Proof of Theorem uzin
| Step | Hyp | Ref
 | Expression | 
| 1 |   | uztric 9623 | 
. 2
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ∈
(ℤ≥‘𝑀) ∨ 𝑀 ∈ (ℤ≥‘𝑁))) | 
| 2 |   | uzss 9622 | 
. . . . 5
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → (ℤ≥‘𝑁) ⊆
(ℤ≥‘𝑀)) | 
| 3 |   | sseqin2 3382 | 
. . . . 5
⊢
((ℤ≥‘𝑁) ⊆
(ℤ≥‘𝑀) ↔
((ℤ≥‘𝑀) ∩ (ℤ≥‘𝑁)) =
(ℤ≥‘𝑁)) | 
| 4 | 2, 3 | sylib 122 | 
. . . 4
⊢ (𝑁 ∈
(ℤ≥‘𝑀) →
((ℤ≥‘𝑀) ∩ (ℤ≥‘𝑁)) =
(ℤ≥‘𝑁)) | 
| 5 |   | eluzle 9613 | 
. . . . . 6
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → 𝑀 ≤ 𝑁) | 
| 6 |   | iftrue 3566 | 
. . . . . 6
⊢ (𝑀 ≤ 𝑁 → if(𝑀 ≤ 𝑁, 𝑁, 𝑀) = 𝑁) | 
| 7 | 5, 6 | syl 14 | 
. . . . 5
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → if(𝑀 ≤ 𝑁, 𝑁, 𝑀) = 𝑁) | 
| 8 | 7 | fveq2d 5562 | 
. . . 4
⊢ (𝑁 ∈
(ℤ≥‘𝑀) →
(ℤ≥‘if(𝑀 ≤ 𝑁, 𝑁, 𝑀)) = (ℤ≥‘𝑁)) | 
| 9 | 4, 8 | eqtr4d 2232 | 
. . 3
⊢ (𝑁 ∈
(ℤ≥‘𝑀) →
((ℤ≥‘𝑀) ∩ (ℤ≥‘𝑁)) =
(ℤ≥‘if(𝑀 ≤ 𝑁, 𝑁, 𝑀))) | 
| 10 |   | uzss 9622 | 
. . . . 5
⊢ (𝑀 ∈
(ℤ≥‘𝑁) → (ℤ≥‘𝑀) ⊆
(ℤ≥‘𝑁)) | 
| 11 |   | df-ss 3170 | 
. . . . 5
⊢
((ℤ≥‘𝑀) ⊆
(ℤ≥‘𝑁) ↔
((ℤ≥‘𝑀) ∩ (ℤ≥‘𝑁)) =
(ℤ≥‘𝑀)) | 
| 12 | 10, 11 | sylib 122 | 
. . . 4
⊢ (𝑀 ∈
(ℤ≥‘𝑁) →
((ℤ≥‘𝑀) ∩ (ℤ≥‘𝑁)) =
(ℤ≥‘𝑀)) | 
| 13 |   | eluzel2 9606 | 
. . . . . . . . . . 11
⊢ (𝑀 ∈
(ℤ≥‘𝑁) → 𝑁 ∈ ℤ) | 
| 14 |   | eluzelz 9610 | 
. . . . . . . . . . 11
⊢ (𝑀 ∈
(ℤ≥‘𝑁) → 𝑀 ∈ ℤ) | 
| 15 |   | zre 9330 | 
. . . . . . . . . . . 12
⊢ (𝑁 ∈ ℤ → 𝑁 ∈
ℝ) | 
| 16 |   | zre 9330 | 
. . . . . . . . . . . 12
⊢ (𝑀 ∈ ℤ → 𝑀 ∈
ℝ) | 
| 17 |   | letri3 8107 | 
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ) → (𝑁 = 𝑀 ↔ (𝑁 ≤ 𝑀 ∧ 𝑀 ≤ 𝑁))) | 
| 18 | 15, 16, 17 | syl2an 289 | 
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑁 = 𝑀 ↔ (𝑁 ≤ 𝑀 ∧ 𝑀 ≤ 𝑁))) | 
| 19 | 13, 14, 18 | syl2anc 411 | 
