ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prmunb GIF version

Theorem prmunb 12604
Description: The primes are unbounded. (Contributed by Paul Chapman, 28-Nov-2012.)
Assertion
Ref Expression
prmunb (𝑁 ∈ ℕ → ∃𝑝 ∈ ℙ 𝑁 < 𝑝)
Distinct variable group:   𝑁,𝑝

Proof of Theorem prmunb
StepHypRef Expression
1 nnnn0 9284 . 2 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
2 faccl 10861 . . . 4 (𝑁 ∈ ℕ0 → (!‘𝑁) ∈ ℕ)
3 elnnuz 9667 . . . . 5 ((!‘𝑁) ∈ ℕ ↔ (!‘𝑁) ∈ (ℤ‘1))
4 eluzp1p1 9656 . . . . . 6 ((!‘𝑁) ∈ (ℤ‘1) → ((!‘𝑁) + 1) ∈ (ℤ‘(1 + 1)))
5 df-2 9077 . . . . . . 7 2 = (1 + 1)
65fveq2i 5573 . . . . . 6 (ℤ‘2) = (ℤ‘(1 + 1))
74, 6eleqtrrdi 2298 . . . . 5 ((!‘𝑁) ∈ (ℤ‘1) → ((!‘𝑁) + 1) ∈ (ℤ‘2))
83, 7sylbi 121 . . . 4 ((!‘𝑁) ∈ ℕ → ((!‘𝑁) + 1) ∈ (ℤ‘2))
9 exprmfct 12379 . . . 4 (((!‘𝑁) + 1) ∈ (ℤ‘2) → ∃𝑝 ∈ ℙ 𝑝 ∥ ((!‘𝑁) + 1))
102, 8, 93syl 17 . . 3 (𝑁 ∈ ℕ0 → ∃𝑝 ∈ ℙ 𝑝 ∥ ((!‘𝑁) + 1))
11 prmz 12352 . . . . . . . . 9 (𝑝 ∈ ℙ → 𝑝 ∈ ℤ)
12 nn0z 9374 . . . . . . . . 9 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
13 eluz 9643 . . . . . . . . 9 ((𝑝 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ∈ (ℤ𝑝) ↔ 𝑝𝑁))
1411, 12, 13syl2an 289 . . . . . . . 8 ((𝑝 ∈ ℙ ∧ 𝑁 ∈ ℕ0) → (𝑁 ∈ (ℤ𝑝) ↔ 𝑝𝑁))
15 prmuz2 12372 . . . . . . . . . . . . . . . . 17 (𝑝 ∈ ℙ → 𝑝 ∈ (ℤ‘2))
16 eluz2b2 9706 . . . . . . . . . . . . . . . . 17 (𝑝 ∈ (ℤ‘2) ↔ (𝑝 ∈ ℕ ∧ 1 < 𝑝))
1715, 16sylib 122 . . . . . . . . . . . . . . . 16 (𝑝 ∈ ℙ → (𝑝 ∈ ℕ ∧ 1 < 𝑝))
1817adantr 276 . . . . . . . . . . . . . . 15 ((𝑝 ∈ ℙ ∧ 𝑁 ∈ (ℤ𝑝)) → (𝑝 ∈ ℕ ∧ 1 < 𝑝))
1918simpld 112 . . . . . . . . . . . . . 14 ((𝑝 ∈ ℙ ∧ 𝑁 ∈ (ℤ𝑝)) → 𝑝 ∈ ℕ)
2019nnnn0d 9330 . . . . . . . . . . . . 13 ((𝑝 ∈ ℙ ∧ 𝑁 ∈ (ℤ𝑝)) → 𝑝 ∈ ℕ0)
21 eluznn0 9702 . . . . . . . . . . . . 13 ((𝑝 ∈ ℕ0𝑁 ∈ (ℤ𝑝)) → 𝑁 ∈ ℕ0)
2220, 21sylancom 420 . . . . . . . . . . . 12 ((𝑝 ∈ ℙ ∧ 𝑁 ∈ (ℤ𝑝)) → 𝑁 ∈ ℕ0)
23 nnz 9373 . . . . . . . . . . . 12 ((!‘𝑁) ∈ ℕ → (!‘𝑁) ∈ ℤ)
2422, 2, 233syl 17 . . . . . . . . . . 11 ((𝑝 ∈ ℙ ∧ 𝑁 ∈ (ℤ𝑝)) → (!‘𝑁) ∈ ℤ)
2518simprd 114 . . . . . . . . . . 11 ((𝑝 ∈ ℙ ∧ 𝑁 ∈ (ℤ𝑝)) → 1 < 𝑝)
26 dvdsfac 12090 . . . . . . . . . . . 12 ((𝑝 ∈ ℕ ∧ 𝑁 ∈ (ℤ𝑝)) → 𝑝 ∥ (!‘𝑁))
2719, 26sylancom 420 . . . . . . . . . . 11 ((𝑝 ∈ ℙ ∧ 𝑁 ∈ (ℤ𝑝)) → 𝑝 ∥ (!‘𝑁))
28 ndvdsp1 12162 . . . . . . . . . . . 12 (((!‘𝑁) ∈ ℤ ∧ 𝑝 ∈ ℕ ∧ 1 < 𝑝) → (𝑝 ∥ (!‘𝑁) → ¬ 𝑝 ∥ ((!‘𝑁) + 1)))
2928imp 124 . . . . . . . . . . 11 ((((!‘𝑁) ∈ ℤ ∧ 𝑝 ∈ ℕ ∧ 1 < 𝑝) ∧ 𝑝 ∥ (!‘𝑁)) → ¬ 𝑝 ∥ ((!‘𝑁) + 1))
3024, 19, 25, 27, 29syl31anc 1252 . . . . . . . . . 10 ((𝑝 ∈ ℙ ∧ 𝑁 ∈ (ℤ𝑝)) → ¬ 𝑝 ∥ ((!‘𝑁) + 1))
3130ex 115 . . . . . . . . 9 (𝑝 ∈ ℙ → (𝑁 ∈ (ℤ𝑝) → ¬ 𝑝 ∥ ((!‘𝑁) + 1)))
3231adantr 276 . . . . . . . 8 ((𝑝 ∈ ℙ ∧ 𝑁 ∈ ℕ0) → (𝑁 ∈ (ℤ𝑝) → ¬ 𝑝 ∥ ((!‘𝑁) + 1)))
