ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  imadisj GIF version

Theorem imadisj 4973
Description: A class whose image under another is empty is disjoint with the other's domain. (Contributed by FL, 24-Jan-2007.)
Assertion
Ref Expression
imadisj ((𝐴𝐵) = ∅ ↔ (dom 𝐴𝐵) = ∅)

Proof of Theorem imadisj
StepHypRef Expression
1 df-ima 4624 . . 3 (𝐴𝐵) = ran (𝐴𝐵)
21eqeq1i 2178 . 2 ((𝐴𝐵) = ∅ ↔ ran (𝐴𝐵) = ∅)
3 dm0rn0 4828 . 2 (dom (𝐴𝐵) = ∅ ↔ ran (𝐴𝐵) = ∅)
4 dmres 4912 . . . 4 dom (𝐴𝐵) = (𝐵 ∩ dom 𝐴)
5 incom 3319 . . . 4 (𝐵 ∩ dom 𝐴) = (dom 𝐴𝐵)
64, 5eqtri 2191 . . 3 dom (𝐴𝐵) = (dom 𝐴𝐵)
76eqeq1i 2178 . 2 (dom (𝐴𝐵) = ∅ ↔ (dom 𝐴𝐵) = ∅)
82, 3, 73bitr2i 207 1 ((𝐴𝐵) = ∅ ↔ (dom 𝐴𝐵) = ∅)
Colors of variables: wff set class
Syntax hints:  wb 104   = wceq 1348  cin 3120  c0 3414  dom cdm 4611  ran crn 4612  cres 4613  cima 4614
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-br 3990  df-opab 4051  df-xp 4617  df-cnv 4619  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624
This theorem is referenced by:  fnimadisj  5318  fnimaeq0  5319  fimacnvdisj  5382
  Copyright terms: Public domain W3C validator