = 0) → (𝑓𝑧) = 0)
32oveq2d 5967 . . . . . . . . . . 11 ((((𝐴𝑉𝑓 ∈ ({0, 1} ↑𝑚 𝐴)) ∧ 𝑧𝐴) ∧ (𝑓𝑧) = 0) → (1 − (𝑓𝑧)) = (1 − 0))
4 1m0e1 9156 . . . . . . . . . . 11 (1 − 0) = 1
53, 4eqtrdi 2255 . . . . . . . . . 10 ((((𝐴𝑉𝑓 ∈ ({0, 1} ↑𝑚 𝐴)) ∧ 𝑧𝐴) ∧ (𝑓𝑧) = 0) → (1 − (𝑓𝑧)) = 1)
6 1ex 8074 . . . . . . . . . . 11 1 ∈ V
76prid2 3741 . . . . . . . . . 10 1 ∈ {0, 1}
85, 7eqeltrdi 2297 . . . . . . . . 9 ((((𝐴𝑉𝑓 ∈ ({0, 1} ↑𝑚 𝐴)) ∧ 𝑧𝐴) ∧ (𝑓𝑧) = 0) → (1 − (𝑓𝑧)) ∈ {0, 1})
9 simpr 110 . . . . . . . . . . . 12 ((((𝐴𝑉𝑓 ∈ ({0, 1} ↑𝑚 𝐴)) ∧ 𝑧𝐴) ∧ (𝑓𝑧) = 1) → (𝑓𝑧) = 1)
109oveq2d 5967 . . . . . . . . . . 11 ((((𝐴𝑉𝑓 ∈ ({0, 1} ↑𝑚 𝐴)) ∧ 𝑧𝐴) ∧ (𝑓𝑧) = 1) → (1 − (𝑓𝑧)) = (1 − 1))
11 1m1e0 9112 . . . . . . . . . . 11 (1 − 1) = 0
1210, 11eqtrdi 2255 . . . . . . . . . 10 ((((𝐴𝑉𝑓 ∈ ({0, 1} ↑𝑚 𝐴)) ∧ 𝑧𝐴) ∧ (𝑓𝑧) = 1) → (1 − (𝑓𝑧)) = 0)
13 c0ex 8073 . . . . . . . . . . 11 0 ∈ V
1413prid1 3740 . . . . . . . . . 10 0 ∈ {0, 1}
1512, 14eqeltrdi 2297 . . . . . . . . 9 ((((𝐴𝑉𝑓 ∈ ({0, 1} ↑𝑚 𝐴)) ∧ 𝑧𝐴) ∧ (𝑓𝑧) = 1) → (1 − (𝑓𝑧)) ∈ {0, 1})
16 elmapi 6764 . . . . . . . . . . . 12 (𝑓 ∈ ({0, 1} ↑𝑚 𝐴) → 𝑓:𝐴⟶{0, 1})
1716ad2antlr 489 . . . . . . . . . . 11 (((𝐴𝑉𝑓 ∈ ({0, 1} ↑𝑚 𝐴)) ∧ 𝑧𝐴) → 𝑓:𝐴⟶{0, 1})
18 simpr 110 . . . . . . . . . . 11 (((𝐴𝑉𝑓 ∈ ({0, 1} ↑𝑚 𝐴)) ∧ 𝑧𝐴) → 𝑧𝐴)
1917, 18ffvelcdmd 5723 . . . . . . . . . 10 (((𝐴𝑉𝑓 ∈ ({0, 1} ↑𝑚 𝐴)) ∧ 𝑧𝐴) → (𝑓𝑧) ∈ {0, 1})
20 elpri 3657 . . . . . . . . . 10 ((𝑓𝑧) ∈ {0, 1} → ((𝑓𝑧) = 0 ∨ (𝑓𝑧) = 1))
2119, 20syl 14 . . . . . . . . 9 (((𝐴𝑉𝑓 ∈ ({0, 1} ↑𝑚 𝐴)) ∧ 𝑧𝐴) → ((𝑓𝑧) = 0 ∨ (𝑓𝑧) = 1))
