ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rescnvcnv GIF version

Theorem rescnvcnv 5145
Description: The restriction of the double converse of a class. (Contributed by NM, 8-Apr-2007.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
rescnvcnv (𝐴𝐵) = (𝐴𝐵)

Proof of Theorem rescnvcnv
StepHypRef Expression
1 cnvcnv2 5136 . . 3 𝐴 = (𝐴 ↾ V)
21reseq1i 4955 . 2 (𝐴𝐵) = ((𝐴 ↾ V) ↾ 𝐵)
3 resres 4971 . 2 ((𝐴 ↾ V) ↾ 𝐵) = (𝐴 ↾ (V ∩ 𝐵))
4 ssv 3215 . . . 4 𝐵 ⊆ V
5 sseqin2 3392 . . . 4 (𝐵 ⊆ V ↔ (V ∩ 𝐵) = 𝐵)
64, 5mpbi 145 . . 3 (V ∩ 𝐵) = 𝐵
76reseq2i 4956 . 2 (𝐴 ↾ (V ∩ 𝐵)) = (𝐴𝐵)
82, 3, 73eqtri 2230 1 (𝐴𝐵) = (𝐴𝐵)
Colors of variables: wff set class
Syntax hints:   = wceq 1373  Vcvv 2772  cin 3165  wss 3166  ccnv 4674  cres 4677
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-br 4045  df-opab 4106  df-xp 4681  df-rel 4682  df-cnv 4683  df-res 4687
This theorem is referenced by:  cnvcnvres  5146  imacnvcnv  5147  resdm2  5173  resdmres  5174  coires1  5200  cocnvres  5207  f1oresrab  5745
  Copyright terms: Public domain W3C validator