ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uzin GIF version

Theorem uzin 9716
Description: Intersection of two upper intervals of integers. (Contributed by Mario Carneiro, 24-Dec-2013.)
Assertion
Ref Expression
uzin ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((ℤ𝑀) ∩ (ℤ𝑁)) = (ℤ‘if(𝑀𝑁, 𝑁, 𝑀)))

Proof of Theorem uzin
StepHypRef Expression
1 uztric 9705 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ∈ (ℤ𝑀) ∨ 𝑀 ∈ (ℤ𝑁)))
2 uzss 9704 . . . . 5 (𝑁 ∈ (ℤ𝑀) → (ℤ𝑁) ⊆ (ℤ𝑀))
3 sseqin2 3400 . . . . 5 ((ℤ𝑁) ⊆ (ℤ𝑀) ↔ ((ℤ𝑀) ∩ (ℤ𝑁)) = (ℤ𝑁))
42, 3sylib 122 . . . 4 (𝑁 ∈ (ℤ𝑀) → ((ℤ𝑀) ∩ (ℤ𝑁)) = (ℤ𝑁))
5 eluzle 9695 . . . . . 6 (𝑁 ∈ (ℤ𝑀) → 𝑀𝑁)
6 iftrue 3584 . . . . . 6 (𝑀𝑁 → if(𝑀𝑁, 𝑁, 𝑀) = 𝑁)
75, 6syl 14 . . . . 5 (𝑁 ∈ (ℤ𝑀) → if(𝑀𝑁, 𝑁, 𝑀) = 𝑁)
87fveq2d 5603 . . . 4 (𝑁 ∈ (ℤ𝑀) → (ℤ‘if(𝑀𝑁, 𝑁, 𝑀)) = (ℤ𝑁))
94, 8eqtr4d 2243 . . 3 (𝑁 ∈ (ℤ𝑀) → ((ℤ𝑀) ∩ (ℤ𝑁)) = (ℤ‘if(𝑀𝑁, 𝑁, 𝑀)))
10 uzss 9704 . . . . 5 (𝑀 ∈ (ℤ𝑁) → (ℤ𝑀) ⊆ (ℤ𝑁))
11 df-ss 3187 . . . . 5 ((ℤ𝑀) ⊆ (ℤ𝑁) ↔ ((ℤ𝑀) ∩ (ℤ𝑁)) = (ℤ𝑀))
1210, 11sylib 122 . . . 4 (𝑀 ∈ (ℤ𝑁) → ((ℤ𝑀) ∩ (ℤ𝑁)) = (ℤ𝑀))
13 eluzel2 9688 . . . . . . . . . . 11 (𝑀 ∈ (ℤ𝑁) → 𝑁 ∈ ℤ)
14 eluzelz 9692 . . . . . . . . . . 11 (𝑀 ∈ (ℤ𝑁) → 𝑀 ∈ ℤ)
15 zre 9411 . . . . . . . . . . . 12 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
16 zre 9411 . . . . . . . . . . . 12 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
17 letri3 8188 . . . . . . . . . . . 12 ((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ) → (𝑁 = 𝑀 ↔ (𝑁𝑀𝑀𝑁)))
1815, 16, 17syl2an 289 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑁 = 𝑀 ↔ (𝑁𝑀𝑀𝑁)))
1913, 14, 18syl2anc 411 . . . . . . . . . 10 (𝑀 ∈ (ℤ𝑁) → (𝑁 = 𝑀 ↔ (𝑁𝑀𝑀𝑁)))
20 eluzle 9695 . . . . . . . . . . 11 (𝑀 ∈ (ℤ𝑁) → 𝑁𝑀)
2120biantrurd 305 . . . . . . . . . 10 (𝑀 ∈ (ℤ𝑁) → (𝑀𝑁 ↔ (𝑁𝑀𝑀𝑁)))
2219, 21bitr4d 191 . . . . . . . . 9 (𝑀 ∈ (ℤ𝑁) → (𝑁 = 𝑀𝑀𝑁))
2322biimprcd 160 . . . . . . . 8 (𝑀𝑁 → (𝑀 ∈ (ℤ𝑁) → 𝑁 = 𝑀))
246eqeq1d 2216 . . . . . . . 8 (𝑀𝑁 → (if(𝑀𝑁, 𝑁, 𝑀) = 𝑀𝑁 = 𝑀))
2523, 24sylibrd 169 . . . . . . 7 (𝑀𝑁 → (𝑀 ∈ (ℤ𝑁) → if(𝑀𝑁, 𝑁, 𝑀) = 𝑀))
2625com12 30 . . . . . 6 (𝑀 ∈ (ℤ𝑁) → (𝑀𝑁 → if(𝑀𝑁, 𝑁, 𝑀) = 𝑀))
27 iffalse 3587 . . . . . . 7 𝑀𝑁 → if(𝑀𝑁, 𝑁, 𝑀) = 𝑀)
2827a1i 9 . . . . . 6 (𝑀 ∈ (ℤ𝑁) → (¬ 𝑀𝑁 → if(𝑀𝑁, 𝑁, 𝑀) = 𝑀))
29 zdcle 9484 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID 𝑀𝑁)
3014, 13, 29syl2anc 411 . . . . . . 7 (𝑀 ∈ (ℤ𝑁) → DECID 𝑀𝑁)
31 df-dc 837 . . . . . . 7 (DECID 𝑀𝑁 ↔ (𝑀𝑁 ∨ ¬ 𝑀𝑁))
3230, 31sylib 122 . . . . . 6 (𝑀 ∈ (ℤ𝑁) → (𝑀𝑁 ∨ ¬ 𝑀𝑁))
3326, 28, 32mpjaod 720 . . . . 5 (𝑀 ∈ (ℤ𝑁) → if(𝑀𝑁, 𝑁, 𝑀) = 𝑀)
3433fveq2d 5603 . . . 4 (𝑀 ∈ (ℤ𝑁) → (ℤ‘if(𝑀𝑁, 𝑁, 𝑀)) = (ℤ𝑀))
3512, 34eqtr4d 2243 . . 3 (𝑀 ∈ (ℤ𝑁) → ((ℤ𝑀) ∩ (ℤ𝑁)) = (ℤ‘if(𝑀𝑁, 𝑁, 𝑀)))
369, 35jaoi 718 . 2 ((𝑁 ∈ (ℤ𝑀) ∨ 𝑀 ∈ (ℤ𝑁)) → ((ℤ𝑀) ∩ (ℤ𝑁)) = (ℤ‘if(𝑀𝑁, 𝑁, 𝑀)))
371, 36syl 14 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((ℤ𝑀) ∩ (ℤ𝑁)) = (ℤ‘if(𝑀𝑁, 𝑁, 𝑀)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 710  DECID wdc 836   = wceq 1373  wcel 2178  cin 3173  wss 3174  ifcif 3579   class class class wbr 4059  cfv 5290  cr 7959  cle 8143  cz 9407  cuz 9683
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-addcom 8060  ax-addass 8062  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-0id 8068  ax-rnegex 8069  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-apti 8075  ax-pre-ltadd 8076
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-if 3580  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-inn 9072  df-n0 9331  df-z 9408  df-uz 9684
This theorem is referenced by:  uzin2  11413  explecnv  11931
  Copyright terms: Public domain W3C validator