228, 15, 21mpjaodan 800 . . . . . . . 8 (((𝐴𝑉𝑓 ∈ ({0, 1} ↑𝑚 𝐴)) ∧ 𝑧𝐴) → (1 − (𝑓𝑧)) ∈ {0, 1})
2322fmpttd 5742 . . . . . . 7 ((𝐴𝑉𝑓 ∈ ({0, 1} ↑𝑚 𝐴)) → (𝑧𝐴 ↦ (1 − (𝑓𝑧))):𝐴⟶{0, 1})
24 0nn0 9317 . . . . . . . . . 10 0 ∈ ℕ0
25 1nn0 9318 . . . . . . . . . 10 1 ∈ ℕ0
26 prexg 4259 . . . . . . . . . 10 ((0 ∈ ℕ0 ∧ 1 ∈ ℕ0) → {0, 1} ∈ V)
2724, 25, 26mp2an 426 . . . . . . . . 9 {0, 1} ∈ V
2827a1i 9 . . . . . . . 8 ((𝐴𝑉𝑓 ∈ ({0, 1} ↑𝑚 𝐴)) → {0, 1} ∈ V)
29 simpl 109 . . . . . . . 8 ((𝐴𝑉𝑓 ∈ ({0, 1} ↑𝑚 𝐴)) → 𝐴𝑉)
3028, 29elmapd 6756 . . . . . . 7 ((𝐴𝑉𝑓 ∈ ({0, 1} ↑𝑚 𝐴)) → ((𝑧𝐴 ↦ (1 − (𝑓𝑧))) ∈ ({0, 1} ↑𝑚 𝐴) ↔ (𝑧𝐴 ↦ (1 − (𝑓𝑧))):𝐴⟶{0, 1}))
3123, 30mpbird 167 . . . . . 6 ((𝐴𝑉𝑓 ∈ ({0, 1} ↑𝑚 𝐴)) → (𝑧𝐴 ↦ (1 − (𝑓𝑧))) ∈ ({0, 1} ↑𝑚 𝐴))
32 fveq1 5582 . . . . . . . . . 10 (𝑔 = (𝑧𝐴 ↦ (1 − (𝑓𝑧))) → (𝑔𝑥) = ((𝑧𝐴 ↦ (1 − (𝑓𝑧)))‘𝑥))
3332eqeq1d 2215 . . . . . . . . 9 (𝑔 = (𝑧𝐴 ↦ (1 − (𝑓𝑧))) → ((𝑔𝑥) = 1 ↔ ((𝑧𝐴 ↦ (1 − (𝑓𝑧)))‘𝑥) = 1))
3433ralbidv 2507 . . . . . . . 8 (𝑔 = (𝑧𝐴 ↦ (1 − (𝑓𝑧))) → (∀𝑥𝐴 (𝑔𝑥) = 1 ↔ ∀𝑥𝐴 ((𝑧𝐴 ↦ (1 − (𝑓𝑧)))‘𝑥) = 1))
3534dcbid 840 . . . . . . 7 (𝑔 = (𝑧𝐴 ↦ (1 − (𝑓𝑧))) → (DECID𝑥𝐴 (𝑔𝑥) = 1 ↔ DECID𝑥𝐴 ((𝑧𝐴 ↦ (1 − (𝑓𝑧)))‘𝑥) = 1))
3635rspcv 2874 . . . . . 6 ((𝑧𝐴 ↦ (1 − (𝑓𝑧))) ∈ ({0, 1} ↑𝑚 𝐴) → (∀𝑔 ∈ ({0, 1} ↑𝑚 𝐴)DECID𝑥𝐴 (𝑔𝑥) = 1 → DECID𝑥𝐴 ((𝑧𝐴 ↦ (1 − (𝑓𝑧)))‘𝑥) = 1))
3731, 36syl 14 . . . . 5 ((𝐴𝑉𝑓 ∈ ({0, 1} ↑𝑚 𝐴)) → (∀𝑔 ∈ ({0, 1} ↑𝑚 𝐴)DECID𝑥𝐴 (𝑔𝑥) = 1 → DECID𝑥𝐴 ((𝑧𝐴 ↦ (1 − (𝑓𝑧)))‘𝑥) = 1))
38 eqid 2206 . . . . . . . . . . 11 (𝑧𝐴 ↦ (1 − (𝑓𝑧))) = (𝑧𝐴 ↦ (1 − (𝑓𝑧)))
39 fveq2 5583 . . . . . . . . . . . 12 (𝑧 = 𝑥 → (𝑓𝑧) = (𝑓𝑥))
