ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exmidonfin GIF version

Theorem exmidonfin 7368
Description: If a finite ordinal is a natural number, excluded middle follows. That excluded middle implies that a finite ordinal is a natural number is proved in the Metamath Proof Explorer. That a natural number is a finite ordinal is shown at nnfi 7030 and nnon 4701. (Contributed by Andrew W Swan and Jim Kingdon, 9-Mar-2024.)
Assertion
Ref Expression
exmidonfin (ω = (On ∩ Fin) → EXMID)

Proof of Theorem exmidonfin
Dummy variables 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2229 . . . 4 {{𝑥 ∈ {∅} ∣ 𝑧 = {∅}}, {𝑥 ∈ {∅} ∣ ¬ 𝑧 = {∅}}} = {{𝑥 ∈ {∅} ∣ 𝑧 = {∅}}, {𝑥 ∈ {∅} ∣ ¬ 𝑧 = {∅}}}
21exmidonfinlem 7367 . . 3 (ω = (On ∩ Fin) → DECID 𝑧 = {∅})
32adantr 276 . 2 ((ω = (On ∩ Fin) ∧ 𝑧 ⊆ {∅}) → DECID 𝑧 = {∅})
43exmid1dc 4283 1 (ω = (On ∩ Fin) → EXMID)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  DECID wdc 839   = wceq 1395  {crab 2512  cin 3196  wss 3197  c0 3491  {csn 3666  {cpr 3667  EXMIDwem 4277  Oncon0 4453  ωcom 4681  Fincfn 6885
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-br 4083  df-opab 4145  df-tr 4182  df-exmid 4278  df-id 4383  df-iord 4456  df-on 4458  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-1o 6560  df-2o 6561  df-er 6678  df-en 6886  df-fin 6888
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator