![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > recmulnqg | GIF version |
Description: Relationship between reciprocal and multiplication on positive fractions. (Contributed by Jim Kingdon, 19-Sep-2019.) |
Ref | Expression |
---|---|
recmulnqg | ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → ((*Q‘𝐴) = 𝐵 ↔ (𝐴 ·Q 𝐵) = 1Q)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1 5598 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥 ·Q 𝑦) = (𝐴 ·Q 𝑦)) | |
2 | 1 | eqeq1d 2091 | . . . 4 ⊢ (𝑥 = 𝐴 → ((𝑥 ·Q 𝑦) = 1Q ↔ (𝐴 ·Q 𝑦) = 1Q)) |
3 | 2 | anbi2d 452 | . . 3 ⊢ (𝑥 = 𝐴 → ((𝑦 ∈ Q ∧ (𝑥 ·Q 𝑦) = 1Q) ↔ (𝑦 ∈ Q ∧ (𝐴 ·Q 𝑦) = 1Q))) |
4 | eleq1 2145 | . . . 4 ⊢ (𝑦 = 𝐵 → (𝑦 ∈ Q ↔ 𝐵 ∈ Q)) | |
5 | oveq2 5599 | . . . . 5 ⊢ (𝑦 = 𝐵 → (𝐴 ·Q 𝑦) = (𝐴 ·Q 𝐵)) | |
6 | 5 | eqeq1d 2091 | . . . 4 ⊢ (𝑦 = 𝐵 → ((𝐴 ·Q 𝑦) = 1Q ↔ (𝐴 ·Q 𝐵) = 1Q)) |
7 | 4, 6 | anbi12d 457 | . . 3 ⊢ (𝑦 = 𝐵 → ((𝑦 ∈ Q ∧ (𝐴 ·Q 𝑦) = 1Q) ↔ (𝐵 ∈ Q ∧ (𝐴 ·Q 𝐵) = 1Q))) |
8 | recexnq 6852 | . . . 4 ⊢ (𝑥 ∈ Q → ∃𝑦(𝑦 ∈ Q ∧ (𝑥 ·Q 𝑦) = 1Q)) | |
9 | 1nq 6828 | . . . . 5 ⊢ 1Q ∈ Q | |
10 | mulcomnqg 6845 | . . . . 5 ⊢ ((𝑧 ∈ Q ∧ 𝑤 ∈ Q) → (𝑧 ·Q 𝑤) = (𝑤 ·Q 𝑧)) | |
11 | mulassnqg 6846 | . . . . 5 ⊢ ((𝑧 ∈ Q ∧ 𝑤 ∈ Q ∧ 𝑣 ∈ Q) → ((𝑧 ·Q 𝑤) ·Q 𝑣) = (𝑧 ·Q (𝑤 ·Q 𝑣))) | |
12 | mulidnq 6851 | . . . . 5 ⊢ (𝑧 ∈ Q → (𝑧 ·Q 1Q) = 𝑧) | |
13 | 9, 10, 11, 12 | caovimo 5773 | . . . 4 ⊢ (𝑥 ∈ Q → ∃*𝑦(𝑦 ∈ Q ∧ (𝑥 ·Q 𝑦) = 1Q)) |
14 | eu5 1990 | . . . 4 ⊢ (∃!𝑦(𝑦 ∈ Q ∧ (𝑥 ·Q 𝑦) = 1Q) ↔ (∃𝑦(𝑦 ∈ Q ∧ (𝑥 ·Q 𝑦) = 1Q) ∧ ∃*𝑦(𝑦 ∈ Q ∧ (𝑥 ·Q 𝑦) = 1Q))) | |
15 | 8, 13, 14 | sylanbrc 408 | . . 3 ⊢ (𝑥 ∈ Q → ∃!𝑦(𝑦 ∈ Q ∧ (𝑥 ·Q 𝑦) = 1Q)) |
16 | df-rq 6814 | . . . 4 ⊢ *Q = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ Q ∧ 𝑦 ∈ Q ∧ (𝑥 ·Q 𝑦) = 1Q)} | |
17 | 3anass 924 | . . . . 5 ⊢ ((𝑥 ∈ Q ∧ 𝑦 ∈ Q ∧ (𝑥 ·Q 𝑦) = 1Q) ↔ (𝑥 ∈ Q ∧ (𝑦 ∈ Q ∧ (𝑥 ·Q 𝑦) = 1Q))) | |
18 | 17 | opabbii 3871 | . . . 4 ⊢ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ Q ∧ 𝑦 ∈ Q ∧ (𝑥 ·Q 𝑦) = 1Q)} = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ Q ∧ (𝑦 ∈ Q ∧ (𝑥 ·Q 𝑦) = 1Q))} |
19 | 16, 18 | eqtri 2103 | . . 3 ⊢ *Q = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ Q ∧ (𝑦 ∈ Q ∧ (𝑥 ·Q 𝑦) = 1Q))} |