4039oveq2d 5967 . . . . . . . . . . 11 (𝑧 = 𝑥 → (1 − (𝑓𝑧)) = (1 − (𝑓𝑥)))
41 simpr 110 . . . . . . . . . . 11 (((𝐴𝑉𝑓 ∈ ({0, 1} ↑𝑚 𝐴)) ∧ 𝑥𝐴) → 𝑥𝐴)
4222ralrimiva 2580 . . . . . . . . . . . . 13 ((𝐴𝑉𝑓 ∈ ({0, 1} ↑𝑚 𝐴)) → ∀𝑧𝐴 (1 − (𝑓𝑧)) ∈ {0, 1})
4340eleq1d 2275 . . . . . . . . . . . . . 14 (𝑧 = 𝑥 → ((1 − (𝑓𝑧)) ∈ {0, 1} ↔ (1 − (𝑓𝑥)) ∈ {0, 1}))
4443cbvralv 2739 . . . . . . . . . . . . 13 (∀𝑧𝐴 (1 − (𝑓𝑧)) ∈ {0, 1} ↔ ∀𝑥𝐴 (1 − (𝑓𝑥)) ∈ {0, 1})
4542, 44sylib 122 . . . . . . . . . . . 12 ((𝐴𝑉𝑓 ∈ ({0, 1} ↑𝑚 𝐴)) → ∀𝑥𝐴 (1 − (𝑓𝑥)) ∈ {0, 1})
4645r19.21bi 2595 . . . . . . . . . . 11 (((𝐴𝑉𝑓 ∈ ({0, 1} ↑𝑚 𝐴)) ∧ 𝑥𝐴) → (1 − (𝑓𝑥)) ∈ {0, 1})
4738, 40, 41, 46fvmptd3 5680 . . . . . . . . . 10 (((𝐴𝑉𝑓 ∈ ({0, 1} ↑𝑚 𝐴)) ∧ 𝑥𝐴) → ((𝑧𝐴 ↦ (1 − (𝑓𝑧)))‘𝑥) = (1 − (𝑓𝑥)))
4847eqeq1d 2215 . . . . . . . . 9 (((𝐴𝑉𝑓 ∈ ({0, 1} ↑𝑚 𝐴)) ∧ 𝑥𝐴) → (((𝑧𝐴 ↦ (1 − (𝑓𝑧)))‘𝑥) = 1 ↔ (1 − (𝑓𝑥)) = 1))
49 1cnd 8095 . . . . . . . . . 10 (((𝐴𝑉𝑓 ∈ ({0, 1} ↑𝑚 𝐴)) ∧ 𝑥𝐴) → 1 ∈ ℂ)
50 0z 9390 . . . . . . . . . . . . 13 0 ∈ ℤ
51 1z 9405 . . . . . . . . . . . . 13 1 ∈ ℤ
52 prssi 3793 . . . . . . . . . . . . 13 ((0 ∈ ℤ ∧ 1 ∈ ℤ) → {0, 1} ⊆ ℤ)
5350, 51, 52mp2an 426 . . . . . . . . . . . 12 {0, 1} ⊆ ℤ
5416adantl 277 . . . . . . . . . . . . 13 ((𝐴𝑉𝑓 ∈ ({0, 1} ↑𝑚 𝐴)) → 𝑓:𝐴⟶{0, 1})
5554ffvelcdmda 5722 . . . . . . . . . . . 12 (((𝐴𝑉𝑓 ∈ ({0, 1} ↑𝑚 𝐴)) ∧ 𝑥𝐴) → (𝑓𝑥) ∈ {0, 1})
5653, 55sselid 3192 . . . . . . . . . . 11 (((𝐴𝑉𝑓 ∈ ({0, 1} ↑𝑚 𝐴)) ∧ 𝑥𝐴) → (𝑓𝑥) ∈ ℤ)
5756zcnd 9503 . . . . . . . . . 10 (((𝐴𝑉𝑓 ∈ ({0, 1} ↑𝑚 𝐴)) ∧ 𝑥𝐴) → (𝑓𝑥) ∈ ℂ)
58 subsub23 8284 . . . . . . . . . 10 ((1 ∈ ℂ ∧ (𝑓𝑥) ∈ ℂ ∧ 1 ∈ ℂ) → ((1 − (𝑓𝑥)) = 1 ↔ (1 − 1) = (𝑓𝑥)))
