Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dff3im | GIF version |
Description: Property of a mapping. (Contributed by Jim Kingdon, 4-Jan-2019.) |
Ref | Expression |
---|---|
dff3im | ⊢ (𝐹:𝐴⟶𝐵 → (𝐹 ⊆ (𝐴 × 𝐵) ∧ ∀𝑥 ∈ 𝐴 ∃!𝑦 𝑥𝐹𝑦)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fssxp 5365 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 ⊆ (𝐴 × 𝐵)) | |
2 | ffun 5350 | . . . . . . . 8 ⊢ (𝐹:𝐴⟶𝐵 → Fun 𝐹) | |
3 | 2 | adantr 274 | . . . . . . 7 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑥 ∈ 𝐴) → Fun 𝐹) |
4 | fdm 5353 | . . . . . . . . 9 ⊢ (𝐹:𝐴⟶𝐵 → dom 𝐹 = 𝐴) | |
5 | 4 | eleq2d 2240 | . . . . . . . 8 ⊢ (𝐹:𝐴⟶𝐵 → (𝑥 ∈ dom 𝐹 ↔ 𝑥 ∈ 𝐴)) |
6 | 5 | biimpar 295 | . . . . . . 7 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ dom 𝐹) |
7 | funfvop 5608 | . . . . . . 7 ⊢ ((Fun 𝐹 ∧ 𝑥 ∈ dom 𝐹) → 〈𝑥, (𝐹‘𝑥)〉 ∈ 𝐹) | |
8 | 3, 6, 7 | syl2anc 409 | . . . . . 6 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑥 ∈ 𝐴) → 〈𝑥, (𝐹‘𝑥)〉 ∈ 𝐹) |
9 | df-br 3990 | . . . . . 6 ⊢ (𝑥𝐹(𝐹‘𝑥) ↔ 〈𝑥, (𝐹‘𝑥)〉 ∈ 𝐹) | |
10 | 8, 9 | sylibr 133 | . . . . 5 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑥 ∈ 𝐴) → 𝑥𝐹(𝐹‘𝑥)) |
11 | funfvex 5513 | . . . . . . 7 ⊢ ((Fun 𝐹 ∧ 𝑥 ∈ dom 𝐹) → (𝐹‘𝑥) ∈ V) | |
12 | breq2 3993 | . . . . . . . 8 ⊢ (𝑦 = (𝐹‘𝑥) → (𝑥𝐹𝑦 ↔ 𝑥𝐹(𝐹‘𝑥))) | |
13 | 12 | spcegv 2818 | . . . . . . 7 ⊢ ((𝐹‘𝑥) ∈ V → (𝑥𝐹(𝐹‘𝑥) → ∃𝑦 𝑥𝐹𝑦)) |
14 | 11, 13 | syl 14 | . . . . . 6 ⊢ ((Fun 𝐹 ∧ 𝑥 ∈ dom 𝐹) → (𝑥𝐹(𝐹‘𝑥) → ∃𝑦 𝑥𝐹𝑦)) |
15 | 3, 6, 14 | syl2anc 409 | . . . . 5 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑥 ∈ 𝐴) → (𝑥𝐹(𝐹‘𝑥) → ∃𝑦 𝑥𝐹𝑦)) |
16 | 10, 15 | mpd 13 | . . . 4 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑥 ∈ 𝐴) → ∃𝑦 𝑥𝐹𝑦) |
17 | funmo 5213 | . . . . . 6 ⊢ (Fun 𝐹 → ∃*𝑦 𝑥𝐹𝑦) | |
18 | 2, 17 | syl 14 | . . . . 5 ⊢ (𝐹:𝐴⟶𝐵 → ∃*𝑦 𝑥𝐹𝑦) |
19 | 18 | adantr 274 | . . . 4 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑥 ∈ 𝐴) → ∃*𝑦 𝑥𝐹𝑦) |
20 | eu5 2066 | . . . 4 ⊢ (∃!𝑦 𝑥𝐹𝑦 ↔ (∃𝑦 𝑥𝐹𝑦 ∧ ∃*𝑦 𝑥𝐹𝑦)) | |
21 | 16, 19, 20 | sylanbrc 415 | . . 3 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑥 ∈ 𝐴) → ∃!𝑦 𝑥𝐹𝑦) |
22 | 21 | ralrimiva 2543 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → ∀𝑥 ∈ 𝐴 ∃!𝑦 𝑥𝐹𝑦) |
23 | 1, 22 | jca 304 | 1 ⊢ (𝐹:𝐴⟶𝐵 → (𝐹 ⊆ (𝐴 × 𝐵) ∧ ∀𝑥 ∈ 𝐴 ∃!𝑦 𝑥𝐹𝑦)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∃wex 1485 ∃!weu 2019 ∃*wmo 2020 ∈ wcel 2141 ∀wral 2448 Vcvv 2730 ⊆ wss 3121 〈cop 3586 class class class wbr 3989 × cxp 4609 dom cdm 4611 Fun wfun 5192 ⟶wf 5194 ‘cfv 5198 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-sbc 2956 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-fv 5206 |
This theorem is referenced by: dff4im 5642 |
Copyright terms: Public domain | W3C validator |