![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 1lt2o | GIF version |
Description: Ordinal one is less than ordinal two. (Contributed by Jim Kingdon, 31-Jul-2022.) |
Ref | Expression |
---|---|
1lt2o | ⊢ 1o ∈ 2o |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1oex 6443 | . . 3 ⊢ 1o ∈ V | |
2 | 1 | prid2 3714 | . 2 ⊢ 1o ∈ {∅, 1o} |
3 | df2o3 6449 | . 2 ⊢ 2o = {∅, 1o} | |
4 | 2, 3 | eleqtrri 2265 | 1 ⊢ 1o ∈ 2o |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2160 ∅c0 3437 {cpr 3608 1oc1o 6428 2oc2o 6429 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-sep 4136 ax-nul 4144 ax-pow 4189 ax-pr 4224 ax-un 4448 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ral 2473 df-rex 2474 df-v 2754 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-nul 3438 df-pw 3592 df-sn 3613 df-pr 3614 df-uni 3825 df-tr 4117 df-iord 4381 df-on 4383 df-suc 4386 df-1o 6435 df-2o 6436 |
This theorem is referenced by: infnninf 7140 infnninfOLD 7141 nnnninf 7142 nnnninfeq 7144 nninfisollemne 7147 fodjuf 7161 mkvprop 7174 nninfwlporlemd 7188 nninfwlporlem 7189 nninfwlpoimlemg 7191 nninfwlpoimlemginf 7192 exmidonfinlem 7210 pw1ne3 7247 3nelsucpw1 7251 3nsssucpw1 7253 2oneel 7273 2omotaplemst 7275 unct 12461 xpsfeq 12787 xpsfval 12790 xpsval 12794 bj-charfun 14956 bj-charfundc 14957 012of 15143 pwle2 15146 subctctexmid 15148 nnsf 15152 peano4nninf 15153 nninfsellemcl 15158 nninffeq 15167 |
Copyright terms: Public domain | W3C validator |