| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > recmulnqg | GIF version | ||
| Description: Relationship between reciprocal and multiplication on positive fractions. (Contributed by Jim Kingdon, 19-Sep-2019.) |
| Ref | Expression |
|---|---|
| recmulnqg | ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → ((*Q‘𝐴) = 𝐵 ↔ (𝐴 ·Q 𝐵) = 1Q)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 6014 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥 ·Q 𝑦) = (𝐴 ·Q 𝑦)) | |
| 2 | 1 | eqeq1d 2238 | . . . 4 ⊢ (𝑥 = 𝐴 → ((𝑥 ·Q 𝑦) = 1Q ↔ (𝐴 ·Q 𝑦) = 1Q)) |
| 3 | 2 | anbi2d 464 | . . 3 ⊢ (𝑥 = 𝐴 → ((𝑦 ∈ Q ∧ (𝑥 ·Q 𝑦) = 1Q) ↔ (𝑦 ∈ Q ∧ (𝐴 ·Q 𝑦) = 1Q))) |
| 4 | eleq1 2292 | . . . 4 ⊢ (𝑦 = 𝐵 → (𝑦 ∈ Q ↔ 𝐵 ∈ Q)) | |
| 5 | oveq2 6015 | . . . . 5 ⊢ (𝑦 = 𝐵 → (𝐴 ·Q 𝑦) = (𝐴 ·Q 𝐵)) | |
| 6 | 5 | eqeq1d 2238 | . . . 4 ⊢ (𝑦 = 𝐵 → ((𝐴 ·Q 𝑦) = 1Q ↔ (𝐴 ·Q 𝐵) = 1Q)) |
| 7 | 4, 6 | anbi12d 473 | . . 3 ⊢ (𝑦 = 𝐵 → ((𝑦 ∈ Q ∧ (𝐴 ·Q 𝑦) = 1Q) ↔ (𝐵 ∈ Q ∧ (𝐴 ·Q 𝐵) = 1Q))) |
| 8 | recexnq 7585 | . . . 4 ⊢ (𝑥 ∈ Q → ∃𝑦(𝑦 ∈ Q ∧ (𝑥 ·Q 𝑦) = 1Q)) | |
| 9 | 1nq 7561 | . . . . 5 ⊢ 1Q ∈ Q | |
| 10 | mulcomnqg 7578 | . . . . 5 ⊢ ((𝑧 ∈ Q ∧ 𝑤 ∈ Q) → (𝑧 ·Q 𝑤) = (𝑤 ·Q 𝑧)) | |
| 11 | mulassnqg 7579 | . . . . 5 ⊢ ((𝑧 ∈ Q ∧ 𝑤 ∈ Q ∧ 𝑣 ∈ Q) → ((𝑧 ·Q 𝑤) ·Q 𝑣) = (𝑧 ·Q (𝑤 ·Q 𝑣))) | |
| 12 | mulidnq 7584 | . . . . 5 ⊢ (𝑧 ∈ Q → (𝑧 ·Q 1Q) = 𝑧) | |
| 13 | 9, 10, 11, 12 | caovimo 6205 | . . . 4 ⊢ (𝑥 ∈ Q → ∃*𝑦(𝑦 ∈ Q ∧ (𝑥 ·Q 𝑦) = 1Q)) |
| 14 | eu5 2125 | . . . 4 ⊢ (∃!𝑦(𝑦 ∈ Q ∧ (𝑥 ·Q 𝑦) = 1Q) ↔ (∃𝑦(𝑦 ∈ Q ∧ (𝑥 ·Q 𝑦) = 1Q) ∧ ∃*𝑦(𝑦 ∈ Q ∧ (𝑥 ·Q 𝑦) = 1Q))) | |
| 15 | 8, 13, 14 | sylanbrc 417 | . . 3 ⊢ (𝑥 ∈ Q → ∃!𝑦(𝑦 ∈ Q ∧ (𝑥 ·Q 𝑦) = 1Q)) |
| 16 | df-rq 7547 | . . . 4 ⊢ *Q = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ Q ∧ 𝑦 ∈ Q ∧ (𝑥 ·Q 𝑦) = 1Q)} | |
| 17 | 3anass 1006 | . . . . 5 ⊢ ((𝑥 ∈ Q ∧ 𝑦 ∈ Q ∧ (𝑥 ·Q 𝑦) = 1Q) ↔ (𝑥 ∈ Q ∧ (𝑦 ∈ Q ∧ (𝑥 ·Q 𝑦) = 1Q))) | |
| 18 | 17 | opabbii 4151 | . . . 4 ⊢ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ Q ∧ 𝑦 ∈ Q ∧ (𝑥 ·Q 𝑦) = 1Q)} = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ Q ∧ (𝑦 ∈ Q ∧ (𝑥 ·Q 𝑦) = 1Q))} |
| 19 | 16, 18 | eqtri 2250 | . . 3 ⊢ *Q = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ Q ∧ (𝑦 ∈ Q ∧ (𝑥 ·Q 𝑦) = 1Q))} |
| 20 | 3, 7, 15, 19 | fvopab3g 5709 | . 2 ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → ((*Q‘𝐴) = 𝐵 ↔ (𝐵 ∈ Q ∧ (𝐴 ·Q 𝐵) = 1Q))) |
| 21 | ibar 301 | . . 3 ⊢ (𝐵 ∈ Q → ((𝐴 ·Q 𝐵) = 1Q ↔ (𝐵 ∈ Q ∧ (𝐴 ·Q 𝐵) = 1Q))) | |
| 22 | 21 | adantl 277 | . 2 ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → ((𝐴 ·Q 𝐵) = 1Q ↔ (𝐵 ∈ Q ∧ (𝐴 ·Q 𝐵) = 1Q))) |
| 23 | 20, 22 | bitr4d 191 | 1 ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → ((*Q‘𝐴) = 𝐵 ↔ (𝐴 ·Q 𝐵) = 1Q)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 1002 = wceq 1395 ∃wex 1538 ∃!weu 2077 ∃*wmo 2078 ∈ wcel 2200 {copab 4144 ‘cfv 5318 (class class class)co 6007 Qcnq 7475 1Qc1q 7476 ·Q cmq 7478 *Qcrq 7479 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-iinf 4680 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-tr 4183 df-id 4384 df-iord 4457 df-on 4459 df-suc 4462 df-iom 4683 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-ov 6010 df-oprab 6011 df-mpo 6012 df-1st 6292 df-2nd 6293 df-recs 6457 df-irdg 6522 df-1o 6568 df-oadd 6572 df-omul 6573 df-er 6688 df-ec 6690 df-qs 6694 df-ni 7499 df-mi 7501 df-mpq 7540 df-enq 7542 df-nqqs 7543 df-mqqs 7545 df-1nqqs 7546 df-rq 7547 |
| This theorem is referenced by: recclnq 7587 recidnq 7588 recrecnq 7589 recexprlem1ssl 7828 recexprlem1ssu 7829 |
| Copyright terms: Public domain | W3C validator |