Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dff3im | GIF version |
Description: Property of a mapping. (Contributed by Jim Kingdon, 4-Jan-2019.) |
Ref | Expression |
---|---|
dff3im | ⊢ (𝐹:𝐴⟶𝐵 → (𝐹 ⊆ (𝐴 × 𝐵) ∧ ∀𝑥 ∈ 𝐴 ∃!𝑦 𝑥𝐹𝑦)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fssxp 5355 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 ⊆ (𝐴 × 𝐵)) | |
2 | ffun 5340 | . . . . . . . 8 ⊢ (𝐹:𝐴⟶𝐵 → Fun 𝐹) | |
3 | 2 | adantr 274 | . . . . . . 7 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑥 ∈ 𝐴) → Fun 𝐹) |
4 | fdm 5343 | . . . . . . . . 9 ⊢ (𝐹:𝐴⟶𝐵 → dom 𝐹 = 𝐴) | |
5 | 4 | eleq2d 2236 | . . . . . . . 8 ⊢ (𝐹:𝐴⟶𝐵 → (𝑥 ∈ dom 𝐹 ↔ 𝑥 ∈ 𝐴)) |
6 | 5 | biimpar 295 | . . . . . . 7 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ dom 𝐹) |
7 | funfvop 5597 | . . . . . . 7 ⊢ ((Fun 𝐹 ∧ 𝑥 ∈ dom 𝐹) → 〈𝑥, (𝐹‘𝑥)〉 ∈ 𝐹) | |
8 | 3, 6, 7 | syl2anc 409 | . . . . . 6 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑥 ∈ 𝐴) → 〈𝑥, (𝐹‘𝑥)〉 ∈ 𝐹) |
9 | df-br 3983 | . . . . . 6 ⊢ (𝑥𝐹(𝐹‘𝑥) ↔ 〈𝑥, (𝐹‘𝑥)〉 ∈ 𝐹) | |
10 | 8, 9 | sylibr 133 | . . . . 5 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑥 ∈ 𝐴) → 𝑥𝐹(𝐹‘𝑥)) |
11 | funfvex 5503 | . . . . . . 7 ⊢ ((Fun 𝐹 ∧ 𝑥 ∈ dom 𝐹) → (𝐹‘𝑥) ∈ V) | |
12 | breq2 3986 | . . . . . . . 8 ⊢ (𝑦 = (𝐹‘𝑥) → (𝑥𝐹𝑦 ↔ 𝑥𝐹(𝐹‘𝑥))) | |
13 | 12 | spcegv 2814 | . . . . . . 7 ⊢ ((𝐹‘𝑥) ∈ V → (𝑥𝐹(𝐹‘𝑥) → ∃𝑦 𝑥𝐹𝑦)) |
14 | 11, 13 | syl 14 | . . . . . 6 ⊢ ((Fun 𝐹 ∧ 𝑥 ∈ dom 𝐹) → (𝑥𝐹(𝐹‘𝑥) → ∃𝑦 𝑥𝐹𝑦)) |
15 | 3, 6, 14 | syl2anc 409 | . . . . 5 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑥 ∈ 𝐴) → (𝑥𝐹(𝐹‘𝑥) → ∃𝑦 𝑥𝐹𝑦)) |
16 | 10, 15 | mpd 13 | . . . 4 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑥 ∈ 𝐴) → ∃𝑦 𝑥𝐹𝑦) |
17 | funmo 5203 | . . . . . 6 ⊢ (Fun 𝐹 → ∃*𝑦 𝑥𝐹𝑦) | |
18 | 2, 17 | syl 14 | . . . . 5 ⊢ (𝐹:𝐴⟶𝐵 → ∃*𝑦 𝑥𝐹𝑦) |
19 | 18 | adantr 274 | . . . 4 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑥 ∈ 𝐴) → ∃*𝑦 𝑥𝐹𝑦) |
20 | eu5 2061 | . . . 4 ⊢ (∃!𝑦 𝑥𝐹𝑦 ↔ (∃𝑦 𝑥𝐹𝑦 ∧ ∃*𝑦 𝑥𝐹𝑦)) | |
21 | 16, 19, 20 | sylanbrc 414 | . . 3 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑥 ∈ 𝐴) → ∃!𝑦 𝑥𝐹𝑦) |
22 | 21 | ralrimiva 2539 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → ∀𝑥 ∈ 𝐴 ∃!𝑦 𝑥𝐹𝑦) |
23 | 1, 22 | jca 304 | 1 ⊢ (𝐹:𝐴⟶𝐵 → (𝐹 ⊆ (𝐴 × 𝐵) ∧ ∀𝑥 ∈ 𝐴 ∃!𝑦 𝑥𝐹𝑦)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∃wex 1480 ∃!weu 2014 ∃*wmo 2015 ∈ wcel 2136 ∀wral 2444 Vcvv 2726 ⊆ wss 3116 〈cop 3579 class class class wbr 3982 × cxp 4602 dom cdm 4604 Fun wfun 5182 ⟶wf 5184 ‘cfv 5188 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-sbc 2952 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-fv 5196 |
This theorem is referenced by: dff4im 5631 |
Copyright terms: Public domain | W3C validator |