Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > cnvcnvres | GIF version |
Description: The double converse of the restriction of a class. (Contributed by NM, 3-Jun-2007.) |
Ref | Expression |
---|---|
cnvcnvres | ⊢ ◡◡(𝐴 ↾ 𝐵) = (◡◡𝐴 ↾ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relres 4928 | . . 3 ⊢ Rel (𝐴 ↾ 𝐵) | |
2 | dfrel2 5071 | . . 3 ⊢ (Rel (𝐴 ↾ 𝐵) ↔ ◡◡(𝐴 ↾ 𝐵) = (𝐴 ↾ 𝐵)) | |
3 | 1, 2 | mpbi 145 | . 2 ⊢ ◡◡(𝐴 ↾ 𝐵) = (𝐴 ↾ 𝐵) |
4 | rescnvcnv 5083 | . 2 ⊢ (◡◡𝐴 ↾ 𝐵) = (𝐴 ↾ 𝐵) | |
5 | 3, 4 | eqtr4i 2199 | 1 ⊢ ◡◡(𝐴 ↾ 𝐵) = (◡◡𝐴 ↾ 𝐵) |
Colors of variables: wff set class |
Syntax hints: = wceq 1353 ◡ccnv 4619 ↾ cres 4622 Rel wrel 4625 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ral 2458 df-rex 2459 df-v 2737 df-un 3131 df-in 3133 df-ss 3140 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-br 3999 df-opab 4060 df-xp 4626 df-rel 4627 df-cnv 4628 df-res 4632 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |