ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rescnvcnv GIF version

Theorem rescnvcnv 5132
Description: The restriction of the double converse of a class. (Contributed by NM, 8-Apr-2007.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
rescnvcnv (𝐴𝐵) = (𝐴𝐵)

Proof of Theorem rescnvcnv
StepHypRef Expression
1 cnvcnv2 5123 . . 3 𝐴 = (𝐴 ↾ V)
21reseq1i 4942 . 2 (𝐴𝐵) = ((𝐴 ↾ V) ↾ 𝐵)
3 resres 4958 . 2 ((𝐴 ↾ V) ↾ 𝐵) = (𝐴 ↾ (V ∩ 𝐵))
4 ssv 3205 . . . 4 𝐵 ⊆ V
5 sseqin2 3382 . . . 4 (𝐵 ⊆ V ↔ (V ∩ 𝐵) = 𝐵)
64, 5mpbi 145 . . 3 (V ∩ 𝐵) = 𝐵
76reseq2i 4943 . 2 (𝐴 ↾ (V ∩ 𝐵)) = (𝐴𝐵)
82, 3, 73eqtri 2221 1 (𝐴𝐵) = (𝐴𝐵)
Colors of variables: wff set class
Syntax hints:   = wceq 1364  Vcvv 2763  cin 3156  wss 3157  ccnv 4662  cres 4665
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-br 4034  df-opab 4095  df-xp 4669  df-rel 4670  df-cnv 4671  df-res 4675
This theorem is referenced by:  cnvcnvres  5133  imacnvcnv  5134  resdm2  5160  resdmres  5161  coires1  5187  cocnvres  5194  f1oresrab  5727
  Copyright terms: Public domain W3C validator