5949, 57, 49, 58syl3anc 1250 . . . . . . . . 9 (((𝐴𝑉𝑓 ∈ ({0, 1} ↑𝑚 𝐴)) ∧ 𝑥𝐴) → ((1 − (𝑓𝑥)) = 1 ↔ (1 − 1) = (𝑓𝑥)))
6048, 59bitrd 188 . . . . . . . 8 (((𝐴𝑉𝑓 ∈ ({0, 1} ↑𝑚 𝐴)) ∧ 𝑥𝐴) → (((𝑧𝐴 ↦ (1 − (𝑓𝑧)))‘𝑥) = 1 ↔ (1 − 1) = (𝑓𝑥)))
6111eqeq1i 2214 . . . . . . . . 9 ((1 − 1) = (𝑓𝑥) ↔ 0 = (𝑓𝑥))
62 eqcom 2208 . . . . . . . . 9 (0 = (𝑓𝑥) ↔ (𝑓𝑥) = 0)
6361, 62bitri 184 . . . . . . . 8 ((1 − 1) = (𝑓𝑥) ↔ (𝑓𝑥) = 0)
6460, 63bitrdi 196 . . . . . . 7 (((𝐴𝑉𝑓 ∈ ({0, 1} ↑𝑚 𝐴)) ∧ 𝑥𝐴) → (((𝑧𝐴 ↦ (1 − (𝑓𝑧)))‘𝑥) = 1 ↔ (𝑓𝑥) = 0))
6564ralbidva 2503 . . . . . 6 ((𝐴𝑉𝑓 ∈ ({0, 1} ↑𝑚 𝐴)) → (∀𝑥𝐴 ((𝑧𝐴 ↦ (1 − (𝑓𝑧)))‘𝑥) = 1 ↔ ∀𝑥𝐴 (𝑓𝑥) = 0))
6665dcbid 840 . . . . 5 ((𝐴𝑉𝑓 ∈ ({0, 1} ↑𝑚 𝐴)) → (DECID𝑥𝐴 ((𝑧𝐴 ↦ (1 − (𝑓𝑧)))‘𝑥) = 1 ↔ DECID𝑥𝐴 (𝑓𝑥) = 0))
6737, 66sylibd 149 . . . 4 ((𝐴𝑉𝑓 ∈ ({0, 1} ↑𝑚 𝐴)) → (∀𝑔 ∈ ({0, 1} ↑𝑚 𝐴)DECID𝑥𝐴 (𝑔𝑥) = 1 → DECID𝑥𝐴 (𝑓𝑥) = 0))
6867ralrimdva 2587 . . 3 (𝐴𝑉 → (∀𝑔 ∈ ({0, 1} ↑𝑚 𝐴)DECID𝑥𝐴 (𝑔𝑥) = 1 → ∀𝑓 ∈ ({0, 1} ↑𝑚 𝐴)DECID𝑥𝐴 (𝑓𝑥) = 0))
69 simpr 110 . . . . . . . . . . . 12 ((((𝐴𝑉𝑔 ∈ ({0, 1} ↑𝑚 𝐴)) ∧ 𝑧𝐴) ∧ (𝑔𝑧) = 0) → (𝑔𝑧) = 0)
7069oveq2d 5967 . . . . . . . . . . 11 ((((𝐴𝑉𝑔 ∈ ({0, 1} ↑𝑚 𝐴)) ∧ 𝑧𝐴) ∧ (𝑔𝑧) = 0) → (1 − (𝑔𝑧)) = (1 − 0))
7170, 4eqtrdi 2255 . . . . . . . . . 10 ((((𝐴𝑉𝑔 ∈ ({0, 1} ↑𝑚 𝐴)) ∧ 𝑧𝐴) ∧ (𝑔𝑧) = 0) → (1 − (𝑔𝑧)) = 1)
7271, 7eqeltrdi 2297 . . . . . . . . 9 ((((𝐴𝑉𝑔 ∈ ({0, 1} ↑𝑚 𝐴)) ∧ 𝑧𝐴) ∧ (𝑔𝑧) = 0) → (1 − (𝑔𝑧)) ∈ {0, 1})
73 simpr 110 . . . . . . . . . . . 12 ((((𝐴𝑉𝑔 ∈ ({0, 1} ↑𝑚 𝐴)) ∧ 𝑧𝐴) ∧ (𝑔𝑧) = 1) → (𝑔𝑧) = 1)
7473oveq2d 5967 . . . . . . . . . . 11 ((((𝐴𝑉𝑔 ∈ ({0, 1} ↑𝑚 𝐴)) ∧ 𝑧𝐴) ∧ (𝑔𝑧) = 1) → (1 − (𝑔𝑧)) = (1 − 1))
