| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 6t3e18 | GIF version | ||
| Description: 6 times 3 equals 18. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| Ref | Expression |
|---|---|
| 6t3e18 | ⊢ (6 · 3) = ;18 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 6nn0 9358 | . 2 ⊢ 6 ∈ ℕ0 | |
| 2 | 2nn0 9354 | . 2 ⊢ 2 ∈ ℕ0 | |
| 3 | df-3 9138 | . 2 ⊢ 3 = (2 + 1) | |
| 4 | 6t2e12 9649 | . 2 ⊢ (6 · 2) = ;12 | |
| 5 | 1nn0 9353 | . . 3 ⊢ 1 ∈ ℕ0 | |
| 6 | eqid 2209 | . . 3 ⊢ ;12 = ;12 | |
| 7 | 6cn 9160 | . . . 4 ⊢ 6 ∈ ℂ | |
| 8 | 2cn 9149 | . . . 4 ⊢ 2 ∈ ℂ | |
| 9 | 6p2e8 9228 | . . . 4 ⊢ (6 + 2) = 8 | |
| 10 | 7, 8, 9 | addcomli 8259 | . . 3 ⊢ (2 + 6) = 8 |
| 11 | 5, 2, 1, 6, 10 | decaddi 9605 | . 2 ⊢ (;12 + 6) = ;18 |
| 12 | 1, 2, 3, 4, 11 | 4t3lem 9642 | 1 ⊢ (6 · 3) = ;18 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1375 (class class class)co 5974 1c1 7968 · cmul 7972 2c2 9129 3c3 9130 6c6 9133 8c8 9135 ;cdc 9546 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-14 2183 ax-ext 2191 ax-sep 4181 ax-pow 4237 ax-pr 4272 ax-setind 4606 ax-cnex 8058 ax-resscn 8059 ax-1cn 8060 ax-1re 8061 ax-icn 8062 ax-addcl 8063 ax-addrcl 8064 ax-mulcl 8065 ax-addcom 8067 ax-mulcom 8068 ax-addass 8069 ax-mulass 8070 ax-distr 8071 ax-i2m1 8072 ax-1rid 8074 ax-0id 8075 ax-rnegex 8076 ax-cnre 8078 |
| This theorem depends on definitions: df-bi 117 df-3an 985 df-tru 1378 df-fal 1381 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ne 2381 df-ral 2493 df-rex 2494 df-reu 2495 df-rab 2497 df-v 2781 df-sbc 3009 df-dif 3179 df-un 3181 df-in 3183 df-ss 3190 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-int 3903 df-br 4063 df-opab 4125 df-id 4361 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-iota 5254 df-fun 5296 df-fv 5302 df-riota 5927 df-ov 5977 df-oprab 5978 df-mpo 5979 df-sub 8287 df-inn 9079 df-2 9137 df-3 9138 df-4 9139 df-5 9140 df-6 9141 df-7 9142 df-8 9143 df-9 9144 df-n0 9338 df-dec 9547 |
| This theorem is referenced by: 6t4e24 9651 |
| Copyright terms: Public domain | W3C validator |