![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > f1domg | GIF version |
Description: The domain of a one-to-one function is dominated by its codomain. (Contributed by NM, 4-Sep-2004.) |
Ref | Expression |
---|---|
f1domg | ⊢ (𝐵 ∈ 𝐶 → (𝐹:𝐴–1-1→𝐵 → 𝐴 ≼ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1dmex 6168 | . . . . 5 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ∈ V) | |
2 | f1f 5459 | . . . . . 6 ⊢ (𝐹:𝐴–1-1→𝐵 → 𝐹:𝐴⟶𝐵) | |
3 | fex 5787 | . . . . . 6 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐴 ∈ V) → 𝐹 ∈ V) | |
4 | 2, 3 | sylan 283 | . . . . 5 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐴 ∈ V) → 𝐹 ∈ V) |
5 | 1, 4 | syldan 282 | . . . 4 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐹 ∈ V) |
6 | 5 | expcom 116 | . . 3 ⊢ (𝐵 ∈ 𝐶 → (𝐹:𝐴–1-1→𝐵 → 𝐹 ∈ V)) |
7 | f1eq1 5454 | . . . 4 ⊢ (𝑓 = 𝐹 → (𝑓:𝐴–1-1→𝐵 ↔ 𝐹:𝐴–1-1→𝐵)) | |
8 | 7 | spcegv 2848 | . . 3 ⊢ (𝐹 ∈ V → (𝐹:𝐴–1-1→𝐵 → ∃𝑓 𝑓:𝐴–1-1→𝐵)) |
9 | 6, 8 | syli 37 | . 2 ⊢ (𝐵 ∈ 𝐶 → (𝐹:𝐴–1-1→𝐵 → ∃𝑓 𝑓:𝐴–1-1→𝐵)) |
10 | brdomg 6802 | . 2 ⊢ (𝐵 ∈ 𝐶 → (𝐴 ≼ 𝐵 ↔ ∃𝑓 𝑓:𝐴–1-1→𝐵)) | |
11 | 9, 10 | sylibrd 169 | 1 ⊢ (𝐵 ∈ 𝐶 → (𝐹:𝐴–1-1→𝐵 → 𝐴 ≼ 𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∃wex 1503 ∈ wcel 2164 Vcvv 2760 class class class wbr 4029 ⟶wf 5250 –1-1→wf1 5251 ≼ cdom 6793 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4144 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4464 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2986 df-csb 3081 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-iun 3914 df-br 4030 df-opab 4091 df-mpt 4092 df-id 4324 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-ima 4672 df-iota 5215 df-fun 5256 df-fn 5257 df-f 5258 df-f1 5259 df-fo 5260 df-f1o 5261 df-fv 5262 df-dom 6796 |
This theorem is referenced by: f1dom 6814 dom2d 6827 exmidsbthrlem 15512 |
Copyright terms: Public domain | W3C validator |