ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prmunb GIF version

Theorem prmunb 12362
Description: The primes are unbounded. (Contributed by Paul Chapman, 28-Nov-2012.)
Assertion
Ref Expression
prmunb (𝑁 ∈ ℕ → ∃𝑝 ∈ ℙ 𝑁 < 𝑝)
Distinct variable group:   𝑁,𝑝

Proof of Theorem prmunb
StepHypRef Expression
1 nnnn0 9185 . 2 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
2 faccl 10717 . . . 4 (𝑁 ∈ ℕ0 → (!‘𝑁) ∈ ℕ)
3 elnnuz 9566 . . . . 5 ((!‘𝑁) ∈ ℕ ↔ (!‘𝑁) ∈ (ℤ‘1))
4 eluzp1p1 9555 . . . . . 6 ((!‘𝑁) ∈ (ℤ‘1) → ((!‘𝑁) + 1) ∈ (ℤ‘(1 + 1)))
5 df-2 8980 . . . . . . 7 2 = (1 + 1)
65fveq2i 5520 . . . . . 6 (ℤ‘2) = (ℤ‘(1 + 1))
74, 6eleqtrrdi 2271 . . . . 5 ((!‘𝑁) ∈ (ℤ‘1) → ((!‘𝑁) + 1) ∈ (ℤ‘2))
83, 7sylbi 121 . . . 4 ((!‘𝑁) ∈ ℕ → ((!‘𝑁) + 1) ∈ (ℤ‘2))
9 exprmfct 12140 . . . 4 (((!‘𝑁) + 1) ∈ (ℤ‘2) → ∃𝑝 ∈ ℙ 𝑝 ∥ ((!‘𝑁) + 1))
102, 8, 93syl 17 . . 3 (𝑁 ∈ ℕ0 → ∃𝑝 ∈ ℙ 𝑝 ∥ ((!‘𝑁) + 1))
11 prmz 12113 . . . . . . . . 9 (𝑝 ∈ ℙ → 𝑝 ∈ ℤ)
12 nn0z 9275 . . . . . . . . 9 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
13 eluz 9543 . . . . . . . . 9 ((𝑝 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ∈ (ℤ𝑝) ↔ 𝑝𝑁))
1411, 12, 13syl2an 289 . . . . . . . 8 ((𝑝 ∈ ℙ ∧ 𝑁 ∈ ℕ0) → (𝑁 ∈ (ℤ𝑝) ↔ 𝑝𝑁))
15 prmuz2 12133 . . . . . . . . . . . . . . . . 17 (𝑝 ∈ ℙ → 𝑝 ∈ (ℤ‘2))
16 eluz2b2 9605 . . . . . . . . . . . . . . . . 17 (𝑝 ∈ (ℤ‘2) ↔ (𝑝 ∈ ℕ ∧ 1 < 𝑝))
1715, 16sylib 122 . . . . . . . . . . . . . . . 16 (𝑝 ∈ ℙ → (𝑝 ∈ ℕ ∧ 1 < 𝑝))
1817adantr 276 . . . . . . . . . . . . . . 15 ((𝑝 ∈ ℙ ∧ 𝑁 ∈ (ℤ𝑝)) → (𝑝 ∈ ℕ ∧ 1 < 𝑝))
1918simpld 112 . . . . . . . . . . . . . 14 ((𝑝 ∈ ℙ ∧ 𝑁 ∈ (ℤ𝑝)) → 𝑝 ∈ ℕ)
2019nnnn0d 9231 . . . . . . . . . . . . 13 ((𝑝 ∈ ℙ ∧ 𝑁 ∈ (ℤ𝑝)) → 𝑝 ∈ ℕ0)
21 eluznn0 9601 . . . . . . . . . . . . 13 ((𝑝 ∈ ℕ0𝑁 ∈ (ℤ𝑝)) → 𝑁 ∈ ℕ0)
2220, 21sylancom 420 . . . . . . . . . . . 12 ((𝑝 ∈ ℙ ∧ 𝑁 ∈ (ℤ𝑝)) → 𝑁 ∈ ℕ0)
23 nnz 9274 . . . . . . . . . . . 12 ((!‘𝑁) ∈ ℕ → (!‘𝑁) ∈ ℤ)
2422, 2, 233syl 17 . . . . . . . . . . 11 ((𝑝 ∈ ℙ ∧ 𝑁 ∈ (ℤ𝑝)) → (!‘𝑁) ∈ ℤ)
2518simprd 114 . . . . . . . . . . 11 ((𝑝 ∈ ℙ ∧ 𝑁 ∈ (ℤ𝑝)) → 1 < 𝑝)
26 dvdsfac 11868 . . . . . . . . . . . 12 ((𝑝 ∈ ℕ ∧ 𝑁 ∈ (ℤ𝑝)) → 𝑝 ∥ (!‘𝑁))
2719, 26sylancom 420 . . . . . . . . . . 11 ((𝑝 ∈ ℙ ∧ 𝑁 ∈ (ℤ𝑝)) → 𝑝 ∥ (!‘𝑁))
28 ndvdsp1 11939 . . . . . . . . . . . 12 (((!‘𝑁) ∈ ℤ ∧ 𝑝 ∈ ℕ ∧ 1 < 𝑝) → (𝑝 ∥ (!‘𝑁) → ¬ 𝑝 ∥ ((!‘𝑁) + 1)))
2928imp 124 . . . . . . . . . . 11 ((((!‘𝑁) ∈ ℤ ∧ 𝑝 ∈ ℕ ∧ 1 < 𝑝) ∧ 𝑝 ∥ (!‘𝑁)) → ¬ 𝑝 ∥ ((!‘𝑁) + 1))
3024, 19, 25, 27, 29syl31anc 1241 . . . . . . . . . 10 ((𝑝 ∈ ℙ ∧ 𝑁 ∈ (ℤ𝑝)) → ¬ 𝑝 ∥ ((!‘𝑁) + 1))
