ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1domg GIF version

Theorem f1domg 6835
Description: The domain of a one-to-one function is dominated by its codomain. (Contributed by NM, 4-Sep-2004.)
Assertion
Ref Expression
f1domg (𝐵𝐶 → (𝐹:𝐴1-1𝐵𝐴𝐵))

Proof of Theorem f1domg
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 f1dmex 6191 . . . . 5 ((𝐹:𝐴1-1𝐵𝐵𝐶) → 𝐴 ∈ V)
2 f1f 5475 . . . . . 6 (𝐹:𝐴1-1𝐵𝐹:𝐴𝐵)
3 fex 5803 . . . . . 6 ((𝐹:𝐴𝐵𝐴 ∈ V) → 𝐹 ∈ V)
42, 3sylan 283 . . . . 5 ((𝐹:𝐴1-1𝐵𝐴 ∈ V) → 𝐹 ∈ V)
51, 4syldan 282 . . . 4 ((𝐹:𝐴1-1𝐵𝐵𝐶) → 𝐹 ∈ V)
65expcom 116 . . 3 (𝐵𝐶 → (𝐹:𝐴1-1𝐵𝐹 ∈ V))
7 f1eq1 5470 . . . 4 (𝑓 = 𝐹 → (𝑓:𝐴1-1𝐵𝐹:𝐴1-1𝐵))
87spcegv 2860 . . 3 (𝐹 ∈ V → (𝐹:𝐴1-1𝐵 → ∃𝑓 𝑓:𝐴1-1𝐵))
96, 8syli 37 . 2 (𝐵𝐶 → (𝐹:𝐴1-1𝐵 → ∃𝑓 𝑓:𝐴1-1𝐵))
10 brdomg 6825 . 2 (𝐵𝐶 → (𝐴𝐵 ↔ ∃𝑓 𝑓:𝐴1-1𝐵))
119, 10sylibrd 169 1 (𝐵𝐶 → (𝐹:𝐴1-1𝐵𝐴𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wex 1514  wcel 2175  Vcvv 2771   class class class wbr 4043  wf 5264  1-1wf1 5265  cdom 6816
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4478
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-reu 2490  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4338  df-xp 4679  df-rel 4680  df-cnv 4681  df-co 4682  df-dm 4683  df-rn 4684  df-res 4685  df-ima 4686  df-iota 5229  df-fun 5270  df-fn 5271  df-f 5272  df-f1 5273  df-fo 5274  df-f1o 5275  df-fv 5276  df-dom 6819
This theorem is referenced by:  f1dom  6837  dom2d  6850  exmidsbthrlem  15825
  Copyright terms: Public domain W3C validator