![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > dff3im | GIF version |
Description: Property of a mapping. (Contributed by Jim Kingdon, 4-Jan-2019.) |
Ref | Expression |
---|---|
dff3im | ⊢ (𝐹:𝐴⟶𝐵 → (𝐹 ⊆ (𝐴 × 𝐵) ∧ ∀𝑥 ∈ 𝐴 ∃!𝑦 𝑥𝐹𝑦)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fssxp 5385 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 ⊆ (𝐴 × 𝐵)) | |
2 | ffun 5370 | . . . . . . . 8 ⊢ (𝐹:𝐴⟶𝐵 → Fun 𝐹) | |
3 | 2 | adantr 276 | . . . . . . 7 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑥 ∈ 𝐴) → Fun 𝐹) |
4 | fdm 5373 | . . . . . . . . 9 ⊢ (𝐹:𝐴⟶𝐵 → dom 𝐹 = 𝐴) | |
5 | 4 | eleq2d 2247 | . . . . . . . 8 ⊢ (𝐹:𝐴⟶𝐵 → (𝑥 ∈ dom 𝐹 ↔ 𝑥 ∈ 𝐴)) |
6 | 5 | biimpar 297 | . . . . . . 7 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ dom 𝐹) |
7 | funfvop 5630 | . . . . . . 7 ⊢ ((Fun 𝐹 ∧ 𝑥 ∈ dom 𝐹) → ⟨𝑥, (𝐹‘𝑥)⟩ ∈ 𝐹) | |
8 | 3, 6, 7 | syl2anc 411 | . . . . . 6 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑥 ∈ 𝐴) → ⟨𝑥, (𝐹‘𝑥)⟩ ∈ 𝐹) |
9 | df-br 4006 | . . . . . 6 ⊢ (𝑥𝐹(𝐹‘𝑥) ↔ ⟨𝑥, (𝐹‘𝑥)⟩ ∈ 𝐹) | |
10 | 8, 9 | sylibr 134 | . . . . 5 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑥 ∈ 𝐴) → 𝑥𝐹(𝐹‘𝑥)) |
11 | funfvex 5534 | . . . . . . 7 ⊢ ((Fun 𝐹 ∧ 𝑥 ∈ dom 𝐹) → (𝐹‘𝑥) ∈ V) | |
12 | breq2 4009 | . . . . . . . 8 ⊢ (𝑦 = (𝐹‘𝑥) → (𝑥𝐹𝑦 ↔ 𝑥𝐹(𝐹‘𝑥))) | |
13 | 12 | spcegv 2827 | . . . . . . 7 ⊢ ((𝐹‘𝑥) ∈ V → (𝑥𝐹(𝐹‘𝑥) → ∃𝑦 𝑥𝐹𝑦)) |
14 | 11, 13 | syl 14 | . . . . . 6 ⊢ ((Fun 𝐹 ∧ 𝑥 ∈ dom 𝐹) → (𝑥𝐹(𝐹‘𝑥) → ∃𝑦 𝑥𝐹𝑦)) |
15 | 3, 6, 14 | syl2anc 411 | . . . . 5 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑥 ∈ 𝐴) → (𝑥𝐹(𝐹‘𝑥) → ∃𝑦 𝑥𝐹𝑦)) |
16 | 10, 15 | mpd 13 | . . . 4 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑥 ∈ 𝐴) → ∃𝑦 𝑥𝐹𝑦) |
17 | funmo 5233 | . . . . . 6 ⊢ (Fun 𝐹 → ∃*𝑦 𝑥𝐹𝑦) | |
18 | 2, 17 | syl 14 | . . . . 5 ⊢ (𝐹:𝐴⟶𝐵 → ∃*𝑦 𝑥𝐹𝑦) |
19 | 18 | adantr 276 | . . . 4 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑥 ∈ 𝐴) → ∃*𝑦 𝑥𝐹𝑦) |
20 | eu5 2073 | . . . 4 ⊢ (∃!𝑦 𝑥𝐹𝑦 ↔ (∃𝑦 𝑥𝐹𝑦 ∧ ∃*𝑦 𝑥𝐹𝑦)) | |
21 | 16, 19, 20 | sylanbrc 417 | . . 3 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑥 ∈ 𝐴) → ∃!𝑦 𝑥𝐹𝑦) |
22 | 21 | ralrimiva 2550 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → ∀𝑥 ∈ 𝐴 ∃!𝑦 𝑥𝐹𝑦) |
23 | 1, 22 | jca 306 | 1 ⊢ (𝐹:𝐴⟶𝐵 → (𝐹 ⊆ (𝐴 × 𝐵) ∧ ∀𝑥 ∈ 𝐴 ∃!𝑦 𝑥𝐹𝑦)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∃wex 1492 ∃!weu 2026 ∃*wmo 2027 ∈ wcel 2148 ∀wral 2455 Vcvv 2739 ⊆ wss 3131 ⟨cop 3597 class class class wbr 4005 × cxp 4626 dom cdm 4628 Fun wfun 5212 ⟶wf 5214 ‘cfv 5218 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-v 2741 df-sbc 2965 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-br 4006 df-opab 4067 df-id 4295 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-iota 5180 df-fun 5220 df-fn 5221 df-f 5222 df-fv 5226 |
This theorem is referenced by: dff4im 5664 |
Copyright terms: Public domain | W3C validator |