![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > recmulnqg | GIF version |
Description: Relationship between reciprocal and multiplication on positive fractions. (Contributed by Jim Kingdon, 19-Sep-2019.) |
Ref | Expression |
---|---|
recmulnqg | ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → ((*Q‘𝐴) = 𝐵 ↔ (𝐴 ·Q 𝐵) = 1Q)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1 5925 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥 ·Q 𝑦) = (𝐴 ·Q 𝑦)) | |
2 | 1 | eqeq1d 2202 | . . . 4 ⊢ (𝑥 = 𝐴 → ((𝑥 ·Q 𝑦) = 1Q ↔ (𝐴 ·Q 𝑦) = 1Q)) |
3 | 2 | anbi2d 464 | . . 3 ⊢ (𝑥 = 𝐴 → ((𝑦 ∈ Q ∧ (𝑥 ·Q 𝑦) = 1Q) ↔ (𝑦 ∈ Q ∧ (𝐴 ·Q 𝑦) = 1Q))) |
4 | eleq1 2256 | . . . 4 ⊢ (𝑦 = 𝐵 → (𝑦 ∈ Q ↔ 𝐵 ∈ Q)) | |
5 | oveq2 5926 | . . . . 5 ⊢ (𝑦 = 𝐵 → (𝐴 ·Q 𝑦) = (𝐴 ·Q 𝐵)) | |
6 | 5 | eqeq1d 2202 | . . . 4 ⊢ (𝑦 = 𝐵 → ((𝐴 ·Q 𝑦) = 1Q ↔ (𝐴 ·Q 𝐵) = 1Q)) |
7 | 4, 6 | anbi12d 473 | . . 3 ⊢ (𝑦 = 𝐵 → ((𝑦 ∈ Q ∧ (𝐴 ·Q 𝑦) = 1Q) ↔ (𝐵 ∈ Q ∧ (𝐴 ·Q 𝐵) = 1Q))) |
8 | recexnq 7450 | . . . 4 ⊢ (𝑥 ∈ Q → ∃𝑦(𝑦 ∈ Q ∧ (𝑥 ·Q 𝑦) = 1Q)) | |
9 | 1nq 7426 | . . . . 5 ⊢ 1Q ∈ Q | |
10 | mulcomnqg 7443 | . . . . 5 ⊢ ((𝑧 ∈ Q ∧ 𝑤 ∈ Q) → (𝑧 ·Q 𝑤) = (𝑤 ·Q 𝑧)) | |
11 | mulassnqg 7444 | . . . . 5 ⊢ ((𝑧 ∈ Q ∧ 𝑤 ∈ Q ∧ 𝑣 ∈ Q) → ((𝑧 ·Q 𝑤) ·Q 𝑣) = (𝑧 ·Q (𝑤 ·Q 𝑣))) | |
12 | mulidnq 7449 | . . . . 5 ⊢ (𝑧 ∈ Q → (𝑧 ·Q 1Q) = 𝑧) | |
13 | 9, 10, 11, 12 | caovimo 6112 | . . . 4 ⊢ (𝑥 ∈ Q → ∃*𝑦(𝑦 ∈ Q ∧ (𝑥 ·Q 𝑦) = 1Q)) |
14 | eu5 2089 | . . . 4 ⊢ (∃!𝑦(𝑦 ∈ Q ∧ (𝑥 ·Q 𝑦) = 1Q) ↔ (∃𝑦(𝑦 ∈ Q ∧ (𝑥 ·Q 𝑦) = 1Q) ∧ ∃*𝑦(𝑦 ∈ Q ∧ (𝑥 ·Q 𝑦) = 1Q))) | |
15 | 8, 13, 14 | sylanbrc 417 | . . 3 ⊢ (𝑥 ∈ Q → ∃!𝑦(𝑦 ∈ Q ∧ (𝑥 ·Q 𝑦) = 1Q)) |
16 | df-rq 7412 | . . . 4 ⊢ *Q = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ Q ∧ 𝑦 ∈ Q ∧ (𝑥 ·Q 𝑦) = 1Q)} | |
17 | 3anass 984 | . . . . 5 ⊢ ((𝑥 ∈ Q ∧ 𝑦 ∈ Q ∧ (𝑥 ·Q 𝑦) = 1Q) ↔ (𝑥 ∈ Q ∧ (𝑦 ∈ Q ∧ (𝑥 ·Q 𝑦) = 1Q))) | |
18 | 17 | opabbii 4096 | . . . 4 ⊢ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ Q ∧ 𝑦 ∈ Q ∧ (𝑥 ·Q 𝑦) = 1Q)} = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ Q ∧ (𝑦 ∈ Q ∧ (𝑥 ·Q 𝑦) = 1Q))} |
19 | 16, 18 | eqtri 2214 | . . 3 ⊢ *Q = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ Q ∧ (𝑦 ∈ Q ∧ (𝑥 ·Q 𝑦) = 1Q))} |
20 | 3, 7, 15, 19 | fvopab3g 5630 | . 2 ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → ((*Q‘𝐴) = 𝐵 ↔ (𝐵 ∈ Q ∧ (𝐴 ·Q 𝐵) = 1Q))) |
21 | ibar 301 | . . 3 ⊢ (𝐵 ∈ Q → ((𝐴 ·Q 𝐵) = 1Q ↔ (𝐵 ∈ Q ∧ (𝐴 ·Q 𝐵) = 1Q))) | |
22 | 21 | adantl 277 | . 2 ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → ((𝐴 ·Q 𝐵) = 1Q ↔ (𝐵 ∈ Q ∧ (𝐴 ·Q 𝐵) = 1Q))) |
23 | 20, 22 | bitr4d 191 | 1 ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → ((*Q‘𝐴) = 𝐵 ↔ (𝐴 ·Q 𝐵) = 1Q)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 980 = wceq 1364 ∃wex 1503 ∃!weu 2042 ∃*wmo 2043 ∈ wcel 2164 {copab 4089 ‘cfv 5254 (class class class)co 5918 Qcnq 7340 1Qc1q 7341 ·Q cmq 7343 *Qcrq 7344 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4144 ax-sep 4147 ax-nul 4155 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-iinf 4620 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2986 df-csb 3081 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-iun 3914 df-br 4030 df-opab 4091 df-mpt 4092 df-tr 4128 df-id 4324 df-iord 4397 df-on 4399 df-suc 4402 df-iom 4623 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-ima 4672 df-iota 5215 df-fun 5256 df-fn 5257 df-f 5258 df-f1 5259 df-fo 5260 df-f1o 5261 df-fv 5262 df-ov 5921 df-oprab 5922 df-mpo 5923 df-1st 6193 df-2nd 6194 df-recs 6358 df-irdg 6423 df-1o 6469 df-oadd 6473 df-omul 6474 df-er 6587 df-ec 6589 df-qs 6593 df-ni 7364 df-mi 7366 df-mpq 7405 df-enq 7407 df-nqqs 7408 df-mqqs 7410 df-1nqqs 7411 df-rq 7412 |
This theorem is referenced by: recclnq 7452 recidnq 7453 recrecnq 7454 recexprlem1ssl 7693 recexprlem1ssu 7694 |
Copyright terms: Public domain | W3C validator |