ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fproddccvg GIF version

Theorem fproddccvg 11715
Description: The sequence of partial products of a finite product converges to the whole product. (Contributed by Scott Fenton, 4-Dec-2017.)
Hypotheses
Ref Expression
prodmo.1 𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))
prodmo.2 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
prodrbdc.dc ((𝜑𝑘 ∈ (ℤ𝑀)) → DECID 𝑘𝐴)
prodrb.3 (𝜑𝑁 ∈ (ℤ𝑀))
fprodcvg.4 (𝜑𝐴 ⊆ (𝑀...𝑁))
Assertion
Ref Expression
fproddccvg (𝜑 → seq𝑀( · , 𝐹) ⇝ (seq𝑀( · , 𝐹)‘𝑁))
Distinct variable groups:   𝐴,𝑘   𝑘,𝐹   𝜑,𝑘   𝑘,𝑀   𝑘,𝑁
Allowed substitution hint:   𝐵(𝑘)

Proof of Theorem fproddccvg
Dummy variables 𝑛 𝑣 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2193 . 2 (ℤ𝑁) = (ℤ𝑁)
2 prodrb.3 . . 3 (𝜑𝑁 ∈ (ℤ𝑀))
3 eluzelz 9601 . . 3 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
42, 3syl 14 . 2 (𝜑𝑁 ∈ ℤ)
5 seqex 10520 . . 3 seq𝑀( · , 𝐹) ∈ V
65a1i 9 . 2 (𝜑 → seq𝑀( · , 𝐹) ∈ V)
7 eqid 2193 . . . 4 (ℤ𝑀) = (ℤ𝑀)
8 eluzel2 9597 . . . . 5 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
92, 8syl 14 . . . 4 (𝜑𝑀 ∈ ℤ)
10 eluzelz 9601 . . . . . . 7 (𝑘 ∈ (ℤ𝑀) → 𝑘 ∈ ℤ)
1110adantl 277 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝑀)) → 𝑘 ∈ ℤ)
12 iftrue 3562 . . . . . . . . 9 (𝑘𝐴 → if(𝑘𝐴, 𝐵, 1) = 𝐵)
1312adantl 277 . . . . . . . 8 (((𝜑𝑘 ∈ (ℤ𝑀)) ∧ 𝑘𝐴) → if(𝑘𝐴, 𝐵, 1) = 𝐵)
14 prodmo.2 . . . . . . . . 9 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
1514adantlr 477 . . . . . . . 8 (((𝜑𝑘 ∈ (ℤ𝑀)) ∧ 𝑘𝐴) → 𝐵 ∈ ℂ)
1613, 15eqeltrd 2270 . . . . . . 7 (((𝜑𝑘 ∈ (ℤ𝑀)) ∧ 𝑘𝐴) → if(𝑘𝐴, 𝐵, 1) ∈ ℂ)
17 iffalse 3565 . . . . . . . . 9 𝑘𝐴 → if(𝑘𝐴, 𝐵, 1) = 1)
18 ax-1cn 7965 . . . . . . . . 9 1 ∈ ℂ
1917, 18eqeltrdi 2284 . . . . . . . 8 𝑘𝐴 → if(𝑘𝐴, 𝐵, 1) ∈ ℂ)
2019adantl 277 . . . . . . 7 (((𝜑𝑘 ∈ (ℤ𝑀)) ∧ ¬ 𝑘𝐴) → if(𝑘𝐴, 𝐵, 1) ∈ ℂ)
21 prodrbdc.dc . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ𝑀)) → DECID 𝑘𝐴)
22 exmiddc 837 . . . . . . . 8 (DECID 𝑘𝐴 → (𝑘𝐴 ∨ ¬ 𝑘𝐴))
2321, 22syl 14 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝑘𝐴 ∨ ¬ 𝑘𝐴))
