ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prmunb GIF version

Theorem prmunb 12500
Description: The primes are unbounded. (Contributed by Paul Chapman, 28-Nov-2012.)
Assertion
Ref Expression
prmunb (𝑁 ∈ ℕ → ∃𝑝 ∈ ℙ 𝑁 < 𝑝)
Distinct variable group:   𝑁,𝑝

Proof of Theorem prmunb
StepHypRef Expression
1 nnnn0 9247 . 2 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
2 faccl 10806 . . . 4 (𝑁 ∈ ℕ0 → (!‘𝑁) ∈ ℕ)
3 elnnuz 9629 . . . . 5 ((!‘𝑁) ∈ ℕ ↔ (!‘𝑁) ∈ (ℤ‘1))
4 eluzp1p1 9618 . . . . . 6 ((!‘𝑁) ∈ (ℤ‘1) → ((!‘𝑁) + 1) ∈ (ℤ‘(1 + 1)))
5 df-2 9041 . . . . . . 7 2 = (1 + 1)
65fveq2i 5557 . . . . . 6 (ℤ‘2) = (ℤ‘(1 + 1))
74, 6eleqtrrdi 2287 . . . . 5 ((!‘𝑁) ∈ (ℤ‘1) → ((!‘𝑁) + 1) ∈ (ℤ‘2))
83, 7sylbi 121 . . . 4 ((!‘𝑁) ∈ ℕ → ((!‘𝑁) + 1) ∈ (ℤ‘2))
9 exprmfct 12276 . . . 4 (((!‘𝑁) + 1) ∈ (ℤ‘2) → ∃𝑝 ∈ ℙ 𝑝 ∥ ((!‘𝑁) + 1))
102, 8, 93syl 17 . . 3 (𝑁 ∈ ℕ0 → ∃𝑝 ∈ ℙ 𝑝 ∥ ((!‘𝑁) + 1))
11 prmz 12249 . . . . . . . . 9 (𝑝 ∈ ℙ → 𝑝 ∈ ℤ)
12 nn0z 9337 . . . . . . . . 9 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
13 eluz 9605 . . . . . . . . 9 ((𝑝 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ∈ (ℤ𝑝) ↔ 𝑝𝑁))
1411, 12, 13syl2an 289 . . . . . . . 8 ((𝑝 ∈ ℙ ∧ 𝑁 ∈ ℕ0) → (𝑁 ∈ (ℤ𝑝) ↔ 𝑝𝑁))
15 prmuz2 12269 . . . . . . . . . . . . . . . . 17 (𝑝 ∈ ℙ → 𝑝 ∈ (ℤ‘2))
16 eluz2b2 9668 . . . . . . . . . . . . . . . . 17 (𝑝 ∈ (ℤ‘2) ↔ (𝑝 ∈ ℕ ∧ 1 < 𝑝))
1715, 16sylib 122 . . . . . . . . . . . . . . . 16 (𝑝 ∈ ℙ → (𝑝 ∈ ℕ ∧ 1 < 𝑝))
1817adantr 276 . . . . . . . . . . . . . . 15 ((𝑝 ∈ ℙ ∧ 𝑁 ∈ (ℤ𝑝)) → (𝑝 ∈ ℕ ∧ 1 < 𝑝))
1918simpld 112 . . . . . . . . . . . . . 14 ((𝑝 ∈ ℙ ∧ 𝑁 ∈ (ℤ𝑝)) → 𝑝 ∈ ℕ)
2019nnnn0d 9293 . . . . . . . . . . . . 13 ((𝑝 ∈ ℙ ∧ 𝑁 ∈ (ℤ𝑝)) → 𝑝 ∈ ℕ0)
21 eluznn0 9664 . . . . . . . . . . . . 13 ((𝑝 ∈ ℕ0𝑁 ∈ (ℤ𝑝)) → 𝑁 ∈ ℕ0)
2220, 21sylancom 420 . . . . . . . . . . . 12 ((𝑝 ∈ ℙ ∧ 𝑁 ∈ (ℤ𝑝)) → 𝑁 ∈ ℕ0)
23 nnz 9336 . . . . . . . . . . . 12 ((!‘𝑁) ∈ ℕ → (!‘𝑁) ∈ ℤ)
2422, 2, 233syl 17 . . . . . . . . . . 11 ((𝑝 ∈ ℙ ∧ 𝑁 ∈ (ℤ𝑝)) → (!‘𝑁) ∈ ℤ)
2518simprd 114 . . . . . . . . . . 11 ((𝑝 ∈ ℙ ∧ 𝑁 ∈ (ℤ𝑝)) → 1 < 𝑝)
26 dvdsfac 12002 . . . . . . . . . . . 12 ((𝑝 ∈ ℕ ∧ 𝑁 ∈ (ℤ𝑝)) → 𝑝 ∥ (!‘𝑁))
2719, 26sylancom 420 . . . . . . . . . . 11 ((𝑝 ∈ ℙ ∧ 𝑁 ∈ (ℤ𝑝)) → 𝑝 ∥ (!‘𝑁))
