| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > exmidonfin | GIF version | ||
| Description: If a finite ordinal is a natural number, excluded middle follows. That excluded middle implies that a finite ordinal is a natural number is proved in the Metamath Proof Explorer. That a natural number is a finite ordinal is shown at nnfi 6983 and nnon 4665. (Contributed by Andrew W Swan and Jim Kingdon, 9-Mar-2024.) |
| Ref | Expression |
|---|---|
| exmidonfin | ⊢ (ω = (On ∩ Fin) → EXMID) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2206 | . . . 4 ⊢ {{𝑥 ∈ {∅} ∣ 𝑧 = {∅}}, {𝑥 ∈ {∅} ∣ ¬ 𝑧 = {∅}}} = {{𝑥 ∈ {∅} ∣ 𝑧 = {∅}}, {𝑥 ∈ {∅} ∣ ¬ 𝑧 = {∅}}} | |
| 2 | 1 | exmidonfinlem 7316 | . . 3 ⊢ (ω = (On ∩ Fin) → DECID 𝑧 = {∅}) |
| 3 | 2 | adantr 276 | . 2 ⊢ ((ω = (On ∩ Fin) ∧ 𝑧 ⊆ {∅}) → DECID 𝑧 = {∅}) |
| 4 | 3 | exmid1dc 4251 | 1 ⊢ (ω = (On ∩ Fin) → EXMID) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 DECID wdc 836 = wceq 1373 {crab 2489 ∩ cin 3169 ⊆ wss 3170 ∅c0 3464 {csn 3637 {cpr 3638 EXMIDwem 4245 Oncon0 4417 ωcom 4645 Fincfn 6839 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4169 ax-nul 4177 ax-pow 4225 ax-pr 4260 ax-un 4487 ax-setind 4592 ax-iinf 4643 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3003 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-pw 3622 df-sn 3643 df-pr 3644 df-op 3646 df-uni 3856 df-int 3891 df-br 4051 df-opab 4113 df-tr 4150 df-exmid 4246 df-id 4347 df-iord 4420 df-on 4422 df-suc 4425 df-iom 4646 df-xp 4688 df-rel 4689 df-cnv 4690 df-co 4691 df-dm 4692 df-rn 4693 df-res 4694 df-ima 4695 df-iota 5240 df-fun 5281 df-fn 5282 df-f 5283 df-f1 5284 df-fo 5285 df-f1o 5286 df-fv 5287 df-1o 6514 df-2o 6515 df-er 6632 df-en 6840 df-fin 6842 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |