![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > btwnnz | GIF version |
Description: A number between an integer and its successor is not an integer. (Contributed by NM, 3-May-2005.) |
Ref | Expression |
---|---|
btwnnz | ⊢ ((𝐴 ∈ ℤ ∧ 𝐴 < 𝐵 ∧ 𝐵 < (𝐴 + 1)) → ¬ 𝐵 ∈ ℤ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zltp1le 8714 | . . . . . 6 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 < 𝐵 ↔ (𝐴 + 1) ≤ 𝐵)) | |
2 | peano2z 8696 | . . . . . . . 8 ⊢ (𝐴 ∈ ℤ → (𝐴 + 1) ∈ ℤ) | |
3 | zre 8664 | . . . . . . . 8 ⊢ ((𝐴 + 1) ∈ ℤ → (𝐴 + 1) ∈ ℝ) | |
4 | 2, 3 | syl 14 | . . . . . . 7 ⊢ (𝐴 ∈ ℤ → (𝐴 + 1) ∈ ℝ) |
5 | zre 8664 | . . . . . . 7 ⊢ (𝐵 ∈ ℤ → 𝐵 ∈ ℝ) | |
6 | lenlt 7482 | . . . . . . 7 ⊢ (((𝐴 + 1) ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 + 1) ≤ 𝐵 ↔ ¬ 𝐵 < (𝐴 + 1))) | |
7 | 4, 5, 6 | syl2an 283 | . . . . . 6 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 + 1) ≤ 𝐵 ↔ ¬ 𝐵 < (𝐴 + 1))) |
8 | 1, 7 | bitrd 186 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 < 𝐵 ↔ ¬ 𝐵 < (𝐴 + 1))) |
9 | 8 | biimpd 142 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 < 𝐵 → ¬ 𝐵 < (𝐴 + 1))) |
10 | 9 | impancom 256 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝐴 < 𝐵) → (𝐵 ∈ ℤ → ¬ 𝐵 < (𝐴 + 1))) |
11 | 10 | con2d 587 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝐴 < 𝐵) → (𝐵 < (𝐴 + 1) → ¬ 𝐵 ∈ ℤ)) |
12 | 11 | 3impia 1138 | 1 ⊢ ((𝐴 ∈ ℤ ∧ 𝐴 < 𝐵 ∧ 𝐵 < (𝐴 + 1)) → ¬ 𝐵 ∈ ℤ) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 102 ↔ wb 103 ∧ w3a 922 ∈ wcel 1436 class class class wbr 3814 (class class class)co 5594 ℝcr 7270 1c1 7272 + caddc 7274 < clt 7443 ≤ cle 7444 ℤcz 8660 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 577 ax-in2 578 ax-io 663 ax-5 1379 ax-7 1380 ax-gen 1381 ax-ie1 1425 ax-ie2 1426 ax-8 1438 ax-10 1439 ax-11 1440 ax-i12 1441 ax-bndl 1442 ax-4 1443 ax-13 1447 ax-14 1448 ax-17 1462 ax-i9 1466 ax-ial 1470 ax-i5r 1471 ax-ext 2067 ax-sep 3925 ax-pow 3977 ax-pr 4003 ax-un 4227 ax-setind 4319 ax-cnex 7357 ax-resscn 7358 ax-1cn 7359 ax-1re 7360 ax-icn 7361 ax-addcl 7362 ax-addrcl 7363 ax-mulcl 7364 ax-addcom 7366 ax-addass 7368 ax-distr 7370 ax-i2m1 7371 ax-0lt1 7372 ax-0id 7374 ax-rnegex 7375 ax-cnre 7377 ax-pre-ltirr 7378 ax-pre-ltwlin 7379 ax-pre-lttrn 7380 ax-pre-ltadd 7382 |
This theorem depends on definitions: df-bi 115 df-3or 923 df-3an 924 df-tru 1290 df-fal 1293 df-nf 1393 df-sb 1690 df-eu 1948 df-mo 1949 df-clab 2072 df-cleq 2078 df-clel 2081 df-nfc 2214 df-ne 2252 df-nel 2347 df-ral 2360 df-rex 2361 df-reu 2362 df-rab 2364 df-v 2616 df-sbc 2829 df-dif 2988 df-un 2990 df-in 2992 df-ss 2999 df-pw 3411 df-sn 3431 df-pr 3432 df-op 3434 df-uni 3631 df-int 3666 df-br 3815 df-opab 3869 df-id 4087 df-xp 4410 df-rel 4411 df-cnv 4412 df-co 4413 df-dm 4414 df-iota 4937 df-fun 4974 df-fv 4980 df-riota 5550 df-ov 5597 df-oprab 5598 df-mpt2 5599 df-pnf 7445 df-mnf 7446 df-xr 7447 df-ltxr 7448 df-le 7449 df-sub 7576 df-neg 7577 df-inn 8335 df-n0 8584 df-z 8661 |
This theorem is referenced by: gtndiv 8751 3halfnz 8753 nonsq 10979 |
Copyright terms: Public domain | W3C validator |