ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqger GIF version

Theorem eqger 13088
Description: The subgroup coset equivalence relation is an equivalence relation. (Contributed by Mario Carneiro, 13-Jan-2015.)
Hypotheses
Ref Expression
eqger.x 𝑋 = (Base‘𝐺)
eqger.r = (𝐺 ~QG 𝑌)
Assertion
Ref Expression
eqger (𝑌 ∈ (SubGrp‘𝐺) → Er 𝑋)

Proof of Theorem eqger
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 subgrcl 13044 . . 3 (𝑌 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
2 eqger.r . . . 4 = (𝐺 ~QG 𝑌)
32releqgg 13085 . . 3 ((𝐺 ∈ Grp ∧ 𝑌 ∈ (SubGrp‘𝐺)) → Rel )
41, 3mpancom 422 . 2 (𝑌 ∈ (SubGrp‘𝐺) → Rel )
5 eqger.x . . . . . . 7 𝑋 = (Base‘𝐺)
65subgss 13039 . . . . . 6 (𝑌 ∈ (SubGrp‘𝐺) → 𝑌𝑋)
7 eqid 2177 . . . . . . 7 (invg𝐺) = (invg𝐺)
8 eqid 2177 . . . . . . 7 (+g𝐺) = (+g𝐺)
95, 7, 8, 2eqgval 13087 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑌𝑋) → (𝑥 𝑦 ↔ (𝑥𝑋𝑦𝑋 ∧ (((invg𝐺)‘𝑥)(+g𝐺)𝑦) ∈ 𝑌)))
101, 6, 9syl2anc 411 . . . . 5 (𝑌 ∈ (SubGrp‘𝐺) → (𝑥 𝑦 ↔ (𝑥𝑋𝑦𝑋 ∧ (((invg𝐺)‘𝑥)(+g𝐺)𝑦) ∈ 𝑌)))
1110biimpa 296 . . . 4 ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑥 𝑦) → (𝑥𝑋𝑦𝑋 ∧ (((invg𝐺)‘𝑥)(+g𝐺)𝑦) ∈ 𝑌))
1211simp2d 1010 . . 3 ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑥 𝑦) → 𝑦𝑋)
1311simp1d 1009 . . 3 ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑥 𝑦) → 𝑥𝑋)
141adantr 276 . . . . . 6 ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑥 𝑦) → 𝐺 ∈ Grp)
155, 7grpinvcl 12926 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑥𝑋) → ((invg𝐺)‘𝑥) ∈ 𝑋)
1614, 13, 15syl2anc 411 . . . . . 6 ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑥 𝑦) → ((invg𝐺)‘𝑥) ∈ 𝑋)
175, 8, 7grpinvadd 12953 . . . . . 6 ((𝐺 ∈ Grp ∧ ((invg𝐺)‘𝑥) ∈ 𝑋𝑦𝑋) → ((invg𝐺)‘(((invg𝐺)‘𝑥)(+g𝐺)𝑦)) = (((invg𝐺)‘𝑦)(+g𝐺)((invg𝐺)‘((invg𝐺)‘𝑥))))
1814, 16, 12, 17syl3anc 1238 . . . . 5 ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑥 𝑦) → ((invg𝐺)‘(((invg𝐺)‘𝑥)(+g𝐺)𝑦)) = (((invg𝐺)‘𝑦)(+g𝐺)((invg𝐺)‘((invg𝐺)‘𝑥))))
195, 7grpinvinv 12942 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑥𝑋) → ((invg𝐺)‘((invg𝐺)‘𝑥)) = 𝑥)
2014, 13, 19syl2anc 411 . . . . . 6 ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑥 𝑦) → ((invg𝐺)‘((invg𝐺)‘𝑥)) = 𝑥)
2120oveq2d 5893 . . . . 5 ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑥 𝑦) → (((invg𝐺)‘𝑦)(+g𝐺)((invg𝐺)‘((invg𝐺)‘𝑥))) = (((invg𝐺)‘𝑦)(+g𝐺)𝑥))
2218, 21eqtrd 2210 . . . 4 ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑥 𝑦) → ((invg𝐺)‘(((invg𝐺)‘𝑥)(+g𝐺)𝑦)) = (((invg𝐺)‘𝑦)(+g𝐺)𝑥))
