ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dom3d GIF version

Theorem dom3d 6491
Description: A mapping (first hypothesis) that is one-to-one (second hypothesis) implies its domain is dominated by its codomain. (Contributed by Mario Carneiro, 20-May-2013.)
Hypotheses
Ref Expression
dom2d.1 (𝜑 → (𝑥𝐴𝐶𝐵))
dom2d.2 (𝜑 → ((𝑥𝐴𝑦𝐴) → (𝐶 = 𝐷𝑥 = 𝑦)))
dom3d.3 (𝜑𝐴𝑉)
dom3d.4 (𝜑𝐵𝑊)
Assertion
Ref Expression
dom3d (𝜑𝐴𝐵)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑦,𝐶   𝑥,𝐷   𝜑,𝑥,𝑦
Allowed substitution hints:   𝐶(𝑥)   𝐷(𝑦)   𝑉(𝑥,𝑦)   𝑊(𝑥,𝑦)

Proof of Theorem dom3d
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 dom2d.1 . . . . . 6 (𝜑 → (𝑥𝐴𝐶𝐵))
2 dom2d.2 . . . . . 6 (𝜑 → ((𝑥𝐴𝑦𝐴) → (𝐶 = 𝐷𝑥 = 𝑦)))
31, 2dom2lem 6489 . . . . 5 (𝜑 → (𝑥𝐴𝐶):𝐴1-1𝐵)
4 f1f 5216 . . . . 5 ((𝑥𝐴𝐶):𝐴1-1𝐵 → (𝑥𝐴𝐶):𝐴𝐵)
53, 4syl 14 . . . 4 (𝜑 → (𝑥𝐴𝐶):𝐴𝐵)
6 dom3d.3 . . . 4 (𝜑𝐴𝑉)
7 dom3d.4 . . . 4 (𝜑𝐵𝑊)
8 fex2 5179 . . . 4 (((𝑥𝐴𝐶):𝐴𝐵𝐴𝑉𝐵𝑊) → (𝑥𝐴𝐶) ∈ V)
95, 6, 7, 8syl3anc 1174 . . 3 (𝜑 → (𝑥𝐴𝐶) ∈ V)
10 f1eq1 5211 . . . 4 (𝑧 = (𝑥𝐴𝐶) → (𝑧:𝐴1-1𝐵 ↔ (𝑥𝐴𝐶):𝐴1-1𝐵))
1110spcegv 2707 . . 3 ((𝑥𝐴𝐶) ∈ V → ((𝑥𝐴𝐶):𝐴1-1𝐵 → ∃𝑧 𝑧:𝐴1-1𝐵))
129, 3, 11sylc 61 . 2 (𝜑 → ∃𝑧 𝑧:𝐴1-1𝐵)
13 brdomg 6465 . . 3 (𝐵𝑊 → (𝐴𝐵 ↔ ∃𝑧 𝑧:𝐴1-1𝐵))
147, 13syl 14 . 2 (𝜑 → (𝐴𝐵 ↔ ∃𝑧 𝑧:𝐴1-1𝐵))
1512, 14mpbird 165 1 (𝜑𝐴𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103   = wceq 1289  wex 1426  wcel 1438  Vcvv 2619   class class class wbr 3845  cmpt 3899  wf 5011  1-1wf1 5012  cdom 6456
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-13 1449  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-sep 3957  ax-pow 4009  ax-pr 4036  ax-un 4260
This theorem depends on definitions:  df-bi 115  df-3an 926  df-tru 1292  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ral 2364  df-rex 2365  df-rab 2368  df-v 2621  df-sbc 2841  df-csb 2934  df-un 3003  df-in 3005  df-ss 3012  df-pw 3431  df-sn 3452  df-pr 3453  df-op 3455  df-uni 3654  df-br 3846  df-opab 3900  df-mpt 3901  df-id 4120  df-xp 4444  df-rel 4445  df-cnv 4446  df-co 4447  df-dm 4448  df-rn 4449  df-res 4450  df-ima 4451  df-iota 4980  df-fun 5017  df-fn 5018  df-f 5019  df-f1 5020  df-fv 5023  df-dom 6459
This theorem is referenced by:  dom3  6493  xpdom2  6547  fopwdom  6552
  Copyright terms: Public domain W3C validator