Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > euen1b | GIF version |
Description: Two ways to express "𝐴 has a unique element". (Contributed by Mario Carneiro, 9-Apr-2015.) |
Ref | Expression |
---|---|
euen1b | ⊢ (𝐴 ≈ 1o ↔ ∃!𝑥 𝑥 ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | euen1 6747 | . 2 ⊢ (∃!𝑥 𝑥 ∈ 𝐴 ↔ {𝑥 ∣ 𝑥 ∈ 𝐴} ≈ 1o) | |
2 | abid2 2278 | . . 3 ⊢ {𝑥 ∣ 𝑥 ∈ 𝐴} = 𝐴 | |
3 | 2 | breq1i 3972 | . 2 ⊢ ({𝑥 ∣ 𝑥 ∈ 𝐴} ≈ 1o ↔ 𝐴 ≈ 1o) |
4 | 1, 3 | bitr2i 184 | 1 ⊢ (𝐴 ≈ 1o ↔ ∃!𝑥 𝑥 ∈ 𝐴) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 104 ∃!weu 2006 ∈ wcel 2128 {cab 2143 class class class wbr 3965 1oc1o 6356 ≈ cen 6683 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-nul 4090 ax-pow 4135 ax-pr 4169 ax-un 4393 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ral 2440 df-rex 2441 df-reu 2442 df-rab 2444 df-v 2714 df-sbc 2938 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-nul 3395 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-br 3966 df-opab 4026 df-id 4253 df-suc 4331 df-xp 4592 df-rel 4593 df-cnv 4594 df-co 4595 df-dm 4596 df-rn 4597 df-res 4598 df-ima 4599 df-iota 5135 df-fun 5172 df-fn 5173 df-f 5174 df-f1 5175 df-fo 5176 df-f1o 5177 df-fv 5178 df-1o 6363 df-en 6686 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |