ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exmidonfin GIF version

Theorem exmidonfin 7196
Description: If a finite ordinal is a natural number, excluded middle follows. That excluded middle implies that a finite ordinal is a natural number is proved in the Metamath Proof Explorer. That a natural number is a finite ordinal is shown at nnfi 6875 and nnon 4611. (Contributed by Andrew W Swan and Jim Kingdon, 9-Mar-2024.)
Assertion
Ref Expression
exmidonfin (ω = (On ∩ Fin) → EXMID)

Proof of Theorem exmidonfin
Dummy variables 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2177 . . . 4 {{𝑥 ∈ {∅} ∣ 𝑧 = {∅}}, {𝑥 ∈ {∅} ∣ ¬ 𝑧 = {∅}}} = {{𝑥 ∈ {∅} ∣ 𝑧 = {∅}}, {𝑥 ∈ {∅} ∣ ¬ 𝑧 = {∅}}}
21exmidonfinlem 7195 . . 3 (ω = (On ∩ Fin) → DECID 𝑧 = {∅})
32adantr 276 . 2 ((ω = (On ∩ Fin) ∧ 𝑧 ⊆ {∅}) → DECID 𝑧 = {∅})
43exmid1dc 4202 1 (ω = (On ∩ Fin) → EXMID)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  DECID wdc 834   = wceq 1353  {crab 2459  cin 3130  wss 3131  c0 3424  {csn 3594  {cpr 3595  EXMIDwem 4196  Oncon0 4365  ωcom 4591  Fincfn 6743
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-iinf 4589
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-br 4006  df-opab 4067  df-tr 4104  df-exmid 4197  df-id 4295  df-iord 4368  df-on 4370  df-suc 4373  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-1o 6420  df-2o 6421  df-er 6538  df-en 6744  df-fin 6746
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator