ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fznlem GIF version

Theorem fznlem 10073
Description: A finite set of sequential integers is empty if the bounds are reversed. (Contributed by Jim Kingdon, 16-Apr-2020.)
Assertion
Ref Expression
fznlem ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 < 𝑀 → (𝑀...𝑁) = ∅))

Proof of Theorem fznlem
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 zre 9288 . . . . . . . . . . 11 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
2 zre 9288 . . . . . . . . . . 11 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
3 lenlt 8064 . . . . . . . . . . 11 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑀𝑁 ↔ ¬ 𝑁 < 𝑀))
41, 2, 3syl2an 289 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁 ↔ ¬ 𝑁 < 𝑀))
54biimpd 144 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁 → ¬ 𝑁 < 𝑀))
65con2d 625 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 < 𝑀 → ¬ 𝑀𝑁))
76imp 124 . . . . . . 7 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 < 𝑀) → ¬ 𝑀𝑁)
87adantr 276 . . . . . 6 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 < 𝑀) ∧ 𝑘 ∈ ℤ) → ¬ 𝑀𝑁)
9 simplll 533 . . . . . . . 8 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 < 𝑀) ∧ 𝑘 ∈ ℤ) → 𝑀 ∈ ℤ)
109zred 9406 . . . . . . 7 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 < 𝑀) ∧ 𝑘 ∈ ℤ) → 𝑀 ∈ ℝ)
11 simpr 110 . . . . . . . 8 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 < 𝑀) ∧ 𝑘 ∈ ℤ) → 𝑘 ∈ ℤ)
1211zred 9406 . . . . . . 7 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 < 𝑀) ∧ 𝑘 ∈ ℤ) → 𝑘 ∈ ℝ)
13 simpllr 534 . . . . . . . 8 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 < 𝑀) ∧ 𝑘 ∈ ℤ) → 𝑁 ∈ ℤ)
1413zred 9406 . . . . . . 7 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 < 𝑀) ∧ 𝑘 ∈ ℤ) → 𝑁 ∈ ℝ)
15 letr 8071 . . . . . . 7 ((𝑀 ∈ ℝ ∧ 𝑘 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((𝑀𝑘𝑘𝑁) → 𝑀𝑁))
1610, 12, 14, 15syl3anc 1249 . . . . . 6 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 < 𝑀) ∧ 𝑘 ∈ ℤ) → ((𝑀𝑘𝑘𝑁) → 𝑀𝑁))
178, 16mtod 664 . . . . 5 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 < 𝑀) ∧ 𝑘 ∈ ℤ) → ¬ (𝑀𝑘𝑘𝑁))
1817ralrimiva 2563 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 < 𝑀) → ∀𝑘 ∈ ℤ ¬ (𝑀𝑘𝑘𝑁))
19 rabeq0 3467 . . . 4 ({𝑘 ∈ ℤ ∣ (𝑀𝑘𝑘𝑁)} = ∅ ↔ ∀𝑘 ∈ ℤ ¬ (𝑀𝑘𝑘𝑁))
2018, 19sylibr 134 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 < 𝑀) → {𝑘 ∈ ℤ ∣ (𝑀𝑘𝑘𝑁)} = ∅)
21 fzval 10042 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀...𝑁) = {𝑘 ∈ ℤ ∣ (𝑀𝑘𝑘𝑁)})
2221eqeq1d 2198 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀...𝑁) = ∅ ↔ {𝑘 ∈ ℤ ∣ (𝑀𝑘𝑘𝑁)} = ∅))
2322adantr 276 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 < 𝑀) → ((𝑀...𝑁) = ∅ ↔ {𝑘 ∈ ℤ ∣ (𝑀𝑘𝑘𝑁)} = ∅))
2420, 23mpbird 167 . 2 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 < 𝑀) → (𝑀...𝑁) = ∅)
2524ex 115 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 < 𝑀 → (𝑀...𝑁) = ∅))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105   = wceq 1364  wcel 2160  wral 2468  {crab 2472  c0 3437   class class class wbr 4018  (class class class)co 5897  cr 7841   < clt 8023  cle 8024  cz 9284  ...cfz 10040
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-cnex 7933  ax-resscn 7934  ax-pre-ltwlin 7955
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-rab 2477  df-v 2754  df-sbc 2978  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-br 4019  df-opab 4080  df-id 4311  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-iota 5196  df-fun 5237  df-fv 5243  df-ov 5900  df-oprab 5901  df-mpo 5902  df-pnf 8025  df-mnf 8026  df-xr 8027  df-ltxr 8028  df-le 8029  df-neg 8162  df-z 9285  df-fz 10041
This theorem is referenced by:  fzn  10074
  Copyright terms: Public domain W3C validator