ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rescnvcnv GIF version

Theorem rescnvcnv 5066
Description: The restriction of the double converse of a class. (Contributed by NM, 8-Apr-2007.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
rescnvcnv (𝐴𝐵) = (𝐴𝐵)

Proof of Theorem rescnvcnv
StepHypRef Expression
1 cnvcnv2 5057 . . 3 𝐴 = (𝐴 ↾ V)
21reseq1i 4880 . 2 (𝐴𝐵) = ((𝐴 ↾ V) ↾ 𝐵)
3 resres 4896 . 2 ((𝐴 ↾ V) ↾ 𝐵) = (𝐴 ↾ (V ∩ 𝐵))
4 ssv 3164 . . . 4 𝐵 ⊆ V
5 sseqin2 3341 . . . 4 (𝐵 ⊆ V ↔ (V ∩ 𝐵) = 𝐵)
64, 5mpbi 144 . . 3 (V ∩ 𝐵) = 𝐵
76reseq2i 4881 . 2 (𝐴 ↾ (V ∩ 𝐵)) = (𝐴𝐵)
82, 3, 73eqtri 2190 1 (𝐴𝐵) = (𝐴𝐵)
Colors of variables: wff set class
Syntax hints:   = wceq 1343  Vcvv 2726  cin 3115  wss 3116  ccnv 4603  cres 4606
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-br 3983  df-opab 4044  df-xp 4610  df-rel 4611  df-cnv 4612  df-res 4616
This theorem is referenced by:  cnvcnvres  5067  imacnvcnv  5068  resdm2  5094  resdmres  5095  coires1  5121  cocnvres  5128  f1oresrab  5650
  Copyright terms: Public domain W3C validator