ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  recmulnqg GIF version

Theorem recmulnqg 7586
Description: Relationship between reciprocal and multiplication on positive fractions. (Contributed by Jim Kingdon, 19-Sep-2019.)
Assertion
Ref Expression
recmulnqg ((𝐴Q𝐵Q) → ((*Q𝐴) = 𝐵 ↔ (𝐴 ·Q 𝐵) = 1Q))

Proof of Theorem recmulnqg
Dummy variables 𝑥 𝑦 𝑧 𝑤 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 6014 . . . . 5 (𝑥 = 𝐴 → (𝑥 ·Q 𝑦) = (𝐴 ·Q 𝑦))
21eqeq1d 2238 . . . 4 (𝑥 = 𝐴 → ((𝑥 ·Q 𝑦) = 1Q ↔ (𝐴 ·Q 𝑦) = 1Q))
32anbi2d 464 . . 3 (𝑥 = 𝐴 → ((𝑦Q ∧ (𝑥 ·Q 𝑦) = 1Q) ↔ (𝑦Q ∧ (𝐴 ·Q 𝑦) = 1Q)))
4 eleq1 2292 . . . 4 (𝑦 = 𝐵 → (𝑦Q𝐵Q))
5 oveq2 6015 . . . . 5 (𝑦 = 𝐵 → (𝐴 ·Q 𝑦) = (𝐴 ·Q 𝐵))
65eqeq1d 2238 . . . 4 (𝑦 = 𝐵 → ((𝐴 ·Q 𝑦) = 1Q ↔ (𝐴 ·Q 𝐵) = 1Q))
74, 6anbi12d 473 . . 3 (𝑦 = 𝐵 → ((𝑦Q ∧ (𝐴 ·Q 𝑦) = 1Q) ↔ (𝐵Q ∧ (𝐴 ·Q 𝐵) = 1Q)))
8 recexnq 7585 . . . 4 (𝑥Q → ∃𝑦(𝑦Q ∧ (𝑥 ·Q 𝑦) = 1Q))
9 1nq 7561 . . . . 5 1QQ
10 mulcomnqg 7578 . . . . 5 ((𝑧Q𝑤Q) → (𝑧 ·Q 𝑤) = (𝑤 ·Q 𝑧))
11 mulassnqg 7579 . . . . 5 ((𝑧Q𝑤Q𝑣Q) → ((𝑧 ·Q 𝑤) ·Q 𝑣) = (𝑧 ·Q (𝑤 ·Q 𝑣)))
12 mulidnq 7584 . . . . 5 (𝑧Q → (𝑧 ·Q 1Q) = 𝑧)
139, 10, 11, 12caovimo 6205 . . . 4 (𝑥Q → ∃*𝑦(𝑦Q ∧ (𝑥 ·Q 𝑦) = 1Q))
14 eu5 2125 . . . 4 (∃!𝑦(𝑦Q ∧ (𝑥 ·Q 𝑦) = 1Q) ↔ (∃𝑦(𝑦Q ∧ (𝑥 ·Q 𝑦) = 1Q) ∧ ∃*𝑦(𝑦Q ∧ (𝑥 ·Q 𝑦) = 1Q)))
158, 13, 14sylanbrc 417 . . 3 (𝑥Q → ∃!𝑦(𝑦Q ∧ (𝑥 ·Q 𝑦) = 1Q))
16 df-rq 7547 . . . 4 *Q = {⟨𝑥, 𝑦⟩ ∣ (𝑥Q𝑦Q ∧ (𝑥 ·Q 𝑦) = 1Q)}
17 3anass 1006 . . . . 5 ((𝑥Q𝑦Q ∧ (𝑥 ·Q 𝑦) = 1Q) ↔ (𝑥Q ∧ (𝑦Q ∧ (𝑥 ·Q 𝑦) = 1Q)))
1817opabbii 4151 . . . 4 {⟨𝑥, 𝑦⟩ ∣ (𝑥Q𝑦Q ∧ (𝑥 ·Q 𝑦) = 1Q)} = {⟨𝑥, 𝑦⟩ ∣ (𝑥Q ∧ (𝑦Q ∧ (𝑥 ·Q 𝑦) = 1Q))}
1916, 18eqtri 2250 . . 3 *Q = {⟨𝑥, 𝑦⟩ ∣ (𝑥Q ∧ (𝑦Q ∧ (𝑥 ·Q 𝑦) = 1Q))}
203, 7, 15, 19fvopab3g 5709 . 2 ((𝐴Q𝐵Q) → ((*Q𝐴) = 𝐵 ↔ (𝐵Q ∧ (𝐴 ·Q 𝐵) = 1Q)))
21 ibar 301 . . 3 (𝐵Q → ((𝐴 ·Q 𝐵) = 1Q ↔ (𝐵Q ∧ (𝐴 ·Q 𝐵) = 1Q)))
2221adantl 277 . 2 ((𝐴Q𝐵Q) → ((𝐴 ·Q 𝐵) = 1Q ↔ (𝐵Q ∧ (𝐴 ·Q 𝐵) = 1Q)))
2320, 22bitr4d 191 1 ((𝐴Q𝐵Q) → ((*Q𝐴) = 𝐵 ↔ (𝐴 ·Q 𝐵) = 1Q))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 1002   = wceq 1395  wex 1538  ∃!weu 2077  ∃*wmo 2078  wcel 2200  {copab 4144  cfv 5318  (class class class)co 6007  Qcnq 7475  1Qc1q 7476   ·Q cmq 7478  *Qcrq 7479
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-iord 4457  df-on 4459  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-ov 6010  df-oprab 6011  df-mpo 6012  df-1st 6292  df-2nd 6293  df-recs 6457  df-irdg 6522  df-1o 6568  df-oadd 6572  df-omul 6573  df-er 6688  df-ec 6690  df-qs 6694  df-ni 7499  df-mi 7501  df-mpq 7540  df-enq 7542  df-nqqs 7543  df-mqqs 7545  df-1nqqs 7546  df-rq 7547
This theorem is referenced by:  recclnq  7587  recidnq  7588  recrecnq  7589  recexprlem1ssl  7828  recexprlem1ssu  7829
  Copyright terms: Public domain W3C validator