Proof of Theorem uzin
Step | Hyp | Ref
| Expression |
1 | | uztric 9508 |
. 2
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ∈
(ℤ≥‘𝑀) ∨ 𝑀 ∈ (ℤ≥‘𝑁))) |
2 | | uzss 9507 |
. . . . 5
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → (ℤ≥‘𝑁) ⊆
(ℤ≥‘𝑀)) |
3 | | sseqin2 3346 |
. . . . 5
⊢
((ℤ≥‘𝑁) ⊆
(ℤ≥‘𝑀) ↔
((ℤ≥‘𝑀) ∩ (ℤ≥‘𝑁)) =
(ℤ≥‘𝑁)) |
4 | 2, 3 | sylib 121 |
. . . 4
⊢ (𝑁 ∈
(ℤ≥‘𝑀) →
((ℤ≥‘𝑀) ∩ (ℤ≥‘𝑁)) =
(ℤ≥‘𝑁)) |
5 | | eluzle 9499 |
. . . . . 6
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → 𝑀 ≤ 𝑁) |
6 | | iftrue 3531 |
. . . . . 6
⊢ (𝑀 ≤ 𝑁 → if(𝑀 ≤ 𝑁, 𝑁, 𝑀) = 𝑁) |
7 | 5, 6 | syl 14 |
. . . . 5
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → if(𝑀 ≤ 𝑁, 𝑁, 𝑀) = 𝑁) |
8 | 7 | fveq2d 5500 |
. . . 4
⊢ (𝑁 ∈
(ℤ≥‘𝑀) →
(ℤ≥‘if(𝑀 ≤ 𝑁, 𝑁, 𝑀)) = (ℤ≥‘𝑁)) |
9 | 4, 8 | eqtr4d 2206 |
. . 3
⊢ (𝑁 ∈
(ℤ≥‘𝑀) →
((ℤ≥‘𝑀) ∩ (ℤ≥‘𝑁)) =
(ℤ≥‘if(𝑀 ≤ 𝑁, 𝑁, 𝑀))) |
10 | | uzss 9507 |
. . . . 5
⊢ (𝑀 ∈
(ℤ≥‘𝑁) → (ℤ≥‘𝑀) ⊆
(ℤ≥‘𝑁)) |
11 | | df-ss 3134 |
. . . . 5
⊢
((ℤ≥‘𝑀) ⊆
(ℤ≥‘𝑁) ↔
((ℤ≥‘𝑀) ∩ (ℤ≥‘𝑁)) =
(ℤ≥‘𝑀)) |
12 | 10, 11 | sylib 121 |
. . . 4
⊢ (𝑀 ∈
(ℤ≥‘𝑁) →
((ℤ≥‘𝑀) ∩ (ℤ≥‘𝑁)) =
(ℤ≥‘𝑀)) |
13 | | eluzel2 9492 |
. . . . . . . . . . 11
⊢ (𝑀 ∈
(ℤ≥‘𝑁) → 𝑁 ∈ ℤ) |
14 | | eluzelz 9496 |
. . . . . . . . . . 11
⊢ (𝑀 ∈
(ℤ≥‘𝑁) → 𝑀 ∈ ℤ) |
15 | | zre 9216 |
. . . . . . . . . . . 12
⊢ (𝑁 ∈ ℤ → 𝑁 ∈
ℝ) |
16 | | zre 9216 |
. . . . . . . . . . . 12
⊢ (𝑀 ∈ ℤ → 𝑀 ∈
ℝ) |
17 | | letri3 8000 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ) → (𝑁 = 𝑀 ↔ (𝑁 ≤ 𝑀 ∧ 𝑀 ≤ 𝑁))) |
18 | 15, 16, 17 | syl2an 287 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑁 = 𝑀 ↔ (𝑁 ≤ 𝑀 ∧ 𝑀 ≤ 𝑁))) |
19 | 13, 14, 18 | syl2anc 409 |