28 ndvdsp1 12073 . . . . . . . . . . . 12 (((!‘𝑁) ∈ ℤ ∧ 𝑝 ∈ ℕ ∧ 1 < 𝑝) → (𝑝 ∥ (!‘𝑁) → ¬ 𝑝 ∥ ((!‘𝑁) + 1)))
2928imp 124 . . . . . . . . . . 11 ((((!‘𝑁) ∈ ℤ ∧ 𝑝 ∈ ℕ ∧ 1 < 𝑝) ∧ 𝑝 ∥ (!‘𝑁)) → ¬ 𝑝 ∥ ((!‘𝑁) + 1))
3024, 19, 25, 27, 29syl31anc 1252 . . . . . . . . . 10 ((𝑝 ∈ ℙ ∧ 𝑁 ∈ (ℤ𝑝)) → ¬ 𝑝 ∥ ((!‘𝑁) + 1))
3130ex 115 . . . . . . . . 9 (𝑝 ∈ ℙ → (𝑁 ∈ (ℤ𝑝) → ¬ 𝑝 ∥ ((!‘𝑁) + 1)))
3231adantr 276 . . . . . . . 8 ((𝑝 ∈ ℙ ∧ 𝑁 ∈ ℕ0) → (𝑁 ∈ (ℤ𝑝) → ¬ 𝑝 ∥ ((!‘𝑁) + 1)))
3314, 32sylbird 170 . . . . . . 7 ((𝑝 ∈ ℙ ∧ 𝑁 ∈ ℕ0) → (𝑝𝑁 → ¬ 𝑝 ∥ ((!‘𝑁) + 1)))
3433con2d 625 . . . . . 6 ((𝑝 ∈ ℙ ∧ 𝑁 ∈ ℕ0) → (𝑝 ∥ ((!‘𝑁) + 1) → ¬ 𝑝𝑁))
3534ancoms 268 . . . . 5 ((𝑁 ∈ ℕ0𝑝 ∈ ℙ) → (𝑝 ∥ ((!‘𝑁) + 1) → ¬ 𝑝𝑁))
36 zltnle 9363 . . . . . 6 ((𝑁 ∈ ℤ ∧ 𝑝 ∈ ℤ) → (𝑁 < 𝑝 ↔ ¬ 𝑝𝑁))
3712, 11, 36syl2an 289 . . . . 5 ((𝑁 ∈ ℕ0𝑝 ∈ ℙ) → (𝑁 < 𝑝 ↔ ¬ 𝑝𝑁))
3835, 37sylibrd 169 . . . 4 ((𝑁 ∈ ℕ0𝑝 ∈ ℙ) → (𝑝 ∥ ((!‘𝑁) + 1) → 𝑁 < 𝑝))
3938reximdva 2596 . . 3 (𝑁 ∈ ℕ0 → (∃𝑝 ∈ ℙ 𝑝 ∥ ((!‘𝑁) + 1) → ∃𝑝 ∈ ℙ 𝑁 < 𝑝))
4010, 39mpd 13 . 2 (𝑁 ∈ ℕ0 → ∃𝑝 ∈ ℙ 𝑁 < 𝑝)
411, 40syl 14 1 (𝑁 ∈ ℕ → ∃𝑝 ∈ ℙ 𝑁 < 𝑝)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  w3a 980  wcel 2164  wrex 2473   class class class wbr 4029  cfv 5254  (class class class)co 5918  1c1 7873   + caddc 7875   < clt 8054  cle 8055  cn 8982  2c2 9033  0cn0 9240  cz 9317  cuz 9592  !cfa 10796  cdvds 11930  cprime 12245
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-precex 7982  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988  ax-pre-mulgt0 7989  ax-pre-mulext 7990  ax-arch 7991  ax-caucvg 7992
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-po 4327  df-iso 4328  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-frec 6444  df-1o 6469  df-2o 6470  df-er 6587  df-en 6795  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-reap 8594  df-ap 8601  df-div 8692  df-inn 8983  df-2 9041  df-3 9042  df-4 9043  df-n0 9241  df-z 9318  df-uz 9593  df-q 9685  df-rp 9720  df-fz 10075  df-fzo 10209  df-fl 10339  df-mod 10394  df-seqfrec 10519  df-exp 10610  df-fac 10797  df-cj 10986  df-re 10987  df-im 10988  df-rsqrt 11142  df-abs 11143  df-dvds 11931  df-prm 12246
This theorem is referenced by:  prminf  12612
  Copyright terms: Public domain W3C validator