7574, 11eqtrdi 2255 . . . . . . . . . 10 ((((𝐴𝑉𝑔 ∈ ({0, 1} ↑𝑚 𝐴)) ∧ 𝑧𝐴) ∧ (𝑔𝑧) = 1) → (1 − (𝑔𝑧)) = 0)
7675, 14eqeltrdi 2297 . . . . . . . . 9 ((((𝐴𝑉𝑔 ∈ ({0, 1} ↑𝑚 𝐴)) ∧ 𝑧𝐴) ∧ (𝑔𝑧) = 1) → (1 − (𝑔𝑧)) ∈ {0, 1})
77 elmapi 6764 . . . . . . . . . . . 12 (𝑔 ∈ ({0, 1} ↑𝑚 𝐴) → 𝑔:𝐴⟶{0, 1})
7877adantl 277 . . . . . . . . . . 11 ((𝐴𝑉𝑔 ∈ ({0, 1} ↑𝑚 𝐴)) → 𝑔:𝐴⟶{0, 1})
7978ffvelcdmda 5722 . . . . . . . . . 10 (((𝐴𝑉𝑔 ∈ ({0, 1} ↑𝑚 𝐴)) ∧ 𝑧𝐴) → (𝑔𝑧) ∈ {0, 1})
80 elpri 3657 . . . . . . . . . 10 ((𝑔𝑧) ∈ {0, 1} → ((𝑔𝑧) = 0 ∨ (𝑔𝑧) = 1))
8179, 80syl 14 . . . . . . . . 9 (((𝐴𝑉𝑔 ∈ ({0, 1} ↑𝑚 𝐴)) ∧ 𝑧𝐴) → ((𝑔𝑧) = 0 ∨ (𝑔𝑧) = 1))
8272, 76, 81mpjaodan 800 . . . . . . . 8 (((𝐴𝑉𝑔 ∈ ({0, 1} ↑𝑚 𝐴)) ∧ 𝑧𝐴) → (1 − (𝑔𝑧)) ∈ {0, 1})
8382fmpttd 5742 . . . . . . 7 ((𝐴𝑉𝑔 ∈ ({0, 1} ↑𝑚 𝐴)) → (𝑧𝐴 ↦ (1 − (𝑔𝑧))):𝐴⟶{0, 1})
8427a1i 9 . . . . . . . 8 ((𝐴𝑉𝑔 ∈ ({0, 1} ↑𝑚 𝐴)) → {0, 1} ∈ V)
85 simpl 109 . . . . . . . 8 ((𝐴𝑉𝑔 ∈ ({0, 1} ↑𝑚 𝐴)) → 𝐴𝑉)
8684, 85elmapd 6756 . . . . . . 7 ((𝐴𝑉𝑔 ∈ ({0, 1} ↑𝑚 𝐴)) → ((𝑧𝐴 ↦ (1 − (𝑔𝑧))) ∈ ({0, 1} ↑𝑚 𝐴) ↔ (𝑧𝐴 ↦ (1 − (𝑔𝑧))):𝐴⟶{0, 1}))
8783, 86mpbird 167 . . . . . 6 ((𝐴𝑉𝑔 ∈ ({0, 1} ↑𝑚 𝐴)) → (𝑧𝐴 ↦ (1 − (𝑔𝑧))) ∈ ({0, 1} ↑𝑚 𝐴))
88 fveq1 5582 . . . . . . . . . 10 (𝑓 = (𝑧𝐴 ↦ (1 − (𝑔𝑧))) → (𝑓𝑥) = ((𝑧𝐴 ↦ (1 − (𝑔𝑧)))‘𝑥))
8988eqeq1d 2215 . . . . . . . . 9 (𝑓 = (𝑧𝐴 ↦ (1 − (𝑔𝑧))) → ((𝑓𝑥) = 0 ↔ ((𝑧𝐴 ↦ (1 − (𝑔𝑧)))‘𝑥) = 0))
9089ralbidv 2507 . . . . . . . 8 (𝑓 = (𝑧𝐴 ↦ (1 − (𝑔𝑧))) → (∀𝑥𝐴 (𝑓𝑥) = 0 ↔ ∀𝑥𝐴 ((𝑧𝐴 ↦ (1 − (𝑔𝑧)))‘𝑥) = 0))
