| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > gcddvds | GIF version | ||
| Description: The gcd of two integers divides each of them. (Contributed by Paul Chapman, 21-Mar-2011.) |
| Ref | Expression |
|---|---|
| gcddvds | ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 gcd 𝑁) ∥ 𝑀 ∧ (𝑀 gcd 𝑁) ∥ 𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0z 9465 | . . . . . 6 ⊢ 0 ∈ ℤ | |
| 2 | dvds0 12325 | . . . . . 6 ⊢ (0 ∈ ℤ → 0 ∥ 0) | |
| 3 | 1, 2 | ax-mp 5 | . . . . 5 ⊢ 0 ∥ 0 |
| 4 | breq2 4087 | . . . . . . 7 ⊢ (𝑀 = 0 → (0 ∥ 𝑀 ↔ 0 ∥ 0)) | |
| 5 | breq2 4087 | . . . . . . 7 ⊢ (𝑁 = 0 → (0 ∥ 𝑁 ↔ 0 ∥ 0)) | |
| 6 | 4, 5 | bi2anan9 608 | . . . . . 6 ⊢ ((𝑀 = 0 ∧ 𝑁 = 0) → ((0 ∥ 𝑀 ∧ 0 ∥ 𝑁) ↔ (0 ∥ 0 ∧ 0 ∥ 0))) |
| 7 | anidm 396 | . . . . . 6 ⊢ ((0 ∥ 0 ∧ 0 ∥ 0) ↔ 0 ∥ 0) | |
| 8 | 6, 7 | bitrdi 196 | . . . . 5 ⊢ ((𝑀 = 0 ∧ 𝑁 = 0) → ((0 ∥ 𝑀 ∧ 0 ∥ 𝑁) ↔ 0 ∥ 0)) |
| 9 | 3, 8 | mpbiri 168 | . . . 4 ⊢ ((𝑀 = 0 ∧ 𝑁 = 0) → (0 ∥ 𝑀 ∧ 0 ∥ 𝑁)) |
| 10 | oveq12 6016 | . . . . . . 7 ⊢ ((𝑀 = 0 ∧ 𝑁 = 0) → (𝑀 gcd 𝑁) = (0 gcd 0)) | |
| 11 | gcd0val 12489 | . . . . . . 7 ⊢ (0 gcd 0) = 0 | |
| 12 | 10, 11 | eqtrdi 2278 | . . . . . 6 ⊢ ((𝑀 = 0 ∧ 𝑁 = 0) → (𝑀 gcd 𝑁) = 0) |
| 13 | 12 | breq1d 4093 | . . . . 5 ⊢ ((𝑀 = 0 ∧ 𝑁 = 0) → ((𝑀 gcd 𝑁) ∥ 𝑀 ↔ 0 ∥ 𝑀)) |
| 14 | 12 | breq1d 4093 | . . . . 5 ⊢ ((𝑀 = 0 ∧ 𝑁 = 0) → ((𝑀 gcd 𝑁) ∥ 𝑁 ↔ 0 ∥ 𝑁)) |
| 15 | 13, 14 | anbi12d 473 | . . . 4 ⊢ ((𝑀 = 0 ∧ 𝑁 = 0) → (((𝑀 gcd 𝑁) ∥ 𝑀 ∧ (𝑀 gcd 𝑁) ∥ 𝑁) ↔ (0 ∥ 𝑀 ∧ 0 ∥ 𝑁))) |
| 16 | 9, 15 | mpbird 167 | . . 3 ⊢ ((𝑀 = 0 ∧ 𝑁 = 0) → ((𝑀 gcd 𝑁) ∥ 𝑀 ∧ (𝑀 gcd 𝑁) ∥ 𝑁)) |
| 17 | 16 | adantl 277 | . 2 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 = 0 ∧ 𝑁 = 0)) → ((𝑀 gcd 𝑁) ∥ 𝑀 ∧ (𝑀 gcd 𝑁) ∥ 𝑁)) |
| 18 | gcdn0val 12490 | . . . 4 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → (𝑀 gcd 𝑁) = sup({𝑛 ∈ ℤ ∣ (𝑛 ∥ 𝑀 ∧ 𝑛 ∥ 𝑁)}, ℝ, < )) | |
| 19 | zssre 9461 | . . . . . 6 ⊢ ℤ ⊆ ℝ | |
| 20 | gcdsupex 12486 | . . . . . 6 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ (𝑛 ∥ 𝑀 ∧ 𝑛 ∥ 𝑁)} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ (𝑛 ∥ 𝑀 ∧ 𝑛 ∥ 𝑁)}𝑦 < 𝑧))) | |
| 21 | ssrexv 3289 | . . . . . 6 ⊢ (ℤ ⊆ ℝ → (∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ (𝑛 ∥ 𝑀 ∧ 𝑛 ∥ 𝑁)} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ (𝑛 ∥ 𝑀 ∧ 𝑛 ∥ 𝑁)}𝑦 < 𝑧)) → ∃𝑥 ∈ ℝ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ (𝑛 ∥ 𝑀 ∧ 𝑛 ∥ 𝑁)} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ (𝑛 ∥ 𝑀 ∧ 𝑛 ∥ 𝑁)}𝑦 < 𝑧)))) | |
