ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uzin GIF version

Theorem uzin 9519
Description: Intersection of two upper intervals of integers. (Contributed by Mario Carneiro, 24-Dec-2013.)
Assertion
Ref Expression
uzin ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((ℤ𝑀) ∩ (ℤ𝑁)) = (ℤ‘if(𝑀𝑁, 𝑁, 𝑀)))

Proof of Theorem uzin
StepHypRef Expression
1 uztric 9508 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ∈ (ℤ𝑀) ∨ 𝑀 ∈ (ℤ𝑁)))
2 uzss 9507 . . . . 5 (𝑁 ∈ (ℤ𝑀) → (ℤ𝑁) ⊆ (ℤ𝑀))
3 sseqin2 3346 . . . . 5 ((ℤ𝑁) ⊆ (ℤ𝑀) ↔ ((ℤ𝑀) ∩ (ℤ𝑁)) = (ℤ𝑁))
42, 3sylib 121 . . . 4 (𝑁 ∈ (ℤ𝑀) → ((ℤ𝑀) ∩ (ℤ𝑁)) = (ℤ𝑁))
5 eluzle 9499 . . . . . 6 (𝑁 ∈ (ℤ𝑀) → 𝑀𝑁)
6 iftrue 3531 . . . . . 6 (𝑀𝑁 → if(𝑀𝑁, 𝑁, 𝑀) = 𝑁)
75, 6syl 14 . . . . 5 (𝑁 ∈ (ℤ𝑀) → if(𝑀𝑁, 𝑁, 𝑀) = 𝑁)
87fveq2d 5500 . . . 4 (𝑁 ∈ (ℤ𝑀) → (ℤ‘if(𝑀𝑁, 𝑁, 𝑀)) = (ℤ𝑁))
94, 8eqtr4d 2206 . . 3 (𝑁 ∈ (ℤ𝑀) → ((ℤ𝑀) ∩ (ℤ𝑁)) = (ℤ‘if(𝑀𝑁, 𝑁, 𝑀)))
10 uzss 9507 . . . . 5 (𝑀 ∈ (ℤ𝑁) → (ℤ𝑀) ⊆ (ℤ𝑁))
11 df-ss 3134 . . . . 5 ((ℤ𝑀) ⊆ (ℤ𝑁) ↔ ((ℤ𝑀) ∩ (ℤ𝑁)) = (ℤ𝑀))
1210, 11sylib 121 . . . 4 (𝑀 ∈ (ℤ𝑁) → ((ℤ𝑀) ∩ (ℤ𝑁)) = (ℤ𝑀))
13 eluzel2 9492 . . . . . . . . . . 11 (𝑀 ∈ (ℤ𝑁) → 𝑁 ∈ ℤ)
14 eluzelz 9496 . . . . . . . . . . 11 (𝑀 ∈ (ℤ𝑁) → 𝑀 ∈ ℤ)
15 zre 9216 . . . . . . . . . . . 12 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
16 zre 9216 . . . . . . . . . . . 12 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
17 letri3 8000 . . . . . . . . . . . 12 ((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ) → (𝑁 = 𝑀 ↔ (𝑁𝑀𝑀𝑁)))
1815, 16, 17syl2an 287 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑁 = 𝑀 ↔ (𝑁𝑀𝑀𝑁)))
1913, 14, 18syl2anc 409 . . . . . . . . . 10 (𝑀 ∈ (ℤ𝑁) → (𝑁 = 𝑀 ↔ (𝑁𝑀𝑀𝑁)))
20 eluzle 9499 . . . . . . . . . . 11 (𝑀 ∈ (ℤ𝑁) → 𝑁𝑀)
2120biantrurd 303 . . . . . . . . . 10 (𝑀 ∈ (ℤ𝑁) → (𝑀𝑁 ↔ (𝑁𝑀𝑀𝑁)))
2219, 21bitr4d 190 . . . . . . . . 9 (𝑀 ∈ (ℤ𝑁) → (𝑁 = 𝑀𝑀𝑁))
2322biimprcd 159 . . . . . . . 8 (𝑀𝑁 → (𝑀 ∈ (ℤ𝑁) → 𝑁 = 𝑀))
246eqeq1d 2179 . . . . . . . 8 (𝑀𝑁 → (if(𝑀𝑁, 𝑁, 𝑀) = 𝑀𝑁 = 𝑀))
2523, 24sylibrd 168 . . . . . . 7 (𝑀𝑁 → (𝑀 ∈ (ℤ𝑁) → if(𝑀𝑁, 𝑁, 𝑀) = 𝑀))
2625com12 30 . . . . . 6 (𝑀 ∈ (ℤ𝑁) → (𝑀𝑁 → if(𝑀𝑁, 𝑁, 𝑀) = 𝑀))
27 iffalse 3534 . . . . . . 7 𝑀𝑁 → if(𝑀𝑁, 𝑁, 𝑀) = 𝑀)
2827a1i 9 . . . . . 6 (𝑀 ∈ (ℤ𝑁) → (¬ 𝑀𝑁 → if(𝑀𝑁, 𝑁, 𝑀) = 𝑀))
29 zdcle 9288 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID 𝑀𝑁)
3014, 13, 29syl2anc 409 . . . . . . 7 (𝑀 ∈ (ℤ𝑁) → DECID 𝑀𝑁)
31 df-dc 830 . . . . . . 7 (DECID 𝑀𝑁 ↔ (𝑀𝑁 ∨ ¬ 𝑀𝑁))
3230, 31sylib 121 . . . . . 6 (𝑀 ∈ (ℤ𝑁) → (𝑀𝑁 ∨ ¬ 𝑀𝑁))
3326, 28, 32mpjaod 713 . . . . 5 (𝑀 ∈ (ℤ𝑁) → if(𝑀𝑁, 𝑁, 𝑀) = 𝑀)
3433fveq2d 5500 . . . 4 (𝑀 ∈ (ℤ𝑁) → (ℤ‘if(𝑀𝑁, 𝑁, 𝑀)) = (ℤ𝑀))
3512, 34eqtr4d 2206 . . 3 (𝑀 ∈ (ℤ𝑁) → ((ℤ𝑀) ∩ (ℤ𝑁)) = (ℤ‘if(𝑀𝑁, 𝑁, 𝑀)))
369, 35jaoi 711 . 2 ((𝑁 ∈ (ℤ𝑀) ∨ 𝑀 ∈ (ℤ𝑁)) → ((ℤ𝑀) ∩ (ℤ𝑁)) = (ℤ‘if(𝑀𝑁, 𝑁, 𝑀)))
371, 36syl 14 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((ℤ𝑀) ∩ (ℤ𝑁)) = (ℤ‘if(𝑀𝑁, 𝑁, 𝑀)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wo 703  DECID wdc 829   = wceq 1348  wcel 2141  cin 3120  wss 3121  ifcif 3526   class class class wbr 3989  cfv 5198  cr 7773  cle 7955  cz 9212  cuz 9487
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-addcom 7874  ax-addass 7876  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-0id 7882  ax-rnegex 7883  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-inn 8879  df-n0 9136  df-z 9213  df-uz 9488
This theorem is referenced by:  uzin2  10951  explecnv  11468
  Copyright terms: Public domain W3C validator