ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  recmulnqg GIF version

Theorem recmulnqg 7332
Description: Relationship between reciprocal and multiplication on positive fractions. (Contributed by Jim Kingdon, 19-Sep-2019.)
Assertion
Ref Expression
recmulnqg ((𝐴Q𝐵Q) → ((*Q𝐴) = 𝐵 ↔ (𝐴 ·Q 𝐵) = 1Q))

Proof of Theorem recmulnqg
Dummy variables 𝑥 𝑦 𝑧 𝑤 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 5849 . . . . 5 (𝑥 = 𝐴 → (𝑥 ·Q 𝑦) = (𝐴 ·Q 𝑦))
21eqeq1d 2174 . . . 4 (𝑥 = 𝐴 → ((𝑥 ·Q 𝑦) = 1Q ↔ (𝐴 ·Q 𝑦) = 1Q))
32anbi2d 460 . . 3 (𝑥 = 𝐴 → ((𝑦Q ∧ (𝑥 ·Q 𝑦) = 1Q) ↔ (𝑦Q ∧ (𝐴 ·Q 𝑦) = 1Q)))
4 eleq1 2229 . . . 4 (𝑦 = 𝐵 → (𝑦Q𝐵Q))
5 oveq2 5850 . . . . 5 (𝑦 = 𝐵 → (𝐴 ·Q 𝑦) = (𝐴 ·Q 𝐵))
65eqeq1d 2174 . . . 4 (𝑦 = 𝐵 → ((𝐴 ·Q 𝑦) = 1Q ↔ (𝐴 ·Q 𝐵) = 1Q))
74, 6anbi12d 465 . . 3 (𝑦 = 𝐵 → ((𝑦Q ∧ (𝐴 ·Q 𝑦) = 1Q) ↔ (𝐵Q ∧ (𝐴 ·Q 𝐵) = 1Q)))
8 recexnq 7331 . . . 4 (𝑥Q → ∃𝑦(𝑦Q ∧ (𝑥 ·Q 𝑦) = 1Q))
9 1nq 7307 . . . . 5 1QQ
10 mulcomnqg 7324 . . . . 5 ((𝑧Q𝑤Q) → (𝑧 ·Q 𝑤) = (𝑤 ·Q 𝑧))
11 mulassnqg 7325 . . . . 5 ((𝑧Q𝑤Q𝑣Q) → ((𝑧 ·Q 𝑤) ·Q 𝑣) = (𝑧 ·Q (𝑤 ·Q 𝑣)))
12 mulidnq 7330 . . . . 5 (𝑧Q → (𝑧 ·Q 1Q) = 𝑧)
139, 10, 11, 12caovimo 6035 . . . 4 (𝑥Q → ∃*𝑦(𝑦Q ∧ (𝑥 ·Q 𝑦) = 1Q))
14 eu5 2061 . . . 4 (∃!𝑦(𝑦Q ∧ (𝑥 ·Q 𝑦) = 1Q) ↔ (∃𝑦(𝑦Q ∧ (𝑥 ·Q 𝑦) = 1Q) ∧ ∃*𝑦(𝑦Q ∧ (𝑥 ·Q 𝑦) = 1Q)))
158, 13, 14sylanbrc 414 . . 3 (𝑥Q → ∃!𝑦(𝑦Q ∧ (𝑥 ·Q 𝑦) = 1Q))
16 df-rq 7293 . . . 4 *Q = {⟨𝑥, 𝑦⟩ ∣ (𝑥Q𝑦Q ∧ (𝑥 ·Q 𝑦) = 1Q)}
17 3anass 972 . . . . 5 ((𝑥Q𝑦Q ∧ (𝑥 ·Q 𝑦) = 1Q) ↔ (𝑥Q ∧ (𝑦Q ∧ (𝑥 ·Q 𝑦) = 1Q)))
1817opabbii 4049 . . . 4 {⟨𝑥, 𝑦⟩ ∣ (𝑥Q𝑦Q ∧ (𝑥 ·Q 𝑦) = 1Q)} = {⟨𝑥, 𝑦⟩ ∣ (𝑥Q ∧ (𝑦Q ∧ (𝑥 ·Q 𝑦) = 1Q))}
1916, 18eqtri 2186 . . 3 *Q = {⟨𝑥, 𝑦⟩ ∣ (𝑥Q ∧ (𝑦Q ∧ (𝑥 ·Q 𝑦) = 1Q))}
203, 7, 15, 19fvopab3g 5559 . 2 ((𝐴Q𝐵Q) → ((*Q𝐴) = 𝐵 ↔ (𝐵Q ∧ (𝐴 ·Q 𝐵) = 1Q)))
21 ibar 299 . . 3 (𝐵Q → ((𝐴 ·Q 𝐵) = 1Q ↔ (𝐵Q ∧ (𝐴 ·Q 𝐵) = 1Q)))
2221adantl 275 . 2 ((𝐴Q𝐵Q) → ((𝐴 ·Q 𝐵) = 1Q ↔ (𝐵Q ∧ (𝐴 ·Q 𝐵) = 1Q)))
2320, 22bitr4d 190 1 ((𝐴Q𝐵Q) → ((*Q𝐴) = 𝐵 ↔ (𝐴 ·Q 𝐵) = 1Q))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 968   = wceq 1343  wex 1480  ∃!weu 2014  ∃*wmo 2015  wcel 2136  {copab 4042  cfv 5188  (class class class)co 5842  Qcnq 7221  1Qc1q 7222   ·Q cmq 7224  *Qcrq 7225
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-iord 4344  df-on 4346  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-irdg 6338  df-1o 6384  df-oadd 6388  df-omul 6389  df-er 6501  df-ec 6503  df-qs 6507  df-ni 7245  df-mi 7247  df-mpq 7286  df-enq 7288  df-nqqs 7289  df-mqqs 7291  df-1nqqs 7292  df-rq 7293
This theorem is referenced by:  recclnq  7333  recidnq  7334  recrecnq  7335  recexprlem1ssl  7574  recexprlem1ssu  7575
  Copyright terms: Public domain W3C validator