Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 6t3e18 | GIF version |
Description: 6 times 3 equals 18. (Contributed by Mario Carneiro, 19-Apr-2015.) |
Ref | Expression |
---|---|
6t3e18 | ⊢ (6 · 3) = ;18 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 6nn0 9135 | . 2 ⊢ 6 ∈ ℕ0 | |
2 | 2nn0 9131 | . 2 ⊢ 2 ∈ ℕ0 | |
3 | df-3 8917 | . 2 ⊢ 3 = (2 + 1) | |
4 | 6t2e12 9425 | . 2 ⊢ (6 · 2) = ;12 | |
5 | 1nn0 9130 | . . 3 ⊢ 1 ∈ ℕ0 | |
6 | eqid 2165 | . . 3 ⊢ ;12 = ;12 | |
7 | 6cn 8939 | . . . 4 ⊢ 6 ∈ ℂ | |
8 | 2cn 8928 | . . . 4 ⊢ 2 ∈ ℂ | |
9 | 6p2e8 9006 | . . . 4 ⊢ (6 + 2) = 8 | |
10 | 7, 8, 9 | addcomli 8043 | . . 3 ⊢ (2 + 6) = 8 |
11 | 5, 2, 1, 6, 10 | decaddi 9381 | . 2 ⊢ (;12 + 6) = ;18 |
12 | 1, 2, 3, 4, 11 | 4t3lem 9418 | 1 ⊢ (6 · 3) = ;18 |
Colors of variables: wff set class |
Syntax hints: = wceq 1343 (class class class)co 5842 1c1 7754 · cmul 7758 2c2 8908 3c3 8909 6c6 8912 8c8 8914 ;cdc 9322 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-setind 4514 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-addcom 7853 ax-mulcom 7854 ax-addass 7855 ax-mulass 7856 ax-distr 7857 ax-i2m1 7858 ax-1rid 7860 ax-0id 7861 ax-rnegex 7862 ax-cnre 7864 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-br 3983 df-opab 4044 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-iota 5153 df-fun 5190 df-fv 5196 df-riota 5798 df-ov 5845 df-oprab 5846 df-mpo 5847 df-sub 8071 df-inn 8858 df-2 8916 df-3 8917 df-4 8918 df-5 8919 df-6 8920 df-7 8921 df-8 8922 df-9 8923 df-n0 9115 df-dec 9323 |
This theorem is referenced by: 6t4e24 9427 |
Copyright terms: Public domain | W3C validator |