![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > rescnvcnv | GIF version |
Description: The restriction of the double converse of a class. (Contributed by NM, 8-Apr-2007.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
Ref | Expression |
---|---|
rescnvcnv | ⊢ (◡◡𝐴 ↾ 𝐵) = (𝐴 ↾ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvcnv2 5120 | . . 3 ⊢ ◡◡𝐴 = (𝐴 ↾ V) | |
2 | 1 | reseq1i 4939 | . 2 ⊢ (◡◡𝐴 ↾ 𝐵) = ((𝐴 ↾ V) ↾ 𝐵) |
3 | resres 4955 | . 2 ⊢ ((𝐴 ↾ V) ↾ 𝐵) = (𝐴 ↾ (V ∩ 𝐵)) | |
4 | ssv 3202 | . . . 4 ⊢ 𝐵 ⊆ V | |
5 | sseqin2 3379 | . . . 4 ⊢ (𝐵 ⊆ V ↔ (V ∩ 𝐵) = 𝐵) | |
6 | 4, 5 | mpbi 145 | . . 3 ⊢ (V ∩ 𝐵) = 𝐵 |
7 | 6 | reseq2i 4940 | . 2 ⊢ (𝐴 ↾ (V ∩ 𝐵)) = (𝐴 ↾ 𝐵) |
8 | 2, 3, 7 | 3eqtri 2218 | 1 ⊢ (◡◡𝐴 ↾ 𝐵) = (𝐴 ↾ 𝐵) |
Colors of variables: wff set class |
Syntax hints: = wceq 1364 Vcvv 2760 ∩ cin 3153 ⊆ wss 3154 ◡ccnv 4659 ↾ cres 4662 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-br 4031 df-opab 4092 df-xp 4666 df-rel 4667 df-cnv 4668 df-res 4672 |
This theorem is referenced by: cnvcnvres 5130 imacnvcnv 5131 resdm2 5157 resdmres 5158 coires1 5184 cocnvres 5191 f1oresrab 5724 |
Copyright terms: Public domain | W3C validator |