| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > recmulnqg | GIF version | ||
| Description: Relationship between reciprocal and multiplication on positive fractions. (Contributed by Jim Kingdon, 19-Sep-2019.) |
| Ref | Expression |
|---|---|
| recmulnqg | ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → ((*Q‘𝐴) = 𝐵 ↔ (𝐴 ·Q 𝐵) = 1Q)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 5929 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥 ·Q 𝑦) = (𝐴 ·Q 𝑦)) | |
| 2 | 1 | eqeq1d 2205 | . . . 4 ⊢ (𝑥 = 𝐴 → ((𝑥 ·Q 𝑦) = 1Q ↔ (𝐴 ·Q 𝑦) = 1Q)) |
| 3 | 2 | anbi2d 464 | . . 3 ⊢ (𝑥 = 𝐴 → ((𝑦 ∈ Q ∧ (𝑥 ·Q 𝑦) = 1Q) ↔ (𝑦 ∈ Q ∧ (𝐴 ·Q 𝑦) = 1Q))) |
| 4 | eleq1 2259 | . . . 4 ⊢ (𝑦 = 𝐵 → (𝑦 ∈ Q ↔ 𝐵 ∈ Q)) | |
| 5 | oveq2 5930 | . . . . 5 ⊢ (𝑦 = 𝐵 → (𝐴 ·Q 𝑦) = (𝐴 ·Q 𝐵)) | |
| 6 | 5 | eqeq1d 2205 | . . . 4 ⊢ (𝑦 = 𝐵 → ((𝐴 ·Q 𝑦) = 1Q ↔ (𝐴 ·Q 𝐵) = 1Q)) |
| 7 | 4, 6 | anbi12d 473 | . . 3 ⊢ (𝑦 = 𝐵 → ((𝑦 ∈ Q ∧ (𝐴 ·Q 𝑦) = 1Q) ↔ (𝐵 ∈ Q ∧ (𝐴 ·Q 𝐵) = 1Q))) |
| 8 | recexnq 7457 | . . . 4 ⊢ (𝑥 ∈ Q → ∃𝑦(𝑦 ∈ Q ∧ (𝑥 ·Q 𝑦) = 1Q)) | |
| 9 | 1nq 7433 | . . . . 5 ⊢ 1Q ∈ Q | |
| 10 | mulcomnqg 7450 | . . . . 5 ⊢ ((𝑧 ∈ Q ∧ 𝑤 ∈ Q) → (𝑧 ·Q 𝑤) = (𝑤 ·Q 𝑧)) | |
| 11 | mulassnqg 7451 | . . . . 5 ⊢ ((𝑧 ∈ Q ∧ 𝑤 ∈ Q ∧ 𝑣 ∈ Q) → ((𝑧 ·Q 𝑤) ·Q 𝑣) = (𝑧 ·Q (𝑤 ·Q 𝑣))) | |
| 12 | mulidnq 7456 | . . . . 5 ⊢ (𝑧 ∈ Q → (𝑧 ·Q 1Q) = 𝑧) | |
| 13 | 9, 10, 11, 12 | caovimo 6117 | . . . 4 ⊢ (𝑥 ∈ Q → ∃*𝑦(𝑦 ∈ Q ∧ (𝑥 ·Q 𝑦) = 1Q)) |
| 14 | eu5 2092 | . . . 4 ⊢ (∃!𝑦(𝑦 ∈ Q ∧ (𝑥 ·Q 𝑦) = 1Q) ↔ (∃𝑦(𝑦 ∈ Q ∧ (𝑥 ·Q 𝑦) = 1Q) ∧ ∃*𝑦(𝑦 ∈ Q ∧ (𝑥 ·Q 𝑦) = 1Q))) | |
| 15 | 8, 13, 14 | sylanbrc 417 | . . 3 ⊢ (𝑥 ∈ Q → ∃!𝑦(𝑦 ∈ Q ∧ (𝑥 ·Q 𝑦) = 1Q)) |
| 16 | df-rq 7419 | . . . 4 ⊢ *Q = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ Q ∧ 𝑦 ∈ Q ∧ (𝑥 ·Q 𝑦) = 1Q)} | |
| 17 | 3anass 984 | . . . . 5 ⊢ ((𝑥 ∈ Q ∧ 𝑦 ∈ Q ∧ (𝑥 ·Q 𝑦) = 1Q) ↔ (𝑥 ∈ Q ∧ (𝑦 ∈ Q ∧ (𝑥 ·Q 𝑦) = 1Q))) | |
| 18 | 17 | opabbii 4100 | . . . 4 ⊢ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ Q ∧ 𝑦 ∈ Q ∧ (𝑥 ·Q 𝑦) = 1Q)} = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ Q ∧ (𝑦 ∈ Q ∧ (𝑥 ·Q 𝑦) = 1Q))} |
| 19 | 16, 18 | eqtri 2217 | . . 3 ⊢ *Q = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ Q ∧ (𝑦 ∈ Q ∧ (𝑥 ·Q 𝑦) = 1Q))} |
| 20 | 3, 7, 15, 19 | fvopab3g 5634 | . 2 ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → ((*Q‘𝐴) = 𝐵 ↔ (𝐵 ∈ Q ∧ (𝐴 ·Q 𝐵) = 1Q))) |
| 21 | ibar 301 | . . 3 ⊢ (𝐵 ∈ Q → ((𝐴 ·Q 𝐵) = 1Q ↔ (𝐵 ∈ Q ∧ (𝐴 ·Q 𝐵) = 1Q))) | |
| 22 | 21 | adantl 277 | . 2 ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → ((𝐴 ·Q 𝐵) = 1Q ↔ (𝐵 ∈ Q ∧ (𝐴 ·Q 𝐵) = 1Q))) |
| 23 | 20, 22 | bitr4d 191 | 1 ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → ((*Q‘𝐴) = 𝐵 ↔ (𝐴 ·Q 𝐵) = 1Q)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 980 = wceq 1364 ∃wex 1506 ∃!weu 2045 ∃*wmo 2046 ∈ wcel 2167 {copab 4093 ‘cfv 5258 (class class class)co 5922 Qcnq 7347 1Qc1q 7348 ·Q cmq 7350 *Qcrq 7351 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-iinf 4624 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-id 4328 df-iord 4401 df-on 4403 df-suc 4406 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-recs 6363 df-irdg 6428 df-1o 6474 df-oadd 6478 df-omul 6479 df-er 6592 df-ec 6594 df-qs 6598 df-ni 7371 df-mi 7373 df-mpq 7412 df-enq 7414 df-nqqs 7415 df-mqqs 7417 df-1nqqs 7418 df-rq 7419 |
| This theorem is referenced by: recclnq 7459 recidnq 7460 recrecnq 7461 recexprlem1ssl 7700 recexprlem1ssu 7701 |
| Copyright terms: Public domain | W3C validator |