2416, 20, 23mpjaodan 799 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝑀)) → if(𝑘𝐴, 𝐵, 1) ∈ ℂ)
25 prodmo.1 . . . . . . 7 𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))
2625fvmpt2 5641 . . . . . 6 ((𝑘 ∈ ℤ ∧ if(𝑘𝐴, 𝐵, 1) ∈ ℂ) → (𝐹𝑘) = if(𝑘𝐴, 𝐵, 1))
2711, 24, 26syl2anc 411 . . . . 5 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) = if(𝑘𝐴, 𝐵, 1))
2827, 24eqeltrd 2270 . . . 4 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) ∈ ℂ)
297, 9, 28prodf 11681 . . 3 (𝜑 → seq𝑀( · , 𝐹):(ℤ𝑀)⟶ℂ)
3029, 2ffvelcdmd 5694 . 2 (𝜑 → (seq𝑀( · , 𝐹)‘𝑁) ∈ ℂ)
31 mulrid 8016 . . . . 5 (𝑚 ∈ ℂ → (𝑚 · 1) = 𝑚)
3231adantl 277 . . . 4 (((𝜑𝑛 ∈ (ℤ𝑁)) ∧ 𝑚 ∈ ℂ) → (𝑚 · 1) = 𝑚)
332adantr 276 . . . 4 ((𝜑𝑛 ∈ (ℤ𝑁)) → 𝑁 ∈ (ℤ𝑀))
34 simpr 110 . . . 4 ((𝜑𝑛 ∈ (ℤ𝑁)) → 𝑛 ∈ (ℤ𝑁))
359adantr 276 . . . . . 6 ((𝜑𝑛 ∈ (ℤ𝑁)) → 𝑀 ∈ ℤ)
3628adantlr 477 . . . . . 6 (((𝜑𝑛 ∈ (ℤ𝑁)) ∧ 𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) ∈ ℂ)
377, 35, 36prodf 11681 . . . . 5 ((𝜑𝑛 ∈ (ℤ𝑁)) → seq𝑀( · , 𝐹):(ℤ𝑀)⟶ℂ)
3837, 33ffvelcdmd 5694 . . . 4 ((𝜑𝑛 ∈ (ℤ𝑁)) → (seq𝑀( · , 𝐹)‘𝑁) ∈ ℂ)
39 elfzuz 10087 . . . . . 6 (𝑚 ∈ ((𝑁 + 1)...𝑛) → 𝑚 ∈ (ℤ‘(𝑁 + 1)))
40 eluzelz 9601 . . . . . . . . 9 (𝑚 ∈ (ℤ‘(𝑁 + 1)) → 𝑚 ∈ ℤ)
4140adantl 277 . . . . . . . 8 ((𝜑𝑚 ∈ (ℤ‘(𝑁 + 1))) → 𝑚 ∈ ℤ)
42 fprodcvg.4 . . . . . . . . . . . 12 (𝜑𝐴 ⊆ (𝑀...𝑁))
4342sseld 3178 . . . . . . . . . . 11 (𝜑 → (𝑚𝐴𝑚 ∈ (𝑀...𝑁)))
44 fznuz 10168 . . . . . . . . . . 11 (𝑚 ∈ (𝑀...𝑁) → ¬ 𝑚 ∈ (ℤ‘(𝑁 + 1)))
4543, 44syl6 33 . . . . . . . . . 10 (𝜑 → (𝑚𝐴 → ¬ 𝑚 ∈ (ℤ‘(𝑁 + 1))))
4645con2d 625 . . . . . . . . 9 (𝜑 → (𝑚 ∈ (ℤ‘(𝑁 + 1)) → ¬ 𝑚𝐴))
4746imp 124 . . . . . . . 8 ((𝜑𝑚 ∈ (ℤ‘(𝑁 + 1))) → ¬ 𝑚𝐴)
4841, 47eldifd 3163 . . . . . . 7 ((𝜑𝑚 ∈ (ℤ‘(𝑁 + 1))) → 𝑚 ∈ (ℤ ∖ 𝐴))
49 fveqeq2 5563 . . . . . . . 8 (𝑘 = 𝑚 → ((𝐹𝑘) = 1 ↔ (𝐹𝑚) = 1))
50 eldifi 3281 . . . . . . . . . 10 (𝑘 ∈ (ℤ ∖ 𝐴) → 𝑘 ∈ ℤ)
51 eldifn 3282 . . . . . . . . . . . 12 (𝑘 ∈ (ℤ ∖ 𝐴) → ¬ 𝑘𝐴)
5251, 17syl 14 . . . . . . . . . . 11 (𝑘 ∈ (ℤ ∖ 𝐴) → if(𝑘𝐴, 𝐵, 1) = 1)
5352, 18eqeltrdi 2284 . . . . . . . . . 10 (𝑘 ∈ (ℤ ∖ 𝐴) → if(𝑘𝐴, 𝐵, 1) ∈ ℂ)
5450, 53, 26syl2anc 411 . . . . . . . . 9 (𝑘 ∈ (ℤ ∖ 𝐴) → (𝐹𝑘) = if(𝑘𝐴, 𝐵, 1))
