Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > syl6bi | GIF version |
Description: A mixed syllogism inference. (Contributed by NM, 2-Jan-1994.) |
Ref | Expression |
---|---|
syl6bi.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
syl6bi.2 | ⊢ (𝜒 → 𝜃) |
Ref | Expression |
---|---|
syl6bi | ⊢ (𝜑 → (𝜓 → 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl6bi.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | 1 | biimpd 143 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) |
3 | syl6bi.2 | . 2 ⊢ (𝜒 → 𝜃) | |
4 | 2, 3 | syl6 33 | 1 ⊢ (𝜑 → (𝜓 → 𝜃)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: 19.33bdc 1623 ax11i 1707 equveli 1752 eupickbi 2101 nfabdw 2331 rgen2a 2524 reu6 2919 sseq0 3456 disjel 3469 preq12b 3757 prel12 3758 prneimg 3761 elinti 3840 exmidundif 4192 opthreg 4540 elreldm 4837 issref 4993 relcnvtr 5130 relresfld 5140 funopg 5232 funimass2 5276 f0dom0 5391 fvimacnv 5611 elunirn 5745 oprabid 5885 op1steq 6158 f1o2ndf1 6207 reldmtpos 6232 rntpos 6236 nntri3or 6472 nnaordex 6507 nnawordex 6508 findcard2 6867 findcard2s 6868 mkvprop 7134 cc2lem 7228 lt2addnq 7366 lt2mulnq 7367 genpelvl 7474 genpelvu 7475 distrlem5prl 7548 distrlem5pru 7549 caucvgprlemnkj 7628 map2psrprg 7767 rereceu 7851 ltxrlt 7985 0mnnnnn0 9167 elnnnn0b 9179 nn0le2is012 9294 btwnz 9331 uz11 9509 nn01to3 9576 zq 9585 xrltso 9753 xltnegi 9792 xnn0lenn0nn0 9822 xnn0xadd0 9824 iccleub 9888 fzdcel 9996 uznfz 10059 2ffzeq 10097 elfzonlteqm1 10166 icogelb 10222 flqeqceilz 10274 modqadd1 10317 modqmul1 10333 frecuzrdgtcl 10368 frecuzrdgfunlem 10375 fzfig 10386 m1expeven 10523 qsqeqor 10586 caucvgrelemcau 10944 rexico 11185 fisumss 11355 fsum2dlemstep 11397 ntrivcvgap 11511 fprodssdc 11553 fprod2dlemstep 11585 0dvds 11773 alzdvds 11814 opoe 11854 omoe 11855 opeo 11856 omeo 11857 m1exp1 11860 nn0enne 11861 nn0o1gt2 11864 gcdneg 11937 dfgcd2 11969 algcvgblem 12003 algcvga 12005 eucalglt 12011 coprmdvds 12046 divgcdcoprmex 12056 cncongr1 12057 prm2orodd 12080 prm23lt5 12217 pockthi 12310 ismnddef 12654 tg2 12854 tgcl 12858 neii1 12941 neii2 12943 txlm 13073 reopnap 13332 tgioo 13340 addcncntoplem 13345 bj-elssuniab 13826 bj-nn0sucALT 14013 triap 14061 |
Copyright terms: Public domain | W3C validator |