3130ex 115 . . . . . . . . 9 (𝑝 ∈ ℙ → (𝑁 ∈ (ℤ𝑝) → ¬ 𝑝 ∥ ((!‘𝑁) + 1)))
3231adantr 276 . . . . . . . 8 ((𝑝 ∈ ℙ ∧ 𝑁 ∈ ℕ0) → (𝑁 ∈ (ℤ𝑝) → ¬ 𝑝 ∥ ((!‘𝑁) + 1)))
3314, 32sylbird 170 . . . . . . 7 ((𝑝 ∈ ℙ ∧ 𝑁 ∈ ℕ0) → (𝑝𝑁 → ¬ 𝑝 ∥ ((!‘𝑁) + 1)))
3433con2d 624 . . . . . 6 ((𝑝 ∈ ℙ ∧ 𝑁 ∈ ℕ0) → (𝑝 ∥ ((!‘𝑁) + 1) → ¬ 𝑝𝑁))
3534ancoms 268 . . . . 5 ((𝑁 ∈ ℕ0𝑝 ∈ ℙ) → (𝑝 ∥ ((!‘𝑁) + 1) → ¬ 𝑝𝑁))
36 zltnle 9301 . . . . . 6 ((𝑁 ∈ ℤ ∧ 𝑝 ∈ ℤ) → (𝑁 < 𝑝 ↔ ¬ 𝑝𝑁))
3712, 11, 36syl2an 289 . . . . 5 ((𝑁 ∈ ℕ0𝑝 ∈ ℙ) → (𝑁 < 𝑝 ↔ ¬ 𝑝𝑁))
3835, 37sylibrd 169 . . . 4 ((𝑁 ∈ ℕ0𝑝 ∈ ℙ) → (𝑝 ∥ ((!‘𝑁) + 1) → 𝑁 < 𝑝))
3938reximdva 2579 . . 3 (𝑁 ∈ ℕ0 → (∃𝑝 ∈ ℙ 𝑝 ∥ ((!‘𝑁) + 1) → ∃𝑝 ∈ ℙ 𝑁 < 𝑝))
4010, 39mpd 13 . 2 (𝑁 ∈ ℕ0 → ∃𝑝 ∈ ℙ 𝑁 < 𝑝)
411, 40syl 14 1 (𝑁 ∈ ℕ → ∃𝑝 ∈ ℙ 𝑁 < 𝑝)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  w3a 978  wcel 2148  wrex 2456   class class class wbr 4005  cfv 5218  (class class class)co 5877  1c1 7814   + caddc 7816   < clt 7994  cle 7995  cn 8921  2c2 8972  0cn0 9178  cz 9255  cuz 9530  !cfa 10707  cdvds 11796  cprime 12109
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-iinf 4589  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-mulrcl 7912  ax-addcom 7913  ax-mulcom 7914  ax-addass 7915  ax-mulass 7916  ax-distr 7917  ax-i2m1 7918  ax-0lt1 7919  ax-1rid 7920  ax-0id 7921  ax-rnegex 7922  ax-precex 7923  ax-cnre 7924  ax-pre-ltirr 7925  ax-pre-ltwlin 7926  ax-pre-lttrn 7927  ax-pre-apti 7928  ax-pre-ltadd 7929  ax-pre-mulgt0 7930  ax-pre-mulext 7931  ax-arch 7932  ax-caucvg 7933
This theorem depends on definitions:  df-bi 117  df-stab 831  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-if 3537  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-id 4295  df-po 4298  df-iso 4299  df-iord 4368  df-on 4370  df-ilim 4371  df-suc 4373  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-1st 6143  df-2nd 6144  df-recs 6308  df-frec 6394  df-1o 6419  df-2o 6420  df-er 6537  df-en 6743  df-pnf 7996  df-mnf 7997  df-xr 7998  df-ltxr 7999  df-le 8000  df-sub 8132  df-neg 8133  df-reap 8534  df-ap 8541  df-div 8632  df-inn 8922  df-2 8980  df-3 8981  df-4 8982  df-n0 9179  df-z 9256  df-uz 9531  df-q 9622  df-rp 9656  df-fz 10011  df-fzo 10145  df-fl 10272  df-mod 10325  df-seqfrec 10448  df-exp 10522  df-fac 10708  df-cj 10853  df-re 10854  df-im 10855  df-rsqrt 11009  df-abs 11010  df-dvds 11797  df-prm 12110
This theorem is referenced by:  prminf  12458
  Copyright terms: Public domain W3C validator