5554, 52eqtrd 2226 . . . . . . . 8 (𝑘 ∈ (ℤ ∖ 𝐴) → (𝐹𝑘) = 1)
5649, 55vtoclga 2826 . . . . . . 7 (𝑚 ∈ (ℤ ∖ 𝐴) → (𝐹𝑚) = 1)
5748, 56syl 14 . . . . . 6 ((𝜑𝑚 ∈ (ℤ‘(𝑁 + 1))) → (𝐹𝑚) = 1)
5839, 57sylan2 286 . . . . 5 ((𝜑𝑚 ∈ ((𝑁 + 1)...𝑛)) → (𝐹𝑚) = 1)
5958adantlr 477 . . . 4 (((𝜑𝑛 ∈ (ℤ𝑁)) ∧ 𝑚 ∈ ((𝑁 + 1)...𝑛)) → (𝐹𝑚) = 1)
60 fveq2 5554 . . . . . 6 (𝑘 = 𝑚 → (𝐹𝑘) = (𝐹𝑚))
6160eleq1d 2262 . . . . 5 (𝑘 = 𝑚 → ((𝐹𝑘) ∈ ℂ ↔ (𝐹𝑚) ∈ ℂ))
6228ralrimiva 2567 . . . . . 6 (𝜑 → ∀𝑘 ∈ (ℤ𝑀)(𝐹𝑘) ∈ ℂ)
6362ad2antrr 488 . . . . 5 (((𝜑𝑛 ∈ (ℤ𝑁)) ∧ 𝑚 ∈ (ℤ𝑀)) → ∀𝑘 ∈ (ℤ𝑀)(𝐹𝑘) ∈ ℂ)
64 simpr 110 . . . . 5 (((𝜑𝑛 ∈ (ℤ𝑁)) ∧ 𝑚 ∈ (ℤ𝑀)) → 𝑚 ∈ (ℤ𝑀))
6561, 63, 64rspcdva 2869 . . . 4 (((𝜑𝑛 ∈ (ℤ𝑁)) ∧ 𝑚 ∈ (ℤ𝑀)) → (𝐹𝑚) ∈ ℂ)
66 mulcl 7999 . . . . 5 ((𝑚 ∈ ℂ ∧ 𝑣 ∈ ℂ) → (𝑚 · 𝑣) ∈ ℂ)
6766adantl 277 . . . 4 (((𝜑𝑛 ∈ (ℤ𝑁)) ∧ (𝑚 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (𝑚 · 𝑣) ∈ ℂ)
6832, 33, 34, 38, 59, 65, 67seq3id2 10597 . . 3 ((𝜑𝑛 ∈ (ℤ𝑁)) → (seq𝑀( · , 𝐹)‘𝑁) = (seq𝑀( · , 𝐹)‘𝑛))
6968eqcomd 2199 . 2 ((𝜑𝑛 ∈ (ℤ𝑁)) → (seq𝑀( · , 𝐹)‘𝑛) = (seq𝑀( · , 𝐹)‘𝑁))
701, 4, 6, 30, 69climconst 11433 1 (𝜑 → seq𝑀( · , 𝐹) ⇝ (seq𝑀( · , 𝐹)‘𝑁))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wo 709  DECID wdc 835   = wceq 1364  wcel 2164  wral 2472  Vcvv 2760  cdif 3150  wss 3153  ifcif 3557   class class class wbr 4029  cmpt 4090  cfv 5254  (class class class)co 5918  cc 7870  1c1 7873   + caddc 7875   · cmul 7877  cz 9317  cuz 9592  ...cfz 10074  seqcseq 10518  cli 11421
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-precex 7982  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988  ax-pre-mulgt0 7989  ax-pre-mulext 7990
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-po 4327  df-iso 4328  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-frec 6444  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-reap 8594  df-ap 8601  df-div 8692  df-inn 8983  df-2 9041  df-n0 9241  df-z 9318  df-uz 9593  df-rp 9720  df-fz 10075  df-seqfrec 10519  df-exp 10610  df-cj 10986  df-rsqrt 11142  df-abs 11143  df-clim 11422
This theorem is referenced by:  prodmodclem2a  11719
  Copyright terms: Public domain W3C validator