ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1dom2g GIF version

Theorem f1dom2g 6905
Description: The domain of a one-to-one function is dominated by its codomain. This variation of f1domg 6907 does not require the Axiom of Replacement. (Contributed by Mario Carneiro, 24-Jun-2015.)
Assertion
Ref Expression
f1dom2g ((𝐴𝑉𝐵𝑊𝐹:𝐴1-1𝐵) → 𝐴𝐵)

Proof of Theorem f1dom2g
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 f1f 5530 . . . . 5 (𝐹:𝐴1-1𝐵𝐹:𝐴𝐵)
2 fex2 5491 . . . . 5 ((𝐹:𝐴𝐵𝐴𝑉𝐵𝑊) → 𝐹 ∈ V)
31, 2syl3an1 1304 . . . 4 ((𝐹:𝐴1-1𝐵𝐴𝑉𝐵𝑊) → 𝐹 ∈ V)
433coml 1234 . . 3 ((𝐴𝑉𝐵𝑊𝐹:𝐴1-1𝐵) → 𝐹 ∈ V)
5 simp3 1023 . . 3 ((𝐴𝑉𝐵𝑊𝐹:𝐴1-1𝐵) → 𝐹:𝐴1-1𝐵)
6 f1eq1 5525 . . . 4 (𝑓 = 𝐹 → (𝑓:𝐴1-1𝐵𝐹:𝐴1-1𝐵))
76spcegv 2891 . . 3 (𝐹 ∈ V → (𝐹:𝐴1-1𝐵 → ∃𝑓 𝑓:𝐴1-1𝐵))
84, 5, 7sylc 62 . 2 ((𝐴𝑉𝐵𝑊𝐹:𝐴1-1𝐵) → ∃𝑓 𝑓:𝐴1-1𝐵)
9 brdomg 6895 . . 3 (𝐵𝑊 → (𝐴𝐵 ↔ ∃𝑓 𝑓:𝐴1-1𝐵))
1093ad2ant2 1043 . 2 ((𝐴𝑉𝐵𝑊𝐹:𝐴1-1𝐵) → (𝐴𝐵 ↔ ∃𝑓 𝑓:𝐴1-1𝐵))
118, 10mpbird 167 1 ((𝐴𝑉𝐵𝑊𝐹:𝐴1-1𝐵) → 𝐴𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  w3a 1002  wex 1538  wcel 2200  Vcvv 2799   class class class wbr 4082  wf 5313  1-1wf1 5314  cdom 6884
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-dom 6887
This theorem is referenced by:  ssdomg  6928
  Copyright terms: Public domain W3C validator