. . . . . . . . . 10
⊢ (𝑀 ∈
(ℤ≥‘𝑁) → (𝑁 = 𝑀 ↔ (𝑁 ≤ 𝑀 ∧ 𝑀 ≤ 𝑁))) | 
| 20 |   | eluzle 9613 | 
. . . . . . . . . . 11
⊢ (𝑀 ∈
(ℤ≥‘𝑁) → 𝑁 ≤ 𝑀) | 
| 21 | 20 | biantrurd 305 | 
. . . . . . . . . 10
⊢ (𝑀 ∈
(ℤ≥‘𝑁) → (𝑀 ≤ 𝑁 ↔ (𝑁 ≤ 𝑀 ∧ 𝑀 ≤ 𝑁))) | 
| 22 | 19, 21 | bitr4d 191 | 
. . . . . . . . 9
⊢ (𝑀 ∈
(ℤ≥‘𝑁) → (𝑁 = 𝑀 ↔ 𝑀 ≤ 𝑁)) | 
| 23 | 22 | biimprcd 160 | 
. . . . . . . 8
⊢ (𝑀 ≤ 𝑁 → (𝑀 ∈ (ℤ≥‘𝑁) → 𝑁 = 𝑀)) | 
| 24 | 6 | eqeq1d 2205 | 
. . . . . . . 8
⊢ (𝑀 ≤ 𝑁 → (if(𝑀 ≤ 𝑁, 𝑁, 𝑀) = 𝑀 ↔ 𝑁 = 𝑀)) | 
| 25 | 23, 24 | sylibrd 169 | 
. . . . . . 7
⊢ (𝑀 ≤ 𝑁 → (𝑀 ∈ (ℤ≥‘𝑁) → if(𝑀 ≤ 𝑁, 𝑁, 𝑀) = 𝑀)) | 
| 26 | 25 | com12 30 | 
. . . . . 6
⊢ (𝑀 ∈
(ℤ≥‘𝑁) → (𝑀 ≤ 𝑁 → if(𝑀 ≤ 𝑁, 𝑁, 𝑀) = 𝑀)) | 
| 27 |   | iffalse 3569 | 
. . . . . . 7
⊢ (¬
𝑀 ≤ 𝑁 → if(𝑀 ≤ 𝑁, 𝑁, 𝑀) = 𝑀) | 
| 28 | 27 | a1i 9 | 
. . . . . 6
⊢ (𝑀 ∈
(ℤ≥‘𝑁) → (¬ 𝑀 ≤ 𝑁 → if(𝑀 ≤ 𝑁, 𝑁, 𝑀) = 𝑀)) | 
| 29 |   | zdcle 9402 | 
. . . . . . . 8
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) →
DECID 𝑀 ≤
𝑁) | 
| 30 | 14, 13, 29 | syl2anc 411 | 
. . . . . . 7
⊢ (𝑀 ∈
(ℤ≥‘𝑁) → DECID 𝑀 ≤ 𝑁) | 
| 31 |   | df-dc 836 | 
. . . . . . 7
⊢
(DECID 𝑀 ≤ 𝑁 ↔ (𝑀 ≤ 𝑁 ∨ ¬ 𝑀 ≤ 𝑁)) | 
| 32 | 30, 31 | sylib 122 | 
. . . . . 6
⊢ (𝑀 ∈
(ℤ≥‘𝑁) → (𝑀 ≤ 𝑁 ∨ ¬ 𝑀 ≤ 𝑁)) | 
| 33 | 26, 28, 32 | mpjaod 719 | 
. . . . 5
⊢ (𝑀 ∈
(ℤ≥‘𝑁) → if(𝑀 ≤ 𝑁, 𝑁, 𝑀) = 𝑀) | 
| 34 | 33 | fveq2d 5562 | 
. . . 4
⊢ (𝑀 ∈
(ℤ≥‘𝑁) →
(ℤ≥‘if(𝑀 ≤ 𝑁, 𝑁, 𝑀)) = (ℤ≥‘𝑀)) | 
| 35 | 12, 34 | eqtr4d 2232 | 
. . 3
⊢ (𝑀 ∈
(ℤ≥‘𝑁) →
((ℤ≥‘𝑀) ∩ (ℤ≥‘𝑁)) =
(ℤ≥‘if(𝑀 ≤ 𝑁, 𝑁, 𝑀))) | 
| 36 | 9, 35 | jaoi 717 | 
. 2
⊢ ((𝑁 ∈
(ℤ≥‘𝑀) ∨ 𝑀 ∈ (ℤ≥‘𝑁)) →
((ℤ≥‘𝑀) ∩ (ℤ≥‘𝑁)) =
(ℤ≥‘if(𝑀 ≤ 𝑁, 𝑁, 𝑀))) | 
| 37 | 1, 36 | syl 14 | 
1
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) →
((ℤ≥‘𝑀) ∩ (ℤ≥‘𝑁)) =
(ℤ≥‘if(𝑀 ≤ 𝑁, 𝑁, 𝑀))) |