Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elq | GIF version |
Description: Membership in the set of rationals. (Contributed by NM, 8-Jan-2002.) (Revised by Mario Carneiro, 28-Jan-2014.) |
Ref | Expression |
---|---|
elq | ⊢ (𝐴 ∈ ℚ ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-q 9558 | . . . 4 ⊢ ℚ = ( / “ (ℤ × ℕ)) | |
2 | 1 | eleq2i 2233 | . . 3 ⊢ (𝐴 ∈ ℚ ↔ 𝐴 ∈ ( / “ (ℤ × ℕ))) |
3 | resima 4917 | . . . 4 ⊢ (( / ↾ (ℤ × ℕ)) “ (ℤ × ℕ)) = ( / “ (ℤ × ℕ)) | |
4 | 3 | eleq2i 2233 | . . 3 ⊢ (𝐴 ∈ (( / ↾ (ℤ × ℕ)) “ (ℤ × ℕ)) ↔ 𝐴 ∈ ( / “ (ℤ × ℕ))) |
5 | divfnzn 9559 | . . . 4 ⊢ ( / ↾ (ℤ × ℕ)) Fn (ℤ × ℕ) | |
6 | ssid 3162 | . . . 4 ⊢ (ℤ × ℕ) ⊆ (ℤ × ℕ) | |
7 | ovelimab 5992 | . . . 4 ⊢ ((( / ↾ (ℤ × ℕ)) Fn (ℤ × ℕ) ∧ (ℤ × ℕ) ⊆ (ℤ × ℕ)) → (𝐴 ∈ (( / ↾ (ℤ × ℕ)) “ (ℤ × ℕ)) ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝐴 = (𝑥( / ↾ (ℤ × ℕ))𝑦))) | |
8 | 5, 6, 7 | mp2an 423 | . . 3 ⊢ (𝐴 ∈ (( / ↾ (ℤ × ℕ)) “ (ℤ × ℕ)) ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝐴 = (𝑥( / ↾ (ℤ × ℕ))𝑦)) |
9 | 2, 4, 8 | 3bitr2i 207 | . 2 ⊢ (𝐴 ∈ ℚ ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝐴 = (𝑥( / ↾ (ℤ × ℕ))𝑦)) |
10 | ovres 5981 | . . . 4 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) → (𝑥( / ↾ (ℤ × ℕ))𝑦) = (𝑥 / 𝑦)) | |
11 | 10 | eqeq2d 2177 | . . 3 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) → (𝐴 = (𝑥( / ↾ (ℤ × ℕ))𝑦) ↔ 𝐴 = (𝑥 / 𝑦))) |
12 | 11 | 2rexbiia 2482 | . 2 ⊢ (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝐴 = (𝑥( / ↾ (ℤ × ℕ))𝑦) ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦)) |
13 | 9, 12 | bitri 183 | 1 ⊢ (𝐴 ∈ ℚ ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦)) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 ↔ wb 104 = wceq 1343 ∈ wcel 2136 ∃wrex 2445 ⊆ wss 3116 × cxp 4602 ↾ cres 4606 “ cima 4607 Fn wfn 5183 (class class class)co 5842 / cdiv 8568 ℕcn 8857 ℤcz 9191 ℚcq 9557 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-mulrcl 7852 ax-addcom 7853 ax-mulcom 7854 ax-addass 7855 ax-mulass 7856 ax-distr 7857 ax-i2m1 7858 ax-0lt1 7859 ax-1rid 7860 ax-0id 7861 ax-rnegex 7862 ax-precex 7863 ax-cnre 7864 ax-pre-ltirr 7865 ax-pre-ltwlin 7866 ax-pre-lttrn 7867 ax-pre-apti 7868 ax-pre-ltadd 7869 ax-pre-mulgt0 7870 ax-pre-mulext 7871 |
This theorem depends on definitions: df-bi 116 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-reu 2451 df-rmo 2452 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-po 4274 df-iso 4275 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-fv 5196 df-riota 5798 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 df-sub 8071 df-neg 8072 df-reap 8473 df-ap 8480 df-div 8569 df-inn 8858 df-z 9192 df-q 9558 |
This theorem is referenced by: qmulz 9561 znq 9562 qre 9563 zq 9564 qaddcl 9573 qnegcl 9574 qmulcl 9575 qapne 9577 qreccl 9580 elpq 9586 qtri3or 10178 eirrap 11718 qredeu 12029 sqrt2irr 12094 sqrt2irrap 12112 pceu 12227 pcqmul 12235 pcqcl 12238 pcneg 12256 pcz 12263 pcadd 12271 logbgcd1irrap 13528 |
Copyright terms: Public domain | W3C validator |