| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 6t3e18 | GIF version | ||
| Description: 6 times 3 equals 18. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| Ref | Expression |
|---|---|
| 6t3e18 | ⊢ (6 · 3) = ;18 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 6nn0 9398 | . 2 ⊢ 6 ∈ ℕ0 | |
| 2 | 2nn0 9394 | . 2 ⊢ 2 ∈ ℕ0 | |
| 3 | df-3 9178 | . 2 ⊢ 3 = (2 + 1) | |
| 4 | 6t2e12 9689 | . 2 ⊢ (6 · 2) = ;12 | |
| 5 | 1nn0 9393 | . . 3 ⊢ 1 ∈ ℕ0 | |
| 6 | eqid 2229 | . . 3 ⊢ ;12 = ;12 | |
| 7 | 6cn 9200 | . . . 4 ⊢ 6 ∈ ℂ | |
| 8 | 2cn 9189 | . . . 4 ⊢ 2 ∈ ℂ | |
| 9 | 6p2e8 9268 | . . . 4 ⊢ (6 + 2) = 8 | |
| 10 | 7, 8, 9 | addcomli 8299 | . . 3 ⊢ (2 + 6) = 8 |
| 11 | 5, 2, 1, 6, 10 | decaddi 9645 | . 2 ⊢ (;12 + 6) = ;18 |
| 12 | 1, 2, 3, 4, 11 | 4t3lem 9682 | 1 ⊢ (6 · 3) = ;18 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1395 (class class class)co 6007 1c1 8008 · cmul 8012 2c2 9169 3c3 9170 6c6 9173 8c8 9175 ;cdc 9586 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-setind 4629 ax-cnex 8098 ax-resscn 8099 ax-1cn 8100 ax-1re 8101 ax-icn 8102 ax-addcl 8103 ax-addrcl 8104 ax-mulcl 8105 ax-addcom 8107 ax-mulcom 8108 ax-addass 8109 ax-mulass 8110 ax-distr 8111 ax-i2m1 8112 ax-1rid 8114 ax-0id 8115 ax-rnegex 8116 ax-cnre 8118 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-br 4084 df-opab 4146 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-iota 5278 df-fun 5320 df-fv 5326 df-riota 5960 df-ov 6010 df-oprab 6011 df-mpo 6012 df-sub 8327 df-inn 9119 df-2 9177 df-3 9178 df-4 9179 df-5 9180 df-6 9181 df-7 9182 df-8 9183 df-9 9184 df-n0 9378 df-dec 9587 |
| This theorem is referenced by: 6t4e24 9691 |
| Copyright terms: Public domain | W3C validator |