Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > syl6bi | GIF version |
Description: A mixed syllogism inference. (Contributed by NM, 2-Jan-1994.) |
Ref | Expression |
---|---|
syl6bi.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
syl6bi.2 | ⊢ (𝜒 → 𝜃) |
Ref | Expression |
---|---|
syl6bi | ⊢ (𝜑 → (𝜓 → 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl6bi.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | 1 | biimpd 143 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) |
3 | syl6bi.2 | . 2 ⊢ (𝜒 → 𝜃) | |
4 | 2, 3 | syl6 33 | 1 ⊢ (𝜑 → (𝜓 → 𝜃)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: 19.33bdc 1618 ax11i 1702 equveli 1747 eupickbi 2096 nfabdw 2327 rgen2a 2520 reu6 2915 sseq0 3450 disjel 3463 preq12b 3750 prel12 3751 prneimg 3754 elinti 3833 exmidundif 4185 opthreg 4533 elreldm 4830 issref 4986 relcnvtr 5123 relresfld 5133 funopg 5222 funimass2 5266 f0dom0 5381 fvimacnv 5600 elunirn 5734 oprabid 5874 op1steq 6147 f1o2ndf1 6196 reldmtpos 6221 rntpos 6225 nntri3or 6461 nnaordex 6495 nnawordex 6496 findcard2 6855 findcard2s 6856 mkvprop 7122 cc2lem 7207 lt2addnq 7345 lt2mulnq 7346 genpelvl 7453 genpelvu 7454 distrlem5prl 7527 distrlem5pru 7528 caucvgprlemnkj 7607 map2psrprg 7746 rereceu 7830 ltxrlt 7964 0mnnnnn0 9146 elnnnn0b 9158 nn0le2is012 9273 btwnz 9310 uz11 9488 nn01to3 9555 zq 9564 xrltso 9732 xltnegi 9771 xnn0lenn0nn0 9801 xnn0xadd0 9803 iccleub 9867 fzdcel 9975 uznfz 10038 2ffzeq 10076 elfzonlteqm1 10145 icogelb 10201 flqeqceilz 10253 modqadd1 10296 modqmul1 10312 frecuzrdgtcl 10347 frecuzrdgfunlem 10354 fzfig 10365 m1expeven 10502 qsqeqor 10565 caucvgrelemcau 10922 rexico 11163 fisumss 11333 fsum2dlemstep 11375 ntrivcvgap 11489 fprodssdc 11531 fprod2dlemstep 11563 0dvds 11751 alzdvds 11792 opoe 11832 omoe 11833 opeo 11834 omeo 11835 m1exp1 11838 nn0enne 11839 nn0o1gt2 11842 gcdneg 11915 dfgcd2 11947 algcvgblem 11981 algcvga 11983 eucalglt 11989 coprmdvds 12024 divgcdcoprmex 12034 cncongr1 12035 prm2orodd 12058 prm23lt5 12195 pockthi 12288 tg2 12700 tgcl 12704 neii1 12787 neii2 12789 txlm 12919 reopnap 13178 tgioo 13186 addcncntoplem 13191 bj-elssuniab 13672 bj-nn0sucALT 13860 triap 13908 |
Copyright terms: Public domain | W3C validator |