ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fznlem GIF version

Theorem fznlem 9814
Description: A finite set of sequential integers is empty if the bounds are reversed. (Contributed by Jim Kingdon, 16-Apr-2020.)
Assertion
Ref Expression
fznlem ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 < 𝑀 → (𝑀...𝑁) = ∅))

Proof of Theorem fznlem
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 zre 9051 . . . . . . . . . . 11 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
2 zre 9051 . . . . . . . . . . 11 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
3 lenlt 7833 . . . . . . . . . . 11 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑀𝑁 ↔ ¬ 𝑁 < 𝑀))
41, 2, 3syl2an 287 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁 ↔ ¬ 𝑁 < 𝑀))
54biimpd 143 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁 → ¬ 𝑁 < 𝑀))
65con2d 613 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 < 𝑀 → ¬ 𝑀𝑁))
76imp 123 . . . . . . 7 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 < 𝑀) → ¬ 𝑀𝑁)
87adantr 274 . . . . . 6 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 < 𝑀) ∧ 𝑘 ∈ ℤ) → ¬ 𝑀𝑁)
9 simplll 522 . . . . . . . 8 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 < 𝑀) ∧ 𝑘 ∈ ℤ) → 𝑀 ∈ ℤ)
109zred 9166 . . . . . . 7 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 < 𝑀) ∧ 𝑘 ∈ ℤ) → 𝑀 ∈ ℝ)
11 simpr 109 . . . . . . . 8 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 < 𝑀) ∧ 𝑘 ∈ ℤ) → 𝑘 ∈ ℤ)
1211zred 9166 . . . . . . 7 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 < 𝑀) ∧ 𝑘 ∈ ℤ) → 𝑘 ∈ ℝ)
13 simpllr 523 . . . . . . . 8 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 < 𝑀) ∧ 𝑘 ∈ ℤ) → 𝑁 ∈ ℤ)
1413zred 9166 . . . . . . 7 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 < 𝑀) ∧ 𝑘 ∈ ℤ) → 𝑁 ∈ ℝ)
15 letr 7840 . . . . . . 7 ((𝑀 ∈ ℝ ∧ 𝑘 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((𝑀𝑘𝑘𝑁) → 𝑀𝑁))
1610, 12, 14, 15syl3anc 1216 . . . . . 6 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 < 𝑀) ∧ 𝑘 ∈ ℤ) → ((𝑀𝑘𝑘𝑁) → 𝑀𝑁))
178, 16mtod 652 . . . . 5 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 < 𝑀) ∧ 𝑘 ∈ ℤ) → ¬ (𝑀𝑘𝑘𝑁))
1817ralrimiva 2503 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 < 𝑀) → ∀𝑘 ∈ ℤ ¬ (𝑀𝑘𝑘𝑁))
19 rabeq0 3387 . . . 4 ({𝑘 ∈ ℤ ∣ (𝑀𝑘𝑘𝑁)} = ∅ ↔ ∀𝑘 ∈ ℤ ¬ (𝑀𝑘𝑘𝑁))
2018, 19sylibr 133 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 < 𝑀) → {𝑘 ∈ ℤ ∣ (𝑀𝑘𝑘𝑁)} = ∅)
21 fzval 9785 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀...𝑁) = {𝑘 ∈ ℤ ∣ (𝑀𝑘𝑘𝑁)})
2221eqeq1d 2146 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀...𝑁) = ∅ ↔ {𝑘 ∈ ℤ ∣ (𝑀𝑘𝑘𝑁)} = ∅))
2322adantr 274 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 < 𝑀) → ((𝑀...𝑁) = ∅ ↔ {𝑘 ∈ ℤ ∣ (𝑀𝑘𝑘𝑁)} = ∅))
2420, 23mpbird 166 . 2 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 < 𝑀) → (𝑀...𝑁) = ∅)
2524ex 114 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 < 𝑀 → (𝑀...𝑁) = ∅))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104   = wceq 1331  wcel 1480  wral 2414  {crab 2418  c0 3358   class class class wbr 3924  (class class class)co 5767  cr 7612   < clt 7793  cle 7794  cz 9047  ...cfz 9783
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-sep 4041  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447  ax-cnex 7704  ax-resscn 7705  ax-pre-ltwlin 7726
This theorem depends on definitions:  df-bi 116  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-nel 2402  df-ral 2419  df-rex 2420  df-rab 2423  df-v 2683  df-sbc 2905  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-nul 3359  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-br 3925  df-opab 3985  df-id 4210  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-iota 5083  df-fun 5120  df-fv 5126  df-ov 5770  df-oprab 5771  df-mpo 5772  df-pnf 7795  df-mnf 7796  df-xr 7797  df-ltxr 7798  df-le 7799  df-neg 7929  df-z 9048  df-fz 9784
This theorem is referenced by:  fzn  9815
  Copyright terms: Public domain W3C validator