9190dcbid 840 . . . . . . 7 (𝑓 = (𝑧𝐴 ↦ (1 − (𝑔𝑧))) → (DECID𝑥𝐴 (𝑓𝑥) = 0 ↔ DECID𝑥𝐴 ((𝑧𝐴 ↦ (1 − (𝑔𝑧)))‘𝑥) = 0))
9291rspcv 2874 . . . . . 6 ((𝑧𝐴 ↦ (1 − (𝑔𝑧))) ∈ ({0, 1} ↑𝑚 𝐴) → (∀𝑓 ∈ ({0, 1} ↑𝑚 𝐴)DECID𝑥𝐴 (𝑓𝑥) = 0 → DECID𝑥𝐴 ((𝑧𝐴 ↦ (1 − (𝑔𝑧)))‘𝑥) = 0))
9387, 92syl 14 . . . . 5 ((𝐴𝑉𝑔 ∈ ({0, 1} ↑𝑚 𝐴)) → (∀𝑓 ∈ ({0, 1} ↑𝑚 𝐴)DECID𝑥𝐴 (𝑓𝑥) = 0 → DECID𝑥𝐴 ((𝑧𝐴 ↦ (1 − (𝑔𝑧)))‘𝑥) = 0))
94 eqid 2206 . . . . . . . . . . 11 (𝑧𝐴 ↦ (1 − (𝑔𝑧))) = (𝑧𝐴 ↦ (1 − (𝑔𝑧)))
95 fveq2 5583 . . . . . . . . . . . 12 (𝑧 = 𝑥 → (𝑔𝑧) = (𝑔𝑥))
9695oveq2d 5967 . . . . . . . . . . 11 (𝑧 = 𝑥 → (1 − (𝑔𝑧)) = (1 − (𝑔𝑥)))
97 simpr 110 . . . . . . . . . . 11 (((𝐴𝑉𝑔 ∈ ({0, 1} ↑𝑚 𝐴)) ∧ 𝑥𝐴) → 𝑥𝐴)
9882ralrimiva 2580 . . . . . . . . . . . . 13 ((𝐴𝑉𝑔 ∈ ({0, 1} ↑𝑚 𝐴)) → ∀𝑧𝐴 (1 − (𝑔𝑧)) ∈ {0, 1})
9996eleq1d 2275 . . . . . . . . . . . . . 14 (𝑧 = 𝑥 → ((1 − (𝑔𝑧)) ∈ {0, 1} ↔ (1 − (𝑔𝑥)) ∈ {0, 1}))
10099cbvralv 2739 . . . . . . . . . . . . 13 (∀𝑧𝐴 (1 − (𝑔𝑧)) ∈ {0, 1} ↔ ∀𝑥𝐴 (1 − (𝑔𝑥)) ∈ {0, 1})
10198, 100sylib 122 . . . . . . . . . . . 12 ((𝐴𝑉𝑔 ∈ ({0, 1} ↑𝑚 𝐴)) → ∀𝑥𝐴 (1 − (𝑔𝑥)) ∈ {0, 1})
102101r19.21bi 2595 . . . . . . . . . . 11 (((𝐴𝑉𝑔 ∈ ({0, 1} ↑𝑚 𝐴)) ∧ 𝑥𝐴) → (1 − (𝑔𝑥)) ∈ {0, 1})
10394, 96, 97, 102fvmptd3 5680 . . . . . . . . . 10 (((𝐴𝑉𝑔 ∈ ({0, 1} ↑𝑚 𝐴)) ∧ 𝑥𝐴) → ((𝑧𝐴 ↦ (1 − (𝑔𝑧)))‘𝑥) = (1 − (𝑔𝑥)))
104103eqeq1d 2215 . . . . . . . . 9 (((𝐴𝑉𝑔 ∈ ({0, 1} ↑𝑚 𝐴)) ∧ 𝑥𝐴) → (((𝑧𝐴 ↦ (1 − (𝑔𝑧)))‘𝑥) = 0 ↔ (1 − (𝑔𝑥)) = 0))
105 1cnd 8095 . . . . . . . . . 10 (((𝐴𝑉𝑔 ∈ ({0, 1} ↑𝑚 𝐴)) ∧ 𝑥𝐴) → 1 ∈ ℂ)
10678ffvelcdmda 5722 . . . . . . . . . . . 12 (((𝐴𝑉𝑔 ∈ ({0, 1} ↑𝑚 𝐴)) ∧ 𝑥𝐴) → (𝑔𝑥) ∈ {0, 1})