2311simp3d 1011 . . . . 5 ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑥 𝑦) → (((invg𝐺)‘𝑥)(+g𝐺)𝑦) ∈ 𝑌)
247subginvcl 13048 . . . . 5 ((𝑌 ∈ (SubGrp‘𝐺) ∧ (((invg𝐺)‘𝑥)(+g𝐺)𝑦) ∈ 𝑌) → ((invg𝐺)‘(((invg𝐺)‘𝑥)(+g𝐺)𝑦)) ∈ 𝑌)
2523, 24syldan 282 . . . 4 ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑥 𝑦) → ((invg𝐺)‘(((invg𝐺)‘𝑥)(+g𝐺)𝑦)) ∈ 𝑌)
2622, 25eqeltrrd 2255 . . 3 ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑥 𝑦) → (((invg𝐺)‘𝑦)(+g𝐺)𝑥) ∈ 𝑌)
276adantr 276 . . . 4 ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑥 𝑦) → 𝑌𝑋)
285, 7, 8, 2eqgval 13087 . . . 4 ((𝐺 ∈ Grp ∧ 𝑌𝑋) → (𝑦 𝑥 ↔ (𝑦𝑋𝑥𝑋 ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑥) ∈ 𝑌)))
2914, 27, 28syl2anc 411 . . 3 ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑥 𝑦) → (𝑦 𝑥 ↔ (𝑦𝑋𝑥𝑋 ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑥) ∈ 𝑌)))
3012, 13, 26, 29mpbir3and 1180 . 2 ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑥 𝑦) → 𝑦 𝑥)
3113adantrr 479 . . 3 ((𝑌 ∈ (SubGrp‘𝐺) ∧ (𝑥 𝑦𝑦 𝑧)) → 𝑥𝑋)
325, 7, 8, 2eqgval 13087 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑌𝑋) → (𝑦 𝑧 ↔ (𝑦𝑋𝑧𝑋 ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑌)))
331, 6, 32syl2anc 411 . . . . . 6 (𝑌 ∈ (SubGrp‘𝐺) → (𝑦 𝑧 ↔ (𝑦𝑋𝑧𝑋 ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑌)))
3433biimpa 296 . . . . 5 ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑦 𝑧) → (𝑦𝑋𝑧𝑋 ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑌))
3534adantrl 478 . . . 4 ((𝑌 ∈ (SubGrp‘𝐺) ∧ (𝑥 𝑦𝑦 𝑧)) → (𝑦𝑋𝑧𝑋 ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑌))
3635simp2d 1010 . . 3 ((𝑌 ∈ (SubGrp‘𝐺) ∧ (𝑥 𝑦𝑦 𝑧)) → 𝑧𝑋)
371adantr 276 . . . . . 6 ((𝑌 ∈ (SubGrp‘𝐺) ∧ (𝑥 𝑦𝑦 𝑧)) → 𝐺 ∈ Grp)
3837, 31, 15syl2anc 411 . . . . . 6 ((𝑌 ∈ (SubGrp‘𝐺) ∧ (𝑥 𝑦𝑦 𝑧)) → ((invg𝐺)‘𝑥) ∈ 𝑋)
3912adantrr 479 . . . . . 6 ((𝑌 ∈ (SubGrp‘𝐺) ∧ (𝑥 𝑦𝑦 𝑧)) → 𝑦𝑋)
405, 7grpinvcl 12926 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝑦𝑋) → ((invg𝐺)‘𝑦) ∈ 𝑋)
4137, 39, 40syl2anc 411 . . . . . . 7 ((𝑌 ∈ (SubGrp‘𝐺) ∧ (𝑥 𝑦𝑦 𝑧)) → ((invg𝐺)‘𝑦) ∈ 𝑋)
425, 8, 37, 41, 36grpcld 12895 . . . . . 6 ((𝑌 ∈ (SubGrp‘𝐺) ∧ (𝑥 𝑦𝑦 𝑧)) → (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑋)
435, 8grpass 12891 . . . . . 6 ((𝐺 ∈ Grp ∧ (((invg𝐺)‘𝑥) ∈ 𝑋𝑦𝑋 ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑋)) → ((((invg𝐺)‘𝑥)(+g𝐺)𝑦)(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧)) = (((invg𝐺)‘𝑥)(+g𝐺)(𝑦(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧))))