20 | 3, 7, 15, 19 | fvopab3g 5322 | . 2 ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → ((*Q‘𝐴) = 𝐵 ↔ (𝐵 ∈ Q ∧ (𝐴 ·Q 𝐵) = 1Q))) |
21 | ibar 295 | . . 3 ⊢ (𝐵 ∈ Q → ((𝐴 ·Q 𝐵) = 1Q ↔ (𝐵 ∈ Q ∧ (𝐴 ·Q 𝐵) = 1Q))) | |
22 | 21 | adantl 271 | . 2 ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → ((𝐴 ·Q 𝐵) = 1Q ↔ (𝐵 ∈ Q ∧ (𝐴 ·Q 𝐵) = 1Q))) |
23 | 20, 22 | bitr4d 189 | 1 ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → ((*Q‘𝐴) = 𝐵 ↔ (𝐴 ·Q 𝐵) = 1Q)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 102 ↔ wb 103 ∧ w3a 920 = wceq 1285 ∃wex 1422 ∈ wcel 1434 ∃!weu 1943 ∃*wmo 1944 {copab 3864 ‘cfv 4969 (class class class)co 5591 Qcnq 6742 1Qc1q 6743 ·Q cmq 6745 *Qcrq 6746 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 577 ax-in2 578 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-13 1445 ax-14 1446 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2065 ax-coll 3919 ax-sep 3922 ax-nul 3930 ax-pow 3974 ax-pr 4000 ax-un 4224 ax-setind 4316 ax-iinf 4366 |
This theorem depends on definitions: df-bi 115 df-dc 777 df-3or 921 df-3an 922 df-tru 1288 df-fal 1291 df-nf 1391 df-sb 1688 df-eu 1946 df-mo 1947 df-clab 2070 df-cleq 2076 df-clel 2079 df-nfc 2212 df-ne 2250 df-ral 2358 df-rex 2359 df-reu 2360 df-rab 2362 df-v 2614 df-sbc 2827 df-csb 2920 df-dif 2986 df-un 2988 df-in 2990 df-ss 2997 df-nul 3270 df-pw 3408 df-sn 3428 df-pr 3429 df-op 3431 df-uni 3628 df-int 3663 df-iun 3706 df-br 3812 df-opab 3866 df-mpt 3867 df-tr 3902 df-id 4084 df-iord 4157 df-on 4159 df-suc 4162 df-iom 4369 df-xp 4407 df-rel 4408 df-cnv 4409 df-co 4410 df-dm 4411 df-rn 4412 df-res 4413 df-ima 4414 df-iota 4934 df-fun 4971 df-fn 4972 df-f 4973 df-f1 4974 df-fo 4975 df-f1o 4976 df-fv 4977 df-ov 5594 df-oprab 5595 df-mpt2 5596 df-1st 5846 df-2nd 5847 df-recs 6002 df-irdg 6067 df-1o 6113 df-oadd 6117 df-omul 6118 df-er 6222 df-ec 6224 df-qs 6228 df-ni 6766 df-mi 6768 df-mpq 6807 df-enq 6809 df-nqqs 6810 df-mqqs 6812 df-1nqqs 6813 df-rq 6814 |
This theorem is referenced by: recclnq 6854 recidnq 6855 recrecnq 6856 recexprlem1ssl 7095 recexprlem1ssu 7096 |
Copyright terms: Public domain | W3C validator |