Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 1lt2o | GIF version |
Description: Ordinal one is less than ordinal two. (Contributed by Jim Kingdon, 31-Jul-2022.) |
Ref | Expression |
---|---|
1lt2o | ⊢ 1o ∈ 2o |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1oex 6403 | . . 3 ⊢ 1o ∈ V | |
2 | 1 | prid2 3690 | . 2 ⊢ 1o ∈ {∅, 1o} |
3 | df2o3 6409 | . 2 ⊢ 2o = {∅, 1o} | |
4 | 2, 3 | eleqtrri 2246 | 1 ⊢ 1o ∈ 2o |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2141 ∅c0 3414 {cpr 3584 1oc1o 6388 2oc2o 6389 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-uni 3797 df-tr 4088 df-iord 4351 df-on 4353 df-suc 4356 df-1o 6395 df-2o 6396 |
This theorem is referenced by: infnninf 7100 infnninfOLD 7101 nnnninf 7102 nnnninfeq 7104 nninfisollemne 7107 fodjuf 7121 mkvprop 7134 nninfwlporlemd 7148 nninfwlporlem 7149 nninfwlpoimlemg 7151 nninfwlpoimlemginf 7152 exmidonfinlem 7170 pw1ne3 7207 3nelsucpw1 7211 3nsssucpw1 7213 unct 12397 bj-charfun 13842 bj-charfundc 13843 012of 14028 pwle2 14031 subctctexmid 14034 nnsf 14038 peano4nninf 14039 nninfsellemcl 14044 nninffeq 14053 |
Copyright terms: Public domain | W3C validator |