Proof of Theorem uzin
| Step | Hyp | Ref
| Expression |
| 1 | | uztric 9640 |
. 2
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ∈
(ℤ≥‘𝑀) ∨ 𝑀 ∈ (ℤ≥‘𝑁))) |
| 2 | | uzss 9639 |
. . . . 5
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → (ℤ≥‘𝑁) ⊆
(ℤ≥‘𝑀)) |
| 3 | | sseqin2 3383 |
. . . . 5
⊢
((ℤ≥‘𝑁) ⊆
(ℤ≥‘𝑀) ↔
((ℤ≥‘𝑀) ∩ (ℤ≥‘𝑁)) =
(ℤ≥‘𝑁)) |
| 4 | 2, 3 | sylib 122 |
. . . 4
⊢ (𝑁 ∈
(ℤ≥‘𝑀) →
((ℤ≥‘𝑀) ∩ (ℤ≥‘𝑁)) =
(ℤ≥‘𝑁)) |
| 5 | | eluzle 9630 |
. . . . . 6
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → 𝑀 ≤ 𝑁) |
| 6 | | iftrue 3567 |
. . . . . 6
⊢ (𝑀 ≤ 𝑁 → if(𝑀 ≤ 𝑁, 𝑁, 𝑀) = 𝑁) |
| 7 | 5, 6 | syl 14 |
. . . . 5
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → if(𝑀 ≤ 𝑁, 𝑁, 𝑀) = 𝑁) |
| 8 | 7 | fveq2d 5565 |
. . . 4
⊢ (𝑁 ∈
(ℤ≥‘𝑀) →
(ℤ≥‘if(𝑀 ≤ 𝑁, 𝑁, 𝑀)) = (ℤ≥‘𝑁)) |
| 9 | 4, 8 | eqtr4d 2232 |
. . 3
⊢ (𝑁 ∈
(ℤ≥‘𝑀) →
((ℤ≥‘𝑀) ∩ (ℤ≥‘𝑁)) =
(ℤ≥‘if(𝑀 ≤ 𝑁, 𝑁, 𝑀))) |
| 10 | | uzss 9639 |
. . . . 5
⊢ (𝑀 ∈
(ℤ≥‘𝑁) → (ℤ≥‘𝑀) ⊆
(ℤ≥‘𝑁)) |
| 11 | | df-ss 3170 |
. . . . 5
⊢
((ℤ≥‘𝑀) ⊆
(ℤ≥‘𝑁) ↔
((ℤ≥‘𝑀) ∩ (ℤ≥‘𝑁)) =
(ℤ≥‘𝑀)) |
| 12 | 10, 11 | sylib 122 |
. . . 4
⊢ (𝑀 ∈
(ℤ≥‘𝑁) →
((ℤ≥‘𝑀) ∩ (ℤ≥‘𝑁)) =
(ℤ≥‘𝑀)) |
| 13 | | eluzel2 9623 |
. . . . . . . . . . 11
⊢ (𝑀 ∈
(ℤ≥‘𝑁) → 𝑁 ∈ ℤ) |
| 14 | | eluzelz 9627 |
. . . . . . . . . . 11
⊢ (𝑀 ∈
(ℤ≥‘𝑁) → 𝑀 ∈ ℤ) |
| 15 | | zre 9347 |
. . . . . . . . . . . 12
⊢ (𝑁 ∈ ℤ → 𝑁 ∈
ℝ) |
| 16 | | zre 9347 |
. . . . . . . . . . . 12
⊢ (𝑀 ∈ ℤ → 𝑀 ∈
ℝ) |
| 17 | | letri3 8124 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ) → (𝑁 = 𝑀 ↔ (𝑁 ≤ 𝑀 ∧ 𝑀 ≤ 𝑁))) |
| 18 | 15, 16, 17 | syl2an 289 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑁 = 𝑀 ↔ (𝑁 ≤ 𝑀 ∧ 𝑀 ≤ 𝑁))) |
| 19 | 13, 14, 18 | syl2anc 411 |
