![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 1lt2o | GIF version |
Description: Ordinal one is less than ordinal two. (Contributed by Jim Kingdon, 31-Jul-2022.) |
Ref | Expression |
---|---|
1lt2o | ⊢ 1o ∈ 2o |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1oex 6479 | . . 3 ⊢ 1o ∈ V | |
2 | 1 | prid2 3726 | . 2 ⊢ 1o ∈ {∅, 1o} |
3 | df2o3 6485 | . 2 ⊢ 2o = {∅, 1o} | |
4 | 2, 3 | eleqtrri 2269 | 1 ⊢ 1o ∈ 2o |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2164 ∅c0 3447 {cpr 3620 1oc1o 6464 2oc2o 6465 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-nul 4156 ax-pow 4204 ax-pr 4239 ax-un 4465 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-nul 3448 df-pw 3604 df-sn 3625 df-pr 3626 df-uni 3837 df-tr 4129 df-iord 4398 df-on 4400 df-suc 4403 df-1o 6471 df-2o 6472 |
This theorem is referenced by: infnninf 7185 infnninfOLD 7186 nnnninf 7187 nnnninfeq 7189 nninfisollemne 7192 fodjuf 7206 mkvprop 7219 nninfwlporlemd 7233 nninfwlporlem 7234 nninfwlpoimlemg 7236 nninfwlpoimlemginf 7237 exmidonfinlem 7255 pw1ne3 7292 3nelsucpw1 7296 3nsssucpw1 7298 2oneel 7318 2omotaplemst 7320 nninfinf 10517 nninfctlemfo 12180 unct 12602 xpsfeq 12931 xpsfval 12934 xpsval 12938 bj-charfun 15369 bj-charfundc 15370 012of 15556 pwle2 15559 subctctexmid 15561 nnsf 15565 peano4nninf 15566 nninfsellemcl 15571 nninffeq 15580 |
Copyright terms: Public domain | W3C validator |