ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  recmulnqg GIF version

Theorem recmulnqg 7546
Description: Relationship between reciprocal and multiplication on positive fractions. (Contributed by Jim Kingdon, 19-Sep-2019.)
Assertion
Ref Expression
recmulnqg ((𝐴Q𝐵Q) → ((*Q𝐴) = 𝐵 ↔ (𝐴 ·Q 𝐵) = 1Q))

Proof of Theorem recmulnqg
Dummy variables 𝑥 𝑦 𝑧 𝑤 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 5981 . . . . 5 (𝑥 = 𝐴 → (𝑥 ·Q 𝑦) = (𝐴 ·Q 𝑦))
21eqeq1d 2218 . . . 4 (𝑥 = 𝐴 → ((𝑥 ·Q 𝑦) = 1Q ↔ (𝐴 ·Q 𝑦) = 1Q))
32anbi2d 464 . . 3 (𝑥 = 𝐴 → ((𝑦Q ∧ (𝑥 ·Q 𝑦) = 1Q) ↔ (𝑦Q ∧ (𝐴 ·Q 𝑦) = 1Q)))
4 eleq1 2272 . . . 4 (𝑦 = 𝐵 → (𝑦Q𝐵Q))
5 oveq2 5982 . . . . 5 (𝑦 = 𝐵 → (𝐴 ·Q 𝑦) = (𝐴 ·Q 𝐵))
65eqeq1d 2218 . . . 4 (𝑦 = 𝐵 → ((𝐴 ·Q 𝑦) = 1Q ↔ (𝐴 ·Q 𝐵) = 1Q))
74, 6anbi12d 473 . . 3 (𝑦 = 𝐵 → ((𝑦Q ∧ (𝐴 ·Q 𝑦) = 1Q) ↔ (𝐵Q ∧ (𝐴 ·Q 𝐵) = 1Q)))
8 recexnq 7545 . . . 4 (𝑥Q → ∃𝑦(𝑦Q ∧ (𝑥 ·Q 𝑦) = 1Q))
9 1nq 7521 . . . . 5 1QQ
10 mulcomnqg 7538 . . . . 5 ((𝑧Q𝑤Q) → (𝑧 ·Q 𝑤) = (𝑤 ·Q 𝑧))
11 mulassnqg 7539 . . . . 5 ((𝑧Q𝑤Q𝑣Q) → ((𝑧 ·Q 𝑤) ·Q 𝑣) = (𝑧 ·Q (𝑤 ·Q 𝑣)))
12 mulidnq 7544 . . . . 5 (𝑧Q → (𝑧 ·Q 1Q) = 𝑧)
139, 10, 11, 12caovimo 6170 . . . 4 (𝑥Q → ∃*𝑦(𝑦Q ∧ (𝑥 ·Q 𝑦) = 1Q))
14 eu5 2105 . . . 4 (∃!𝑦(𝑦Q ∧ (𝑥 ·Q 𝑦) = 1Q) ↔ (∃𝑦(𝑦Q ∧ (𝑥 ·Q 𝑦) = 1Q) ∧ ∃*𝑦(𝑦Q ∧ (𝑥 ·Q 𝑦) = 1Q)))
158, 13, 14sylanbrc 417 . . 3 (𝑥Q → ∃!𝑦(𝑦Q ∧ (𝑥 ·Q 𝑦) = 1Q))
16 df-rq 7507 . . . 4 *Q = {⟨𝑥, 𝑦⟩ ∣ (𝑥Q𝑦Q ∧ (𝑥 ·Q 𝑦) = 1Q)}
17 3anass 987 . . . . 5 ((𝑥Q𝑦Q ∧ (𝑥 ·Q 𝑦) = 1Q) ↔ (𝑥Q ∧ (𝑦Q ∧ (𝑥 ·Q 𝑦) = 1Q)))
1817opabbii 4130 . . . 4 {⟨𝑥, 𝑦⟩ ∣ (𝑥Q𝑦Q ∧ (𝑥 ·Q 𝑦) = 1Q)} = {⟨𝑥, 𝑦⟩ ∣ (𝑥Q ∧ (𝑦Q ∧ (𝑥 ·Q 𝑦) = 1Q))}
1916, 18eqtri 2230 . . 3 *Q = {⟨𝑥, 𝑦⟩ ∣ (𝑥Q ∧ (𝑦Q ∧ (𝑥 ·Q 𝑦) = 1Q))}
203, 7, 15, 19fvopab3g 5680 . 2 ((𝐴Q𝐵Q) → ((*Q𝐴) = 𝐵 ↔ (𝐵Q ∧ (𝐴 ·Q 𝐵) = 1Q)))
21 ibar 301 . . 3 (𝐵Q → ((𝐴 ·Q 𝐵) = 1Q ↔ (𝐵Q ∧ (𝐴 ·Q 𝐵) = 1Q)))
2221adantl 277 . 2 ((𝐴Q𝐵Q) → ((𝐴 ·Q 𝐵) = 1Q ↔ (𝐵Q ∧ (𝐴 ·Q 𝐵) = 1Q)))
2320, 22bitr4d 191 1 ((𝐴Q𝐵Q) → ((*Q𝐴) = 𝐵 ↔ (𝐴 ·Q 𝐵) = 1Q))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 983   = wceq 1375  wex 1518  ∃!weu 2057  ∃*wmo 2058  wcel 2180  {copab 4123  cfv 5294  (class class class)co 5974  Qcnq 7435  1Qc1q 7436   ·Q cmq 7438  *Qcrq 7439
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-coll 4178  ax-sep 4181  ax-nul 4189  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-iinf 4657
This theorem depends on definitions:  df-bi 117  df-dc 839  df-3or 984  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-ral 2493  df-rex 2494  df-reu 2495  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-nul 3472  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-int 3903  df-iun 3946  df-br 4063  df-opab 4125  df-mpt 4126  df-tr 4162  df-id 4361  df-iord 4434  df-on 4436  df-suc 4439  df-iom 4660  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-f1 5299  df-fo 5300  df-f1o 5301  df-fv 5302  df-ov 5977  df-oprab 5978  df-mpo 5979  df-1st 6256  df-2nd 6257  df-recs 6421  df-irdg 6486  df-1o 6532  df-oadd 6536  df-omul 6537  df-er 6650  df-ec 6652  df-qs 6656  df-ni 7459  df-mi 7461  df-mpq 7500  df-enq 7502  df-nqqs 7503  df-mqqs 7505  df-1nqqs 7506  df-rq 7507
This theorem is referenced by:  recclnq  7547  recidnq  7548  recrecnq  7549  recexprlem1ssl  7788  recexprlem1ssu  7789
  Copyright terms: Public domain W3C validator