ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ablsub32 GIF version

Theorem ablsub32 13056
Description: Swap the second and third terms in a double group subtraction. (Contributed by NM, 7-Apr-2015.)
Hypotheses
Ref Expression
ablnncan.b 𝐵 = (Base‘𝐺)
ablnncan.m = (-g𝐺)
ablnncan.g (𝜑𝐺 ∈ Abel)
ablnncan.x (𝜑𝑋𝐵)
ablnncan.y (𝜑𝑌𝐵)
ablsub32.z (𝜑𝑍𝐵)
Assertion
Ref Expression
ablsub32 (𝜑 → ((𝑋 𝑌) 𝑍) = ((𝑋 𝑍) 𝑌))

Proof of Theorem ablsub32
StepHypRef Expression
1 ablnncan.g . . . 4 (𝜑𝐺 ∈ Abel)
2 ablnncan.y . . . 4 (𝜑𝑌𝐵)
3 ablsub32.z . . . 4 (𝜑𝑍𝐵)
4 ablnncan.b . . . . 5 𝐵 = (Base‘𝐺)
5 eqid 2177 . . . . 5 (+g𝐺) = (+g𝐺)
64, 5ablcom 13037 . . . 4 ((𝐺 ∈ Abel ∧ 𝑌𝐵𝑍𝐵) → (𝑌(+g𝐺)𝑍) = (𝑍(+g𝐺)𝑌))
71, 2, 3, 6syl3anc 1238 . . 3 (𝜑 → (𝑌(+g𝐺)𝑍) = (𝑍(+g𝐺)𝑌))
87oveq2d 5888 . 2 (𝜑 → (𝑋 (𝑌(+g𝐺)𝑍)) = (𝑋 (𝑍(+g𝐺)𝑌)))
9 ablnncan.m . . 3 = (-g𝐺)
10 ablnncan.x . . 3 (𝜑𝑋𝐵)
114, 5, 9, 1, 10, 2, 3ablsubsub4 13053 . 2 (𝜑 → ((𝑋 𝑌) 𝑍) = (𝑋 (𝑌(+g𝐺)𝑍)))
124, 5, 9, 1, 10, 3, 2ablsubsub4 13053 . 2 (𝜑 → ((𝑋 𝑍) 𝑌) = (𝑋 (𝑍(+g𝐺)𝑌)))
138, 11, 123eqtr4d 2220 1 (𝜑 → ((𝑋 𝑌) 𝑍) = ((𝑋 𝑍) 𝑌))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1353  wcel 2148  cfv 5215  (class class class)co 5872  Basecbs 12454  +gcplusg 12528  -gcsg 12811  Abelcabl 13020
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4117  ax-sep 4120  ax-pow 4173  ax-pr 4208  ax-un 4432  ax-setind 4535  ax-cnex 7899  ax-resscn 7900  ax-1re 7902  ax-addrcl 7905
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-int 3845  df-iun 3888  df-br 4003  df-opab 4064  df-mpt 4065  df-id 4292  df-xp 4631  df-rel 4632  df-cnv 4633  df-co 4634  df-dm 4635  df-rn 4636  df-res 4637  df-ima 4638  df-iota 5177  df-fun 5217  df-fn 5218  df-f 5219  df-f1 5220  df-fo 5221  df-f1o 5222  df-fv 5223  df-riota 5828  df-ov 5875  df-oprab 5876  df-mpo 5877  df-1st 6138  df-2nd 6139  df-inn 8916  df-2 8974  df-ndx 12457  df-slot 12458  df-base 12460  df-plusg 12541  df-0g 12695  df-mgm 12707  df-sgrp 12740  df-mnd 12750  df-grp 12812  df-minusg 12813  df-sbg 12814  df-cmn 13021  df-abl 13022
This theorem is referenced by:  ablnnncan1  13058
  Copyright terms: Public domain W3C validator