4437, 38, 39, 42, 43syl13anc 1240 . . . . 5 ((𝑌 ∈ (SubGrp‘𝐺) ∧ (𝑥 𝑦𝑦 𝑧)) → ((((invg𝐺)‘𝑥)(+g𝐺)𝑦)(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧)) = (((invg𝐺)‘𝑥)(+g𝐺)(𝑦(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧))))
45 eqid 2177 . . . . . . . . . 10 (0g𝐺) = (0g𝐺)
465, 8, 45, 7grprinv 12928 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ 𝑦𝑋) → (𝑦(+g𝐺)((invg𝐺)‘𝑦)) = (0g𝐺))
4737, 39, 46syl2anc 411 . . . . . . . 8 ((𝑌 ∈ (SubGrp‘𝐺) ∧ (𝑥 𝑦𝑦 𝑧)) → (𝑦(+g𝐺)((invg𝐺)‘𝑦)) = (0g𝐺))
4847oveq1d 5892 . . . . . . 7 ((𝑌 ∈ (SubGrp‘𝐺) ∧ (𝑥 𝑦𝑦 𝑧)) → ((𝑦(+g𝐺)((invg𝐺)‘𝑦))(+g𝐺)𝑧) = ((0g𝐺)(+g𝐺)𝑧))
495, 8grpass 12891 . . . . . . . 8 ((𝐺 ∈ Grp ∧ (𝑦𝑋 ∧ ((invg𝐺)‘𝑦) ∈ 𝑋𝑧𝑋)) → ((𝑦(+g𝐺)((invg𝐺)‘𝑦))(+g𝐺)𝑧) = (𝑦(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧)))
5037, 39, 41, 36, 49syl13anc 1240 . . . . . . 7 ((𝑌 ∈ (SubGrp‘𝐺) ∧ (𝑥 𝑦𝑦 𝑧)) → ((𝑦(+g𝐺)((invg𝐺)‘𝑦))(+g𝐺)𝑧) = (𝑦(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧)))
515, 8, 45grplid 12911 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝑧𝑋) → ((0g𝐺)(+g𝐺)𝑧) = 𝑧)
5237, 36, 51syl2anc 411 . . . . . . 7 ((𝑌 ∈ (SubGrp‘𝐺) ∧ (𝑥 𝑦𝑦 𝑧)) → ((0g𝐺)(+g𝐺)𝑧) = 𝑧)
5348, 50, 523eqtr3d 2218 . . . . . 6 ((𝑌 ∈ (SubGrp‘𝐺) ∧ (𝑥 𝑦𝑦 𝑧)) → (𝑦(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧)) = 𝑧)
5453oveq2d 5893 . . . . 5 ((𝑌 ∈ (SubGrp‘𝐺) ∧ (𝑥 𝑦𝑦 𝑧)) → (((invg𝐺)‘𝑥)(+g𝐺)(𝑦(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧))) = (((invg𝐺)‘𝑥)(+g𝐺)𝑧))
5544, 54eqtrd 2210 . . . 4 ((𝑌 ∈ (SubGrp‘𝐺) ∧ (𝑥 𝑦𝑦 𝑧)) → ((((invg𝐺)‘𝑥)(+g𝐺)𝑦)(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧)) = (((invg𝐺)‘𝑥)(+g𝐺)𝑧))
56 simpl 109 . . . . 5 ((𝑌 ∈ (SubGrp‘𝐺) ∧ (𝑥 𝑦𝑦 𝑧)) → 𝑌 ∈ (SubGrp‘𝐺))
5723adantrr 479 . . . . 5 ((𝑌 ∈ (SubGrp‘𝐺) ∧ (𝑥 𝑦𝑦 𝑧)) → (((invg𝐺)‘𝑥)(+g𝐺)𝑦) ∈ 𝑌)
5835simp3d 1011 . . . . 5 ((𝑌 ∈ (SubGrp‘𝐺) ∧ (𝑥 𝑦𝑦 𝑧)) → (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑌)
598subgcl 13049 . . . . 5 ((𝑌 ∈ (SubGrp‘𝐺) ∧ (((invg𝐺)‘𝑥)(+g𝐺)𝑦) ∈ 𝑌 ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑌) → ((((invg𝐺)‘𝑥)(+g𝐺)𝑦)(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧)) ∈ 𝑌)
6056, 57, 58, 59syl3anc 1238 . . . 4 ((𝑌 ∈ (SubGrp‘𝐺) ∧ (𝑥 𝑦𝑦 𝑧)) → ((((invg𝐺)‘𝑥)(+g𝐺)𝑦)(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧)) ∈ 𝑌)
6155, 60eqeltrrd 2255 . . 3 ((𝑌 ∈ (SubGrp‘𝐺) ∧ (𝑥 𝑦𝑦 𝑧)) → (((invg𝐺)‘𝑥)(+g𝐺)𝑧) ∈ 𝑌)
626adantr 276 . . . 4 ((𝑌 ∈ (SubGrp‘𝐺) ∧ (𝑥 𝑦𝑦 𝑧)) → 𝑌𝑋)
635, 7, 8, 2eqgval 13087 . . . 4 ((𝐺 ∈ Grp ∧ 𝑌𝑋) → (𝑥 𝑧 ↔ (𝑥𝑋𝑧𝑋 ∧ (((invg𝐺)‘𝑥)(+g𝐺)𝑧) ∈ 𝑌)))
