ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1domg GIF version

Theorem f1domg 6652
Description: The domain of a one-to-one function is dominated by its codomain. (Contributed by NM, 4-Sep-2004.)
Assertion
Ref Expression
f1domg (𝐵𝐶 → (𝐹:𝐴1-1𝐵𝐴𝐵))

Proof of Theorem f1domg
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 f1dmex 6014 . . . . 5 ((𝐹:𝐴1-1𝐵𝐵𝐶) → 𝐴 ∈ V)
2 f1f 5328 . . . . . 6 (𝐹:𝐴1-1𝐵𝐹:𝐴𝐵)
3 fex 5647 . . . . . 6 ((𝐹:𝐴𝐵𝐴 ∈ V) → 𝐹 ∈ V)
42, 3sylan 281 . . . . 5 ((𝐹:𝐴1-1𝐵𝐴 ∈ V) → 𝐹 ∈ V)
51, 4syldan 280 . . . 4 ((𝐹:𝐴1-1𝐵𝐵𝐶) → 𝐹 ∈ V)
65expcom 115 . . 3 (𝐵𝐶 → (𝐹:𝐴1-1𝐵𝐹 ∈ V))
7 f1eq1 5323 . . . 4 (𝑓 = 𝐹 → (𝑓:𝐴1-1𝐵𝐹:𝐴1-1𝐵))
87spcegv 2774 . . 3 (𝐹 ∈ V → (𝐹:𝐴1-1𝐵 → ∃𝑓 𝑓:𝐴1-1𝐵))
96, 8syli 37 . 2 (𝐵𝐶 → (𝐹:𝐴1-1𝐵 → ∃𝑓 𝑓:𝐴1-1𝐵))
10 brdomg 6642 . 2 (𝐵𝐶 → (𝐴𝐵 ↔ ∃𝑓 𝑓:𝐴1-1𝐵))
119, 10sylibrd 168 1 (𝐵𝐶 → (𝐹:𝐴1-1𝐵𝐴𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wex 1468  wcel 1480  Vcvv 2686   class class class wbr 3929  wf 5119  1-1wf1 5120  cdom 6633
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-dom 6636
This theorem is referenced by:  f1dom  6654  dom2d  6667  exmidsbthrlem  13324
  Copyright terms: Public domain W3C validator