. . . . . . . . . 10
⊢ (𝑀 ∈
(ℤ≥‘𝑁) → (𝑁 = 𝑀 ↔ (𝑁 ≤ 𝑀 ∧ 𝑀 ≤ 𝑁))) |
| 20 | | eluzle 9630 |
. . . . . . . . . . 11
⊢ (𝑀 ∈
(ℤ≥‘𝑁) → 𝑁 ≤ 𝑀) |
| 21 | 20 | biantrurd 305 |
. . . . . . . . . 10
⊢ (𝑀 ∈
(ℤ≥‘𝑁) → (𝑀 ≤ 𝑁 ↔ (𝑁 ≤ 𝑀 ∧ 𝑀 ≤ 𝑁))) |
| 22 | 19, 21 | bitr4d 191 |
. . . . . . . . 9
⊢ (𝑀 ∈
(ℤ≥‘𝑁) → (𝑁 = 𝑀 ↔ 𝑀 ≤ 𝑁)) |
| 23 | 22 | biimprcd 160 |
. . . . . . . 8
⊢ (𝑀 ≤ 𝑁 → (𝑀 ∈ (ℤ≥‘𝑁) → 𝑁 = 𝑀)) |
| 24 | 6 | eqeq1d 2205 |
. . . . . . . 8
⊢ (𝑀 ≤ 𝑁 → (if(𝑀 ≤ 𝑁, 𝑁, 𝑀) = 𝑀 ↔ 𝑁 = 𝑀)) |
| 25 | 23, 24 | sylibrd 169 |
. . . . . . 7
⊢ (𝑀 ≤ 𝑁 → (𝑀 ∈ (ℤ≥‘𝑁) → if(𝑀 ≤ 𝑁, 𝑁, 𝑀) = 𝑀)) |
| 26 | 25 | com12 30 |
. . . . . 6
⊢ (𝑀 ∈
(ℤ≥‘𝑁) → (𝑀 ≤ 𝑁 → if(𝑀 ≤ 𝑁, 𝑁, 𝑀) = 𝑀)) |
| 27 | | iffalse 3570 |
. . . . . . 7
⊢ (¬
𝑀 ≤ 𝑁 → if(𝑀 ≤ 𝑁, 𝑁, 𝑀) = 𝑀) |
| 28 | 27 | a1i 9 |
. . . . . 6
⊢ (𝑀 ∈
(ℤ≥‘𝑁) → (¬ 𝑀 ≤ 𝑁 → if(𝑀 ≤ 𝑁, 𝑁, 𝑀) = 𝑀)) |
| 29 | | zdcle 9419 |
. . . . . . . 8
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) →
DECID 𝑀 ≤
𝑁) |
| 30 | 14, 13, 29 | syl2anc 411 |
. . . . . . 7
⊢ (𝑀 ∈
(ℤ≥‘𝑁) → DECID 𝑀 ≤ 𝑁) |
| 31 | | df-dc 836 |
. . . . . . 7
⊢
(DECID 𝑀 ≤ 𝑁 ↔ (𝑀 ≤ 𝑁 ∨ ¬ 𝑀 ≤ 𝑁)) |
| 32 | 30, 31 | sylib 122 |
. . . . . 6
⊢ (𝑀 ∈
(ℤ≥‘𝑁) → (𝑀 ≤ 𝑁 ∨ ¬ 𝑀 ≤ 𝑁)) |
| 33 | 26, 28, 32 | mpjaod 719 |
. . . . 5
⊢ (𝑀 ∈
(ℤ≥‘𝑁) → if(𝑀 ≤ 𝑁, 𝑁, 𝑀) = 𝑀) |
| 34 | 33 | fveq2d 5565 |
. . . 4
⊢ (𝑀 ∈
(ℤ≥‘𝑁) →
(ℤ≥‘if(𝑀 ≤ 𝑁, 𝑁, 𝑀)) = (ℤ≥‘𝑀)) |
| 35 | 12, 34 | eqtr4d 2232 |
. . 3
⊢ (𝑀 ∈
(ℤ≥‘𝑁) →
((ℤ≥‘𝑀) ∩ (ℤ≥‘𝑁)) =
(ℤ≥‘if(𝑀 ≤ 𝑁, 𝑁, 𝑀))) |
| 36 | 9, 35 | jaoi 717 |
. 2
⊢ ((𝑁 ∈
(ℤ≥‘𝑀) ∨ 𝑀 ∈ (ℤ≥‘𝑁)) →
((ℤ≥‘𝑀) ∩ (ℤ≥‘𝑁)) =
(ℤ≥‘if(𝑀 ≤ 𝑁, 𝑁, 𝑀))) |
| 37 | 1, 36 | syl 14 |
1
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) →
((ℤ≥‘𝑀) ∩ (ℤ≥‘𝑁)) =
(ℤ≥‘if(𝑀 ≤ 𝑁, 𝑁, 𝑀))) |