| 22 | 19, 20, 21 | mpsyl 65 | . . . . 5 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → ∃𝑥 ∈ ℝ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ (𝑛 ∥ 𝑀 ∧ 𝑛 ∥ 𝑁)} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ (𝑛 ∥ 𝑀 ∧ 𝑛 ∥ 𝑁)}𝑦 < 𝑧))) |
| 23 | ssrab2 3309 | . . . . . 6 ⊢ {𝑛 ∈ ℤ ∣ (𝑛 ∥ 𝑀 ∧ 𝑛 ∥ 𝑁)} ⊆ ℤ | |
| 24 | 23 | a1i 9 | . . . . 5 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → {𝑛 ∈ ℤ ∣ (𝑛 ∥ 𝑀 ∧ 𝑛 ∥ 𝑁)} ⊆ ℤ) |
| 25 | 22, 24 | suprzclex 9553 | . . . 4 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → sup({𝑛 ∈ ℤ ∣ (𝑛 ∥ 𝑀 ∧ 𝑛 ∥ 𝑁)}, ℝ, < ) ∈ {𝑛 ∈ ℤ ∣ (𝑛 ∥ 𝑀 ∧ 𝑛 ∥ 𝑁)}) |
| 26 | 18, 25 | eqeltrd 2306 | . . 3 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → (𝑀 gcd 𝑁) ∈ {𝑛 ∈ ℤ ∣ (𝑛 ∥ 𝑀 ∧ 𝑛 ∥ 𝑁)}) |
| 27 | gcdn0cl 12491 | . . . . 5 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → (𝑀 gcd 𝑁) ∈ ℕ) | |
| 28 | 27 | nnzd 9576 | . . . 4 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → (𝑀 gcd 𝑁) ∈ ℤ) |
| 29 | breq1 4086 | . . . . . 6 ⊢ (𝑛 = (𝑀 gcd 𝑁) → (𝑛 ∥ 𝑀 ↔ (𝑀 gcd 𝑁) ∥ 𝑀)) | |
| 30 | breq1 4086 | . . . . . 6 ⊢ (𝑛 = (𝑀 gcd 𝑁) → (𝑛 ∥ 𝑁 ↔ (𝑀 gcd 𝑁) ∥ 𝑁)) | |
| 31 | 29, 30 | anbi12d 473 | . . . . 5 ⊢ (𝑛 = (𝑀 gcd 𝑁) → ((𝑛 ∥ 𝑀 ∧ 𝑛 ∥ 𝑁) ↔ ((𝑀 gcd 𝑁) ∥ 𝑀 ∧ (𝑀 gcd 𝑁) ∥ 𝑁))) |
| 32 | 31 | elrab3 2960 | . . . 4 ⊢ ((𝑀 gcd 𝑁) ∈ ℤ → ((𝑀 gcd 𝑁) ∈ {𝑛 ∈ ℤ ∣ (𝑛 ∥ 𝑀 ∧ 𝑛 ∥ 𝑁)} ↔ ((𝑀 gcd 𝑁) ∥ 𝑀 ∧ (𝑀 gcd 𝑁) ∥ 𝑁))) |
| 33 | 28, 32 | syl 14 | . . 3 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → ((𝑀 gcd 𝑁) ∈ {𝑛 ∈ ℤ ∣ (𝑛 ∥ 𝑀 ∧ 𝑛 ∥ 𝑁)} ↔ ((𝑀 gcd 𝑁) ∥ 𝑀 ∧ (𝑀 gcd 𝑁) ∥ 𝑁))) |
| 34 | 26, 33 | mpbid 147 | . 2 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → ((𝑀 gcd 𝑁) ∥ 𝑀 ∧ (𝑀 gcd 𝑁) ∥ 𝑁)) |
| 35 | gcdmndc 12484 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID (𝑀 = 0 ∧ 𝑁 = 0)) | |
| 36 | exmiddc 841 | . . 3 ⊢ (DECID (𝑀 = 0 ∧ 𝑁 = 0) → ((𝑀 = 0 ∧ 𝑁 = 0) ∨ ¬ (𝑀 = 0 ∧ 𝑁 = 0))) | |
| 37 | 35, 36 | syl 14 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 = 0 ∧ 𝑁 = 0) ∨ ¬ (𝑀 = 0 ∧ 𝑁 = 0))) |