6437, 62, 63syl2anc 411 . . 3 ((𝑌 ∈ (SubGrp‘𝐺) ∧ (𝑥 𝑦𝑦 𝑧)) → (𝑥 𝑧 ↔ (𝑥𝑋𝑧𝑋 ∧ (((invg𝐺)‘𝑥)(+g𝐺)𝑧) ∈ 𝑌)))
6531, 36, 61, 64mpbir3and 1180 . 2 ((𝑌 ∈ (SubGrp‘𝐺) ∧ (𝑥 𝑦𝑦 𝑧)) → 𝑥 𝑧)
665, 8, 45, 7grplinv 12927 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑥𝑋) → (((invg𝐺)‘𝑥)(+g𝐺)𝑥) = (0g𝐺))
671, 66sylan 283 . . . . . 6 ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑥𝑋) → (((invg𝐺)‘𝑥)(+g𝐺)𝑥) = (0g𝐺))
6845subg0cl 13047 . . . . . . 7 (𝑌 ∈ (SubGrp‘𝐺) → (0g𝐺) ∈ 𝑌)
6968adantr 276 . . . . . 6 ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑥𝑋) → (0g𝐺) ∈ 𝑌)
7067, 69eqeltrd 2254 . . . . 5 ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑥𝑋) → (((invg𝐺)‘𝑥)(+g𝐺)𝑥) ∈ 𝑌)
7170ex 115 . . . 4 (𝑌 ∈ (SubGrp‘𝐺) → (𝑥𝑋 → (((invg𝐺)‘𝑥)(+g𝐺)𝑥) ∈ 𝑌))
7271pm4.71rd 394 . . 3 (𝑌 ∈ (SubGrp‘𝐺) → (𝑥𝑋 ↔ ((((invg𝐺)‘𝑥)(+g𝐺)𝑥) ∈ 𝑌𝑥𝑋)))
735, 7, 8, 2eqgval 13087 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑌𝑋) → (𝑥 𝑥 ↔ (𝑥𝑋𝑥𝑋 ∧ (((invg𝐺)‘𝑥)(+g𝐺)𝑥) ∈ 𝑌)))
741, 6, 73syl2anc 411 . . . 4 (𝑌 ∈ (SubGrp‘𝐺) → (𝑥 𝑥 ↔ (𝑥𝑋𝑥𝑋 ∧ (((invg𝐺)‘𝑥)(+g𝐺)𝑥) ∈ 𝑌)))
75 df-3an 980 . . . . 5 ((𝑥𝑋𝑥𝑋 ∧ (((invg𝐺)‘𝑥)(+g𝐺)𝑥) ∈ 𝑌) ↔ ((𝑥𝑋𝑥𝑋) ∧ (((invg𝐺)‘𝑥)(+g𝐺)𝑥) ∈ 𝑌))
76 anidm 396 . . . . . 6 ((𝑥𝑋𝑥𝑋) ↔ 𝑥𝑋)
7776anbi2ci 459 . . . . 5 (((𝑥𝑋𝑥𝑋) ∧ (((invg𝐺)‘𝑥)(+g𝐺)𝑥) ∈ 𝑌) ↔ ((((invg𝐺)‘𝑥)(+g𝐺)𝑥) ∈ 𝑌𝑥𝑋))
7875, 77bitri 184 . . . 4 ((𝑥𝑋𝑥𝑋 ∧ (((invg𝐺)‘𝑥)(+g𝐺)𝑥) ∈ 𝑌) ↔ ((((invg𝐺)‘𝑥)(+g𝐺)𝑥) ∈ 𝑌𝑥𝑋))
7974, 78bitrdi 196 . . 3 (𝑌 ∈ (SubGrp‘𝐺) → (𝑥 𝑥 ↔ ((((invg𝐺)‘𝑥)(+g𝐺)𝑥) ∈ 𝑌𝑥𝑋)))
8072, 79bitr4d 191 . 2 (𝑌 ∈ (SubGrp‘𝐺) → (𝑥𝑋𝑥 𝑥))
814, 30, 65, 80iserd 6563 1 (𝑌 ∈ (SubGrp‘𝐺) → Er 𝑋)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 978   = wceq 1353  wcel 2148  wss 3131   class class class wbr 4005  Rel wrel 4633  cfv 5218  (class class class)co 5877   Er wer 6534  Basecbs 12464  +gcplusg 12538  0gc0g 12710  Grpcgrp 12882  invgcminusg 12883  SubGrpcsubg 13032   ~QG cqg 13034
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-addcom 7913  ax-addass 7915  ax-i2m1 7918  ax-0lt1 7919  ax-0id 7921  ax-rnegex 7922  ax-pre-ltirr 7925  ax-pre-ltadd 7929
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-er 6537  df-pnf 7996  df-mnf 7997  df-ltxr 7999  df-inn 8922  df-2 8980  df-ndx 12467  df-slot 12468  df-base 12470  df-sets 12471  df-iress 12472  df-plusg 12551  df-0g 12712  df-mgm 12780  df-sgrp 12813  df-mnd 12823  df-grp 12885  df-minusg 12886  df-subg 13035  df-eqg 13037
This theorem is referenced by:  eqgen  13091
  Copyright terms: Public domain W3C validator