10753, 106sselid 3192 . . . . . . . . . . 11 (((𝐴𝑉𝑔 ∈ ({0, 1} ↑𝑚 𝐴)) ∧ 𝑥𝐴) → (𝑔𝑥) ∈ ℤ)
108107zcnd 9503 . . . . . . . . . 10 (((𝐴𝑉𝑔 ∈ ({0, 1} ↑𝑚 𝐴)) ∧ 𝑥𝐴) → (𝑔𝑥) ∈ ℂ)
109 0cnd 8072 . . . . . . . . . 10 (((𝐴𝑉𝑔 ∈ ({0, 1} ↑𝑚 𝐴)) ∧ 𝑥𝐴) → 0 ∈ ℂ)
110 subsub23 8284 . . . . . . . . . 10 ((1 ∈ ℂ ∧ (𝑔𝑥) ∈ ℂ ∧ 0 ∈ ℂ) → ((1 − (𝑔𝑥)) = 0 ↔ (1 − 0) = (𝑔𝑥)))
111105, 108, 109, 110syl3anc 1250 . . . . . . . . 9 (((𝐴𝑉𝑔 ∈ ({0, 1} ↑𝑚 𝐴)) ∧ 𝑥𝐴) → ((1 − (𝑔𝑥)) = 0 ↔ (1 − 0) = (𝑔𝑥)))
112104, 111bitrd 188 . . . . . . . 8 (((𝐴𝑉𝑔 ∈ ({0, 1} ↑𝑚 𝐴)) ∧ 𝑥𝐴) → (((𝑧𝐴 ↦ (1 − (𝑔𝑧)))‘𝑥) = 0 ↔ (1 − 0) = (𝑔𝑥)))
1134eqeq1i 2214 . . . . . . . . 9 ((1 − 0) = (𝑔𝑥) ↔ 1 = (𝑔𝑥))
114 eqcom 2208 . . . . . . . . 9 (1 = (𝑔𝑥) ↔ (𝑔𝑥) = 1)
115113, 114bitri 184 . . . . . . . 8 ((1 − 0) = (𝑔𝑥) ↔ (𝑔𝑥) = 1)
116112, 115bitrdi 196 . . . . . . 7 (((𝐴𝑉𝑔 ∈ ({0, 1} ↑𝑚 𝐴)) ∧ 𝑥𝐴) → (((𝑧𝐴 ↦ (1 − (𝑔𝑧)))‘𝑥) = 0 ↔ (𝑔𝑥) = 1))
117116ralbidva 2503 . . . . . 6 ((𝐴𝑉𝑔 ∈ ({0, 1} ↑𝑚 𝐴)) → (∀𝑥𝐴 ((𝑧𝐴 ↦ (1 − (𝑔𝑧)))‘𝑥) = 0 ↔ ∀𝑥𝐴 (𝑔𝑥) = 1))
118117dcbid 840 . . . . 5 ((𝐴𝑉𝑔 ∈ ({0, 1} ↑𝑚 𝐴)) → (DECID𝑥𝐴 ((𝑧𝐴 ↦ (1 − (𝑔𝑧)))‘𝑥) = 0 ↔ DECID𝑥𝐴 (𝑔𝑥) = 1))
11993, 118sylibd 149 . . . 4 ((𝐴𝑉𝑔 ∈ ({0, 1} ↑𝑚 𝐴)) → (∀𝑓 ∈ ({0, 1} ↑𝑚 𝐴)DECID𝑥𝐴 (𝑓𝑥) = 0 → DECID𝑥𝐴 (𝑔𝑥) = 1))
120119ralrimdva 2587 . . 3 (𝐴𝑉 → (∀𝑓 ∈ ({0, 1} ↑𝑚 𝐴)DECID𝑥𝐴 (𝑓𝑥) = 0 → ∀𝑔 ∈ ({0, 1} ↑𝑚 𝐴)DECID𝑥𝐴 (𝑔𝑥) = 1))
12168, 120impbid 129 . 2 (𝐴𝑉 → (∀𝑔 ∈ ({0, 1} ↑𝑚 𝐴)DECID𝑥𝐴 (𝑔𝑥) = 1 ↔ ∀𝑓 ∈ ({0, 1} ↑𝑚 𝐴)DECID𝑥𝐴 (𝑓𝑥) = 0))
