ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exmidonfin GIF version

Theorem exmidonfin 7141
Description: If a finite ordinal is a natural number, excluded middle follows. That excluded middle implies that a finite ordinal is a natural number is proved in the Metamath Proof Explorer. That a natural number is a finite ordinal is shown at nnfi 6829 and nnon 4581. (Contributed by Andrew W Swan and Jim Kingdon, 9-Mar-2024.)
Assertion
Ref Expression
exmidonfin (ω = (On ∩ Fin) → EXMID)

Proof of Theorem exmidonfin
Dummy variables 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2164 . . . 4 {{𝑥 ∈ {∅} ∣ 𝑧 = {∅}}, {𝑥 ∈ {∅} ∣ ¬ 𝑧 = {∅}}} = {{𝑥 ∈ {∅} ∣ 𝑧 = {∅}}, {𝑥 ∈ {∅} ∣ ¬ 𝑧 = {∅}}}
21exmidonfinlem 7140 . . 3 (ω = (On ∩ Fin) → DECID 𝑧 = {∅})
32adantr 274 . 2 ((ω = (On ∩ Fin) ∧ 𝑧 ⊆ {∅}) → DECID 𝑧 = {∅})
43exmid1dc 4173 1 (ω = (On ∩ Fin) → EXMID)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  DECID wdc 824   = wceq 1342  {crab 2446  cin 3110  wss 3111  c0 3404  {csn 3570  {cpr 3571  EXMIDwem 4167  Oncon0 4335  ωcom 4561  Fincfn 6697
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-13 2137  ax-14 2138  ax-ext 2146  ax-sep 4094  ax-nul 4102  ax-pow 4147  ax-pr 4181  ax-un 4405  ax-setind 4508  ax-iinf 4559
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 968  df-3an 969  df-tru 1345  df-fal 1348  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ne 2335  df-ral 2447  df-rex 2448  df-reu 2449  df-rab 2451  df-v 2723  df-sbc 2947  df-dif 3113  df-un 3115  df-in 3117  df-ss 3124  df-nul 3405  df-pw 3555  df-sn 3576  df-pr 3577  df-op 3579  df-uni 3784  df-int 3819  df-br 3977  df-opab 4038  df-tr 4075  df-exmid 4168  df-id 4265  df-iord 4338  df-on 4340  df-suc 4343  df-iom 4562  df-xp 4604  df-rel 4605  df-cnv 4606  df-co 4607  df-dm 4608  df-rn 4609  df-res 4610  df-ima 4611  df-iota 5147  df-fun 5184  df-fn 5185  df-f 5186  df-f1 5187  df-fo 5188  df-f1o 5189  df-fv 5190  df-1o 6375  df-2o 6376  df-er 6492  df-en 6698  df-fin 6700
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator