![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > elq | GIF version |
Description: Membership in the set of rationals. (Contributed by NM, 8-Jan-2002.) (Revised by Mario Carneiro, 28-Jan-2014.) |
Ref | Expression |
---|---|
elq | ⊢ (𝐴 ∈ ℚ ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-q 9314 | . . . 4 ⊢ ℚ = ( / “ (ℤ × ℕ)) | |
2 | 1 | eleq2i 2181 | . . 3 ⊢ (𝐴 ∈ ℚ ↔ 𝐴 ∈ ( / “ (ℤ × ℕ))) |
3 | resima 4810 | . . . 4 ⊢ (( / ↾ (ℤ × ℕ)) “ (ℤ × ℕ)) = ( / “ (ℤ × ℕ)) | |
4 | 3 | eleq2i 2181 | . . 3 ⊢ (𝐴 ∈ (( / ↾ (ℤ × ℕ)) “ (ℤ × ℕ)) ↔ 𝐴 ∈ ( / “ (ℤ × ℕ))) |
5 | divfnzn 9315 | . . . 4 ⊢ ( / ↾ (ℤ × ℕ)) Fn (ℤ × ℕ) | |
6 | ssid 3083 | . . . 4 ⊢ (ℤ × ℕ) ⊆ (ℤ × ℕ) | |
7 | ovelimab 5875 | . . . 4 ⊢ ((( / ↾ (ℤ × ℕ)) Fn (ℤ × ℕ) ∧ (ℤ × ℕ) ⊆ (ℤ × ℕ)) → (𝐴 ∈ (( / ↾ (ℤ × ℕ)) “ (ℤ × ℕ)) ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝐴 = (𝑥( / ↾ (ℤ × ℕ))𝑦))) | |
8 | 5, 6, 7 | mp2an 420 | . . 3 ⊢ (𝐴 ∈ (( / ↾ (ℤ × ℕ)) “ (ℤ × ℕ)) ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝐴 = (𝑥( / ↾ (ℤ × ℕ))𝑦)) |
9 | 2, 4, 8 | 3bitr2i 207 | . 2 ⊢ (𝐴 ∈ ℚ ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝐴 = (𝑥( / ↾ (ℤ × ℕ))𝑦)) |
10 | ovres 5864 | . . . 4 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) → (𝑥( / ↾ (ℤ × ℕ))𝑦) = (𝑥 / 𝑦)) | |
11 | 10 | eqeq2d 2126 | . . 3 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) → (𝐴 = (𝑥( / ↾ (ℤ × ℕ))𝑦) ↔ 𝐴 = (𝑥 / 𝑦))) |
12 | 11 | 2rexbiia 2425 | . 2 ⊢ (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝐴 = (𝑥( / ↾ (ℤ × ℕ))𝑦) ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦)) |
13 | 9, 12 | bitri 183 | 1 ⊢ (𝐴 ∈ ℚ ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦)) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 ↔ wb 104 = wceq 1314 ∈ wcel 1463 ∃wrex 2391 ⊆ wss 3037 × cxp 4497 ↾ cres 4501 “ cima 4502 Fn wfn 5076 (class class class)co 5728 / cdiv 8345 ℕcn 8630 ℤcz 8958 ℚcq 9313 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 586 ax-in2 587 ax-io 681 ax-5 1406 ax-7 1407 ax-gen 1408 ax-ie1 1452 ax-ie2 1453 ax-8 1465 ax-10 1466 ax-11 1467 ax-i12 1468 ax-bndl 1469 ax-4 1470 ax-13 1474 ax-14 1475 ax-17 1489 ax-i9 1493 ax-ial 1497 ax-i5r 1498 ax-ext 2097 ax-sep 4006 ax-pow 4058 ax-pr 4091 ax-un 4315 ax-setind 4412 ax-cnex 7636 ax-resscn 7637 ax-1cn 7638 ax-1re 7639 ax-icn 7640 ax-addcl 7641 ax-addrcl 7642 ax-mulcl 7643 ax-mulrcl 7644 ax-addcom 7645 ax-mulcom 7646 ax-addass 7647 ax-mulass 7648 ax-distr 7649 ax-i2m1 7650 ax-0lt1 7651 ax-1rid 7652 ax-0id 7653 ax-rnegex 7654 ax-precex 7655 ax-cnre 7656 ax-pre-ltirr 7657 ax-pre-ltwlin 7658 ax-pre-lttrn 7659 ax-pre-apti 7660 ax-pre-ltadd 7661 ax-pre-mulgt0 7662 ax-pre-mulext 7663 |
This theorem depends on definitions: df-bi 116 df-3or 946 df-3an 947 df-tru 1317 df-fal 1320 df-nf 1420 df-sb 1719 df-eu 1978 df-mo 1979 df-clab 2102 df-cleq 2108 df-clel 2111 df-nfc 2244 df-ne 2283 df-nel 2378 df-ral 2395 df-rex 2396 df-reu 2397 df-rmo 2398 df-rab 2399 df-v 2659 df-sbc 2879 df-csb 2972 df-dif 3039 df-un 3041 df-in 3043 df-ss 3050 df-pw 3478 df-sn 3499 df-pr 3500 df-op 3502 df-uni 3703 df-int 3738 df-iun 3781 df-br 3896 df-opab 3950 df-mpt 3951 df-id 4175 df-po 4178 df-iso 4179 df-xp 4505 df-rel 4506 df-cnv 4507 df-co 4508 df-dm 4509 df-rn 4510 df-res 4511 df-ima 4512 df-iota 5046 df-fun 5083 df-fn 5084 df-f 5085 df-fv 5089 df-riota 5684 df-ov 5731 df-oprab 5732 df-mpo 5733 df-1st 5992 df-2nd 5993 df-pnf 7726 df-mnf 7727 df-xr 7728 df-ltxr 7729 df-le 7730 df-sub 7858 df-neg 7859 df-reap 8255 df-ap 8262 df-div 8346 df-inn 8631 df-z 8959 df-q 9314 |
This theorem is referenced by: qmulz 9317 znq 9318 qre 9319 zq 9320 qaddcl 9329 qnegcl 9330 qmulcl 9331 qapne 9333 qreccl 9336 qtri3or 9913 eirrap 11332 qredeu 11624 sqrt2irr 11686 sqrt2irrap 11703 |
Copyright terms: Public domain | W3C validator |