. . . . . . . . . 10
⊢ (𝑀 ∈
(ℤ≥‘𝑁) → (𝑁 = 𝑀 ↔ (𝑁 ≤ 𝑀 ∧ 𝑀 ≤ 𝑁))) |
20 | | eluzle 9499 |
. . . . . . . . . . 11
⊢ (𝑀 ∈
(ℤ≥‘𝑁) → 𝑁 ≤ 𝑀) |
21 | 20 | biantrurd 303 |
. . . . . . . . . 10
⊢ (𝑀 ∈
(ℤ≥‘𝑁) → (𝑀 ≤ 𝑁 ↔ (𝑁 ≤ 𝑀 ∧ 𝑀 ≤ 𝑁))) |
22 | 19, 21 | bitr4d 190 |
. . . . . . . . 9
⊢ (𝑀 ∈
(ℤ≥‘𝑁) → (𝑁 = 𝑀 ↔ 𝑀 ≤ 𝑁)) |
23 | 22 | biimprcd 159 |
. . . . . . . 8
⊢ (𝑀 ≤ 𝑁 → (𝑀 ∈ (ℤ≥‘𝑁) → 𝑁 = 𝑀)) |
24 | 6 | eqeq1d 2179 |
. . . . . . . 8
⊢ (𝑀 ≤ 𝑁 → (if(𝑀 ≤ 𝑁, 𝑁, 𝑀) = 𝑀 ↔ 𝑁 = 𝑀)) |
25 | 23, 24 | sylibrd 168 |
. . . . . . 7
⊢ (𝑀 ≤ 𝑁 → (𝑀 ∈ (ℤ≥‘𝑁) → if(𝑀 ≤ 𝑁, 𝑁, 𝑀) = 𝑀)) |
26 | 25 | com12 30 |
. . . . . 6
⊢ (𝑀 ∈
(ℤ≥‘𝑁) → (𝑀 ≤ 𝑁 → if(𝑀 ≤ 𝑁, 𝑁, 𝑀) = 𝑀)) |
27 | | iffalse 3534 |
. . . . . . 7
⊢ (¬
𝑀 ≤ 𝑁 → if(𝑀 ≤ 𝑁, 𝑁, 𝑀) = 𝑀) |
28 | 27 | a1i 9 |
. . . . . 6
⊢ (𝑀 ∈
(ℤ≥‘𝑁) → (¬ 𝑀 ≤ 𝑁 → if(𝑀 ≤ 𝑁, 𝑁, 𝑀) = 𝑀)) |
29 | | zdcle 9288 |
. . . . . . . 8
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) →
DECID 𝑀 ≤
𝑁) |
30 | 14, 13, 29 | syl2anc 409 |
. . . . . . 7
⊢ (𝑀 ∈
(ℤ≥‘𝑁) → DECID 𝑀 ≤ 𝑁) |
31 | | df-dc 830 |
. . . . . . 7
⊢
(DECID 𝑀 ≤ 𝑁 ↔ (𝑀 ≤ 𝑁 ∨ ¬ 𝑀 ≤ 𝑁)) |
32 | 30, 31 | sylib 121 |
. . . . . 6
⊢ (𝑀 ∈
(ℤ≥‘𝑁) → (𝑀 ≤ 𝑁 ∨ ¬ 𝑀 ≤ 𝑁)) |
33 | 26, 28, 32 | mpjaod 713 |
. . . . 5
⊢ (𝑀 ∈
(ℤ≥‘𝑁) → if(𝑀 ≤ 𝑁, 𝑁, 𝑀) = 𝑀) |
34 | 33 | fveq2d 5500 |
. . . 4
⊢ (𝑀 ∈
(ℤ≥‘𝑁) →
(ℤ≥‘if(𝑀 ≤ 𝑁, 𝑁, 𝑀)) = (ℤ≥‘𝑀)) |
35 | 12, 34 | eqtr4d 2206 |
. . 3
⊢ (𝑀 ∈
(ℤ≥‘𝑁) →
((ℤ≥‘𝑀) ∩ (ℤ≥‘𝑁)) =
(ℤ≥‘if(𝑀 ≤ 𝑁, 𝑁, 𝑀))) |
36 | 9, 35 | jaoi 711 |
. 2
⊢ ((𝑁 ∈
(ℤ≥‘𝑀) ∨ 𝑀 ∈ (ℤ≥‘𝑁)) →
((ℤ≥‘𝑀) ∩ (ℤ≥‘𝑁)) =
(ℤ≥‘if(𝑀 ≤ 𝑁, 𝑁, 𝑀))) |
37 | 1, 36 | syl 14 |
1
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) →
((ℤ≥‘𝑀) ∩ (ℤ≥‘𝑁)) =
(ℤ≥‘if(𝑀 ≤ 𝑁, 𝑁, 𝑀))) |