| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rescnvcnv | GIF version | ||
| Description: The restriction of the double converse of a class. (Contributed by NM, 8-Apr-2007.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| Ref | Expression |
|---|---|
| rescnvcnv | ⊢ (◡◡𝐴 ↾ 𝐵) = (𝐴 ↾ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnvcnv2 5123 | . . 3 ⊢ ◡◡𝐴 = (𝐴 ↾ V) | |
| 2 | 1 | reseq1i 4942 | . 2 ⊢ (◡◡𝐴 ↾ 𝐵) = ((𝐴 ↾ V) ↾ 𝐵) |
| 3 | resres 4958 | . 2 ⊢ ((𝐴 ↾ V) ↾ 𝐵) = (𝐴 ↾ (V ∩ 𝐵)) | |
| 4 | ssv 3205 | . . . 4 ⊢ 𝐵 ⊆ V | |
| 5 | sseqin2 3382 | . . . 4 ⊢ (𝐵 ⊆ V ↔ (V ∩ 𝐵) = 𝐵) | |
| 6 | 4, 5 | mpbi 145 | . . 3 ⊢ (V ∩ 𝐵) = 𝐵 |
| 7 | 6 | reseq2i 4943 | . 2 ⊢ (𝐴 ↾ (V ∩ 𝐵)) = (𝐴 ↾ 𝐵) |
| 8 | 2, 3, 7 | 3eqtri 2221 | 1 ⊢ (◡◡𝐴 ↾ 𝐵) = (𝐴 ↾ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1364 Vcvv 2763 ∩ cin 3156 ⊆ wss 3157 ◡ccnv 4662 ↾ cres 4665 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-br 4034 df-opab 4095 df-xp 4669 df-rel 4670 df-cnv 4671 df-res 4675 |
| This theorem is referenced by: cnvcnvres 5133 imacnvcnv 5134 resdm2 5160 resdmres 5161 coires1 5187 cocnvres 5194 f1oresrab 5727 |
| Copyright terms: Public domain | W3C validator |