| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rescnvcnv | GIF version | ||
| Description: The restriction of the double converse of a class. (Contributed by NM, 8-Apr-2007.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| Ref | Expression |
|---|---|
| rescnvcnv | ⊢ (◡◡𝐴 ↾ 𝐵) = (𝐴 ↾ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnvcnv2 5182 | . . 3 ⊢ ◡◡𝐴 = (𝐴 ↾ V) | |
| 2 | 1 | reseq1i 5001 | . 2 ⊢ (◡◡𝐴 ↾ 𝐵) = ((𝐴 ↾ V) ↾ 𝐵) |
| 3 | resres 5017 | . 2 ⊢ ((𝐴 ↾ V) ↾ 𝐵) = (𝐴 ↾ (V ∩ 𝐵)) | |
| 4 | ssv 3246 | . . . 4 ⊢ 𝐵 ⊆ V | |
| 5 | sseqin2 3423 | . . . 4 ⊢ (𝐵 ⊆ V ↔ (V ∩ 𝐵) = 𝐵) | |
| 6 | 4, 5 | mpbi 145 | . . 3 ⊢ (V ∩ 𝐵) = 𝐵 |
| 7 | 6 | reseq2i 5002 | . 2 ⊢ (𝐴 ↾ (V ∩ 𝐵)) = (𝐴 ↾ 𝐵) |
| 8 | 2, 3, 7 | 3eqtri 2254 | 1 ⊢ (◡◡𝐴 ↾ 𝐵) = (𝐴 ↾ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1395 Vcvv 2799 ∩ cin 3196 ⊆ wss 3197 ◡ccnv 4718 ↾ cres 4721 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-br 4084 df-opab 4146 df-xp 4725 df-rel 4726 df-cnv 4727 df-res 4731 |
| This theorem is referenced by: cnvcnvres 5192 imacnvcnv 5193 resdm2 5219 resdmres 5220 coires1 5246 cocnvres 5253 f1oresrab 5800 |
| Copyright terms: Public domain | W3C validator |