ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fznlem GIF version

Theorem fznlem 9852
Description: A finite set of sequential integers is empty if the bounds are reversed. (Contributed by Jim Kingdon, 16-Apr-2020.)
Assertion
Ref Expression
fznlem ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 < 𝑀 → (𝑀...𝑁) = ∅))

Proof of Theorem fznlem
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 zre 9082 . . . . . . . . . . 11 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
2 zre 9082 . . . . . . . . . . 11 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
3 lenlt 7864 . . . . . . . . . . 11 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑀𝑁 ↔ ¬ 𝑁 < 𝑀))
41, 2, 3syl2an 287 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁 ↔ ¬ 𝑁 < 𝑀))
54biimpd 143 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁 → ¬ 𝑁 < 𝑀))
65con2d 614 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 < 𝑀 → ¬ 𝑀𝑁))
76imp 123 . . . . . . 7 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 < 𝑀) → ¬ 𝑀𝑁)
87adantr 274 . . . . . 6 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 < 𝑀) ∧ 𝑘 ∈ ℤ) → ¬ 𝑀𝑁)
9 simplll 523 . . . . . . . 8 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 < 𝑀) ∧ 𝑘 ∈ ℤ) → 𝑀 ∈ ℤ)
109zred 9197 . . . . . . 7 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 < 𝑀) ∧ 𝑘 ∈ ℤ) → 𝑀 ∈ ℝ)
11 simpr 109 . . . . . . . 8 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 < 𝑀) ∧ 𝑘 ∈ ℤ) → 𝑘 ∈ ℤ)
1211zred 9197 . . . . . . 7 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 < 𝑀) ∧ 𝑘 ∈ ℤ) → 𝑘 ∈ ℝ)
13 simpllr 524 . . . . . . . 8 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 < 𝑀) ∧ 𝑘 ∈ ℤ) → 𝑁 ∈ ℤ)
1413zred 9197 . . . . . . 7 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 < 𝑀) ∧ 𝑘 ∈ ℤ) → 𝑁 ∈ ℝ)
15 letr 7871 . . . . . . 7 ((𝑀 ∈ ℝ ∧ 𝑘 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((𝑀𝑘𝑘𝑁) → 𝑀𝑁))
1610, 12, 14, 15syl3anc 1217 . . . . . 6 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 < 𝑀) ∧ 𝑘 ∈ ℤ) → ((𝑀𝑘𝑘𝑁) → 𝑀𝑁))
178, 16mtod 653 . . . . 5 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 < 𝑀) ∧ 𝑘 ∈ ℤ) → ¬ (𝑀𝑘𝑘𝑁))
1817ralrimiva 2508 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 < 𝑀) → ∀𝑘 ∈ ℤ ¬ (𝑀𝑘𝑘𝑁))
19 rabeq0 3397 . . . 4 ({𝑘 ∈ ℤ ∣ (𝑀𝑘𝑘𝑁)} = ∅ ↔ ∀𝑘 ∈ ℤ ¬ (𝑀𝑘𝑘𝑁))
2018, 19sylibr 133 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 < 𝑀) → {𝑘 ∈ ℤ ∣ (𝑀𝑘𝑘𝑁)} = ∅)
21 fzval 9823 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀...𝑁) = {𝑘 ∈ ℤ ∣ (𝑀𝑘𝑘𝑁)})
2221eqeq1d 2149 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀...𝑁) = ∅ ↔ {𝑘 ∈ ℤ ∣ (𝑀𝑘𝑘𝑁)} = ∅))
2322adantr 274 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 < 𝑀) → ((𝑀...𝑁) = ∅ ↔ {𝑘 ∈ ℤ ∣ (𝑀𝑘𝑘𝑁)} = ∅))
2420, 23mpbird 166 . 2 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 < 𝑀) → (𝑀...𝑁) = ∅)
2524ex 114 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 < 𝑀 → (𝑀...𝑁) = ∅))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104   = wceq 1332  wcel 1481  wral 2417  {crab 2421  c0 3368   class class class wbr 3937  (class class class)co 5782  cr 7643   < clt 7824  cle 7825  cz 9078  ...cfz 9821
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-cnex 7735  ax-resscn 7736  ax-pre-ltwlin 7757
This theorem depends on definitions:  df-bi 116  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-rab 2426  df-v 2691  df-sbc 2914  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-br 3938  df-opab 3998  df-id 4223  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-iota 5096  df-fun 5133  df-fv 5139  df-ov 5785  df-oprab 5786  df-mpo 5787  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830  df-neg 7960  df-z 9079  df-fz 9822
This theorem is referenced by:  fzn  9853
  Copyright terms: Public domain W3C validator