3314, 32sylbird 170 . . . . . . 7 ((𝑝 ∈ ℙ ∧ 𝑁 ∈ ℕ0) → (𝑝𝑁 → ¬ 𝑝 ∥ ((!‘𝑁) + 1)))
3433con2d 625 . . . . . 6 ((𝑝 ∈ ℙ ∧ 𝑁 ∈ ℕ0) → (𝑝 ∥ ((!‘𝑁) + 1) → ¬ 𝑝𝑁))
3534ancoms 268 . . . . 5 ((𝑁 ∈ ℕ0𝑝 ∈ ℙ) → (𝑝 ∥ ((!‘𝑁) + 1) → ¬ 𝑝𝑁))
36 zltnle 9400 . . . . . 6 ((𝑁 ∈ ℤ ∧ 𝑝 ∈ ℤ) → (𝑁 < 𝑝 ↔ ¬ 𝑝𝑁))
3712, 11, 36syl2an 289 . . . . 5 ((𝑁 ∈ ℕ0𝑝 ∈ ℙ) → (𝑁 < 𝑝 ↔ ¬ 𝑝𝑁))
3835, 37sylibrd 169 . . . 4 ((𝑁 ∈ ℕ0𝑝 ∈ ℙ) → (𝑝 ∥ ((!‘𝑁) + 1) → 𝑁 < 𝑝))
3938reximdva 2607 . . 3 (𝑁 ∈ ℕ0 → (∃𝑝 ∈ ℙ 𝑝 ∥ ((!‘𝑁) + 1) → ∃𝑝 ∈ ℙ 𝑁 < 𝑝))
4010, 39mpd 13 . 2 (𝑁 ∈ ℕ0 → ∃𝑝 ∈ ℙ 𝑁 < 𝑝)
411, 40syl 14 1 (𝑁 ∈ ℕ → ∃𝑝 ∈ ℙ 𝑁 < 𝑝)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  w3a 980  wcel 2175  wrex 2484   class class class wbr 4043  cfv 5268  (class class class)co 5934  1c1 7908   + caddc 7910   < clt 8089  cle 8090  cn 9018  2c2 9069  0cn0 9277  cz 9354  cuz 9630  !cfa 10851  cdvds 12017  cprime 12348
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4478  ax-setind 4583  ax-iinf 4634  ax-cnex 7998  ax-resscn 7999  ax-1cn 8000  ax-1re 8001  ax-icn 8002  ax-addcl 8003  ax-addrcl 8004  ax-mulcl 8005  ax-mulrcl 8006  ax-addcom 8007  ax-mulcom 8008  ax-addass 8009  ax-mulass 8010  ax-distr 8011  ax-i2m1 8012  ax-0lt1 8013  ax-1rid 8014  ax-0id 8015  ax-rnegex 8016  ax-precex 8017  ax-cnre 8018  ax-pre-ltirr 8019  ax-pre-ltwlin 8020  ax-pre-lttrn 8021  ax-pre-apti 8022  ax-pre-ltadd 8023  ax-pre-mulgt0 8024  ax-pre-mulext 8025  ax-arch 8026  ax-caucvg 8027
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rmo 2491  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-if 3571  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-tr 4142  df-id 4338  df-po 4341  df-iso 4342  df-iord 4411  df-on 4413  df-ilim 4414  df-suc 4416  df-iom 4637  df-xp 4679  df-rel 4680  df-cnv 4681  df-co 4682  df-dm 4683  df-rn 4684  df-res 4685  df-ima 4686  df-iota 5229  df-fun 5270  df-fn 5271  df-f 5272  df-f1 5273  df-fo 5274  df-f1o 5275  df-fv 5276  df-riota 5889  df-ov 5937  df-oprab 5938  df-mpo 5939  df-1st 6216  df-2nd 6217  df-recs 6381  df-frec 6467  df-1o 6492  df-2o 6493  df-er 6610  df-en 6818  df-pnf 8091  df-mnf 8092  df-xr 8093  df-ltxr 8094  df-le 8095  df-sub 8227  df-neg 8228  df-reap 8630  df-ap 8637  df-div 8728  df-inn 9019  df-2 9077  df-3 9078  df-4 9079  df-n0 9278  df-z 9355  df-uz 9631  df-q 9723  df-rp 9758  df-fz 10113  df-fzo 10247  df-fl 10394  df-mod 10449  df-seqfrec 10574  df-exp 10665  df-fac 10852  df-cj 11072  df-re 11073  df-im 11074  df-rsqrt 11228  df-abs 11229  df-dvds 12018  df-prm 12349
This theorem is referenced by:  prminf  12745
  Copyright terms: Public domain W3C validator