| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > brcnvg | GIF version | ||
| Description: The converse of a binary relation swaps arguments. Theorem 11 of [Suppes] p. 61. (Contributed by NM, 10-Oct-2005.) |
| Ref | Expression |
|---|---|
| brcnvg | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴◡𝑅𝐵 ↔ 𝐵𝑅𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opelcnvg 4876 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (〈𝐴, 𝐵〉 ∈ ◡𝑅 ↔ 〈𝐵, 𝐴〉 ∈ 𝑅)) | |
| 2 | df-br 4060 | . 2 ⊢ (𝐴◡𝑅𝐵 ↔ 〈𝐴, 𝐵〉 ∈ ◡𝑅) | |
| 3 | df-br 4060 | . 2 ⊢ (𝐵𝑅𝐴 ↔ 〈𝐵, 𝐴〉 ∈ 𝑅) | |
| 4 | 1, 2, 3 | 3bitr4g 223 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴◡𝑅𝐵 ↔ 𝐵𝑅𝐴)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∈ wcel 2178 〈cop 3646 class class class wbr 4059 ◡ccnv 4692 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-v 2778 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-br 4060 df-opab 4122 df-cnv 4701 |
| This theorem is referenced by: brcnv 4879 brelrng 4928 eliniseg 5071 relbrcnvg 5080 brcodir 5089 sefvex 5620 foeqcnvco 5882 isocnv2 5904 ersym 6655 brdifun 6670 ecidg 6709 cnvti 7147 eqinfti 7148 inflbti 7152 infglbti 7153 negiso 9063 xrnegiso 11688 znleval 14530 pw1nct 16142 |
| Copyright terms: Public domain | W3C validator |