| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 1lt2o | GIF version | ||
| Description: Ordinal one is less than ordinal two. (Contributed by Jim Kingdon, 31-Jul-2022.) |
| Ref | Expression |
|---|---|
| 1lt2o | ⊢ 1o ∈ 2o |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1oex 6522 | . . 3 ⊢ 1o ∈ V | |
| 2 | 1 | prid2 3744 | . 2 ⊢ 1o ∈ {∅, 1o} |
| 3 | df2o3 6528 | . 2 ⊢ 2o = {∅, 1o} | |
| 4 | 2, 3 | eleqtrri 2282 | 1 ⊢ 1o ∈ 2o |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2177 ∅c0 3464 {cpr 3638 1oc1o 6507 2oc2o 6508 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4169 ax-nul 4177 ax-pow 4225 ax-pr 4260 ax-un 4487 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-pw 3622 df-sn 3643 df-pr 3644 df-uni 3856 df-tr 4150 df-iord 4420 df-on 4422 df-suc 4425 df-1o 6514 df-2o 6515 |
| This theorem is referenced by: en2 6925 infnninf 7240 infnninfOLD 7241 nnnninf 7242 nnnninfeq 7244 nninfisollemne 7247 fodjuf 7261 mkvprop 7274 nninfwlporlemd 7288 nninfwlporlem 7289 nninfwlpoimlemg 7291 nninfwlpoimlemginf 7292 exmidonfinlem 7316 pw1ne3 7357 3nelsucpw1 7361 3nsssucpw1 7363 2oneel 7383 2omotaplemst 7385 nninfinf 10605 nninfctlemfo 12431 unct 12883 xpsfeq 13247 xpsfval 13250 xpsval 13254 bj-charfun 15877 bj-charfundc 15878 012of 16065 2omap 16067 pwle2 16070 subctctexmid 16072 nnsf 16077 peano4nninf 16078 nninfsellemcl 16083 nninffeq 16092 |
| Copyright terms: Public domain | W3C validator |