| 38 | 17, 34, 37 | mpjaodan 803 | 1 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 gcd 𝑁) ∥ 𝑀 ∧ (𝑀 gcd 𝑁) ∥ 𝑁)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 ∨ wo 713 DECID wdc 839 = wceq 1395 ∈ wcel 2200 ∀wral 2508 ∃wrex 2509 {crab 2512 ⊆ wss 3197 class class class wbr 4083 (class class class)co 6007 supcsup 7157 ℝcr 8006 0cc0 8007 < clt 8189 ℤcz 9454 ∥ cdvds 12306 gcd cgcd 12482 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-iinf 4680 ax-cnex 8098 ax-resscn 8099 ax-1cn 8100 ax-1re 8101 ax-icn 8102 ax-addcl 8103 ax-addrcl 8104 ax-mulcl 8105 ax-mulrcl 8106 ax-addcom 8107 ax-mulcom 8108 ax-addass 8109 ax-mulass 8110 ax-distr 8111 ax-i2m1 8112 ax-0lt1 8113 ax-1rid 8114 ax-0id 8115 ax-rnegex 8116 ax-precex 8117 ax-cnre 8118 ax-pre-ltirr 8119 ax-pre-ltwlin 8120 ax-pre-lttrn 8121 ax-pre-apti 8122 ax-pre-ltadd 8123 ax-pre-mulgt0 8124 ax-pre-mulext 8125 ax-arch 8126 ax-caucvg 8127 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-tr 4183 df-id 4384 df-po 4387 df-iso 4388 df-iord 4457 df-on 4459 df-ilim 4460 df-suc 4462 df-iom 4683 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-riota 5960 df-ov 6010 df-oprab 6011 df-mpo 6012 df-1st 6292 df-2nd 6293 df-recs 6457 df-frec 6543 df-sup 7159 df-pnf 8191 df-mnf 8192 df-xr 8193 df-ltxr 8194 df-le 8195 df-sub 8327 df-neg 8328 df-reap 8730 df-ap 8737 df-div 8828 df-inn 9119 df-2 9177 df-3 9178 df-4 9179 df-n0 9378 df-z 9455 df-uz 9731 df-q 9823 df-rp 9858 df-fz 10213 df-fzo 10347 df-fl 10498 df-mod 10553 df-seqfrec 10678 df-exp 10769 df-cj 11361 df-re 11362 df-im 11363 df-rsqrt 11517 df-abs 11518 df-dvds 12307 df-gcd 12483 |
| This theorem is referenced by: zeqzmulgcd 12499 divgcdz 12500 divgcdnn 12504 gcd0id 12508 gcdneg 12511 gcdaddm 12513 gcd1 12516 dvdsgcdb 12542 dfgcd2 12543 mulgcd 12545 gcdzeq 12551 dvdsmulgcd 12554 sqgcd 12558 dvdssqlem 12559 bezoutr 12561 gcddvdslcm 12603 lcmgcdlem 12607 lcmgcdeq 12613 coprmgcdb 12618 ncoprmgcdne1b 12619 mulgcddvds 12624 rpmulgcd2 12625 qredeu 12627 rpdvds 12629 divgcdcoprm0 12631 divgcdodd 12673 coprm 12674 rpexp 12683 divnumden 12726 phimullem 12755 hashgcdlem 12768 hashgcdeq 12770 phisum 12771 pythagtriplem4 12799 pythagtriplem19 12813 pcgcd1 12859 pc2dvds 12861 pockthlem 12887 znunit 14631 znrrg 14632 mpodvdsmulf1o 15672 2sqlem8 15810 |
| Copyright terms: Public domain | W3C validator |