ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dff3im GIF version

Theorem dff3im 5630
Description: Property of a mapping. (Contributed by Jim Kingdon, 4-Jan-2019.)
Assertion
Ref Expression
dff3im (𝐹:𝐴𝐵 → (𝐹 ⊆ (𝐴 × 𝐵) ∧ ∀𝑥𝐴 ∃!𝑦 𝑥𝐹𝑦))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐹,𝑦

Proof of Theorem dff3im
StepHypRef Expression
1 fssxp 5355 . 2 (𝐹:𝐴𝐵𝐹 ⊆ (𝐴 × 𝐵))
2 ffun 5340 . . . . . . . 8 (𝐹:𝐴𝐵 → Fun 𝐹)
32adantr 274 . . . . . . 7 ((𝐹:𝐴𝐵𝑥𝐴) → Fun 𝐹)
4 fdm 5343 . . . . . . . . 9 (𝐹:𝐴𝐵 → dom 𝐹 = 𝐴)
54eleq2d 2236 . . . . . . . 8 (𝐹:𝐴𝐵 → (𝑥 ∈ dom 𝐹𝑥𝐴))
65biimpar 295 . . . . . . 7 ((𝐹:𝐴𝐵𝑥𝐴) → 𝑥 ∈ dom 𝐹)
7 funfvop 5597 . . . . . . 7 ((Fun 𝐹𝑥 ∈ dom 𝐹) → ⟨𝑥, (𝐹𝑥)⟩ ∈ 𝐹)
83, 6, 7syl2anc 409 . . . . . 6 ((𝐹:𝐴𝐵𝑥𝐴) → ⟨𝑥, (𝐹𝑥)⟩ ∈ 𝐹)
9 df-br 3983 . . . . . 6 (𝑥𝐹(𝐹𝑥) ↔ ⟨𝑥, (𝐹𝑥)⟩ ∈ 𝐹)
108, 9sylibr 133 . . . . 5 ((𝐹:𝐴𝐵𝑥𝐴) → 𝑥𝐹(𝐹𝑥))
11 funfvex 5503 . . . . . . 7 ((Fun 𝐹𝑥 ∈ dom 𝐹) → (𝐹𝑥) ∈ V)
12 breq2 3986 . . . . . . . 8 (𝑦 = (𝐹𝑥) → (𝑥𝐹𝑦𝑥𝐹(𝐹𝑥)))
1312spcegv 2814 . . . . . . 7 ((𝐹𝑥) ∈ V → (𝑥𝐹(𝐹𝑥) → ∃𝑦 𝑥𝐹𝑦))
1411, 13syl 14 . . . . . 6 ((Fun 𝐹𝑥 ∈ dom 𝐹) → (𝑥𝐹(𝐹𝑥) → ∃𝑦 𝑥𝐹𝑦))
153, 6, 14syl2anc 409 . . . . 5 ((𝐹:𝐴𝐵𝑥𝐴) → (𝑥𝐹(𝐹𝑥) → ∃𝑦 𝑥𝐹𝑦))
1610, 15mpd 13 . . . 4 ((𝐹:𝐴𝐵𝑥𝐴) → ∃𝑦 𝑥𝐹𝑦)
17 funmo 5203 . . . . . 6 (Fun 𝐹 → ∃*𝑦 𝑥𝐹𝑦)
182, 17syl 14 . . . . 5 (𝐹:𝐴𝐵 → ∃*𝑦 𝑥𝐹𝑦)
1918adantr 274 . . . 4 ((𝐹:𝐴𝐵𝑥𝐴) → ∃*𝑦 𝑥𝐹𝑦)
20 eu5 2061 . . . 4 (∃!𝑦 𝑥𝐹𝑦 ↔ (∃𝑦 𝑥𝐹𝑦 ∧ ∃*𝑦 𝑥𝐹𝑦))
2116, 19, 20sylanbrc 414 . . 3 ((𝐹:𝐴𝐵𝑥𝐴) → ∃!𝑦 𝑥𝐹𝑦)
2221ralrimiva 2539 . 2 (𝐹:𝐴𝐵 → ∀𝑥𝐴 ∃!𝑦 𝑥𝐹𝑦)
231, 22jca 304 1 (𝐹:𝐴𝐵 → (𝐹 ⊆ (𝐴 × 𝐵) ∧ ∀𝑥𝐴 ∃!𝑦 𝑥𝐹𝑦))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wex 1480  ∃!weu 2014  ∃*wmo 2015  wcel 2136  wral 2444  Vcvv 2726  wss 3116  cop 3579   class class class wbr 3982   × cxp 4602  dom cdm 4604  Fun wfun 5182  wf 5184  cfv 5188
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-sbc 2952  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-fv 5196
This theorem is referenced by:  dff4im  5631
  Copyright terms: Public domain W3C validator