1221, 121bitrd 188 1 (𝐴𝑉 → (𝐴 ∈ WOmni ↔ ∀𝑓 ∈ ({0, 1} ↑𝑚 𝐴)DECID𝑥𝐴 (𝑓𝑥) = 0))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 710  DECID wdc 836   = wceq 1373  wcel 2177  wral 2485  Vcvv 2773  wss 3167  {cpr 3635  cmpt 4109  wf 5272  cfv 5276  (class class class)co 5951  𝑚 cmap 6742  WOmnicwomni 7272  cc 7930  0cc0 7932  1c1 7933  cmin 8250  0cn0 9302  cz 9379
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4163  ax-sep 4166  ax-nul 4174  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-setind 4589  ax-iinf 4640  ax-cnex 8023  ax-resscn 8024  ax-1cn 8025  ax-1re 8026  ax-icn 8027  ax-addcl 8028  ax-addrcl 8029  ax-mulcl 8030  ax-addcom 8032  ax-addass 8034  ax-distr 8036  ax-i2m1 8037  ax-0lt1 8038  ax-0id 8040  ax-rnegex 8041  ax-cnre 8043  ax-pre-ltirr 8044  ax-pre-ltwlin 8045  ax-pre-lttrn 8046  ax-pre-ltadd 8048
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3000  df-csb 3095  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-nul 3462  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-int 3888  df-iun 3931  df-br 4048  df-opab 4110  df-mpt 4111  df-tr 4147  df-id 4344  df-iord 4417  df-on 4419  df-ilim 4420  df-suc 4422  df-iom 4643  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-f 5280  df-f1 5281  df-fo 5282  df-f1o 5283  df-fv 5284  df-riota 5906  df-ov 5954  df-oprab 5955  df-mpo 5956  df-recs 6398  df-frec 6484  df-1o 6509  df-2o 6510  df-map 6744  df-womni 7273  df-pnf 8116  df-mnf 8117  df-xr 8118  df-ltxr 8119  df-le 8120  df-sub 8252  df-neg 8253  df-inn 9044  df-n0 9303  df-z 9380  df-uz 9656
This theorem is referenced by:  nconstwlpo  16079
  Copyright terms: Public domain W3C validator