ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  recmulnqg GIF version

Theorem recmulnqg 7340
Description: Relationship between reciprocal and multiplication on positive fractions. (Contributed by Jim Kingdon, 19-Sep-2019.)
Assertion
Ref Expression
recmulnqg ((𝐴Q𝐵Q) → ((*Q𝐴) = 𝐵 ↔ (𝐴 ·Q 𝐵) = 1Q))

Proof of Theorem recmulnqg
Dummy variables 𝑥 𝑦 𝑧 𝑤 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 5857 . . . . 5 (𝑥 = 𝐴 → (𝑥 ·Q 𝑦) = (𝐴 ·Q 𝑦))
21eqeq1d 2179 . . . 4 (𝑥 = 𝐴 → ((𝑥 ·Q 𝑦) = 1Q ↔ (𝐴 ·Q 𝑦) = 1Q))
32anbi2d 461 . . 3 (𝑥 = 𝐴 → ((𝑦Q ∧ (𝑥 ·Q 𝑦) = 1Q) ↔ (𝑦Q ∧ (𝐴 ·Q 𝑦) = 1Q)))
4 eleq1 2233 . . . 4 (𝑦 = 𝐵 → (𝑦Q𝐵Q))
5 oveq2 5858 . . . . 5 (𝑦 = 𝐵 → (𝐴 ·Q 𝑦) = (𝐴 ·Q 𝐵))
65eqeq1d 2179 . . . 4 (𝑦 = 𝐵 → ((𝐴 ·Q 𝑦) = 1Q ↔ (𝐴 ·Q 𝐵) = 1Q))
74, 6anbi12d 470 . . 3 (𝑦 = 𝐵 → ((𝑦Q ∧ (𝐴 ·Q 𝑦) = 1Q) ↔ (𝐵Q ∧ (𝐴 ·Q 𝐵) = 1Q)))
8 recexnq 7339 . . . 4 (𝑥Q → ∃𝑦(𝑦Q ∧ (𝑥 ·Q 𝑦) = 1Q))
9 1nq 7315 . . . . 5 1QQ
10 mulcomnqg 7332 . . . . 5 ((𝑧Q𝑤Q) → (𝑧 ·Q 𝑤) = (𝑤 ·Q 𝑧))
11 mulassnqg 7333 . . . . 5 ((𝑧Q𝑤Q𝑣Q) → ((𝑧 ·Q 𝑤) ·Q 𝑣) = (𝑧 ·Q (𝑤 ·Q 𝑣)))
12 mulidnq 7338 . . . . 5 (𝑧Q → (𝑧 ·Q 1Q) = 𝑧)
139, 10, 11, 12caovimo 6043 . . . 4 (𝑥Q → ∃*𝑦(𝑦Q ∧ (𝑥 ·Q 𝑦) = 1Q))
14 eu5 2066 . . . 4 (∃!𝑦(𝑦Q ∧ (𝑥 ·Q 𝑦) = 1Q) ↔ (∃𝑦(𝑦Q ∧ (𝑥 ·Q 𝑦) = 1Q) ∧ ∃*𝑦(𝑦Q ∧ (𝑥 ·Q 𝑦) = 1Q)))
158, 13, 14sylanbrc 415 . . 3 (𝑥Q → ∃!𝑦(𝑦Q ∧ (𝑥 ·Q 𝑦) = 1Q))
16 df-rq 7301 . . . 4 *Q = {⟨𝑥, 𝑦⟩ ∣ (𝑥Q𝑦Q ∧ (𝑥 ·Q 𝑦) = 1Q)}
17 3anass 977 . . . . 5 ((𝑥Q𝑦Q ∧ (𝑥 ·Q 𝑦) = 1Q) ↔ (𝑥Q ∧ (𝑦Q ∧ (𝑥 ·Q 𝑦) = 1Q)))
1817opabbii 4054 . . . 4 {⟨𝑥, 𝑦⟩ ∣ (𝑥Q𝑦Q ∧ (𝑥 ·Q 𝑦) = 1Q)} = {⟨𝑥, 𝑦⟩ ∣ (𝑥Q ∧ (𝑦Q ∧ (𝑥 ·Q 𝑦) = 1Q))}
1916, 18eqtri 2191 . . 3 *Q = {⟨𝑥, 𝑦⟩ ∣ (𝑥Q ∧ (𝑦Q ∧ (𝑥 ·Q 𝑦) = 1Q))}
203, 7, 15, 19fvopab3g 5567 . 2 ((𝐴Q𝐵Q) → ((*Q𝐴) = 𝐵 ↔ (𝐵Q ∧ (𝐴 ·Q 𝐵) = 1Q)))
21 ibar 299 . . 3 (𝐵Q → ((𝐴 ·Q 𝐵) = 1Q ↔ (𝐵Q ∧ (𝐴 ·Q 𝐵) = 1Q)))
2221adantl 275 . 2 ((𝐴Q𝐵Q) → ((𝐴 ·Q 𝐵) = 1Q ↔ (𝐵Q ∧ (𝐴 ·Q 𝐵) = 1Q)))
2320, 22bitr4d 190 1 ((𝐴Q𝐵Q) → ((*Q𝐴) = 𝐵 ↔ (𝐴 ·Q 𝐵) = 1Q))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 973   = wceq 1348  wex 1485  ∃!weu 2019  ∃*wmo 2020  wcel 2141  {copab 4047  cfv 5196  (class class class)co 5850  Qcnq 7229  1Qc1q 7230   ·Q cmq 7232  *Qcrq 7233
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4102  ax-sep 4105  ax-nul 4113  ax-pow 4158  ax-pr 4192  ax-un 4416  ax-setind 4519  ax-iinf 4570
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3795  df-int 3830  df-iun 3873  df-br 3988  df-opab 4049  df-mpt 4050  df-tr 4086  df-id 4276  df-iord 4349  df-on 4351  df-suc 4354  df-iom 4573  df-xp 4615  df-rel 4616  df-cnv 4617  df-co 4618  df-dm 4619  df-rn 4620  df-res 4621  df-ima 4622  df-iota 5158  df-fun 5198  df-fn 5199  df-f 5200  df-f1 5201  df-fo 5202  df-f1o 5203  df-fv 5204  df-ov 5853  df-oprab 5854  df-mpo 5855  df-1st 6116  df-2nd 6117  df-recs 6281  df-irdg 6346  df-1o 6392  df-oadd 6396  df-omul 6397  df-er 6509  df-ec 6511  df-qs 6515  df-ni 7253  df-mi 7255  df-mpq 7294  df-enq 7296  df-nqqs 7297  df-mqqs 7299  df-1nqqs 7300  df-rq 7301
This theorem is referenced by:  recclnq  7341  recidnq  7342  recrecnq  7343  recexprlem1ssl  7582  recexprlem1ssu  7583
  Copyright terms: Public domain W3C validator