| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dom3d | GIF version | ||
| Description: A mapping (first hypothesis) that is one-to-one (second hypothesis) implies its domain is dominated by its codomain. (Contributed by Mario Carneiro, 20-May-2013.) |
| Ref | Expression |
|---|---|
| dom2d.1 | ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝐶 ∈ 𝐵)) |
| dom2d.2 | ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝐶 = 𝐷 ↔ 𝑥 = 𝑦))) |
| dom3d.3 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| dom3d.4 | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
| Ref | Expression |
|---|---|
| dom3d | ⊢ (𝜑 → 𝐴 ≼ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dom2d.1 | . . . . . 6 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝐶 ∈ 𝐵)) | |
| 2 | dom2d.2 | . . . . . 6 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝐶 = 𝐷 ↔ 𝑥 = 𝑦))) | |
| 3 | 1, 2 | dom2lem 6831 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶):𝐴–1-1→𝐵) |
| 4 | f1f 5463 | . . . . 5 ⊢ ((𝑥 ∈ 𝐴 ↦ 𝐶):𝐴–1-1→𝐵 → (𝑥 ∈ 𝐴 ↦ 𝐶):𝐴⟶𝐵) | |
| 5 | 3, 4 | syl 14 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶):𝐴⟶𝐵) |
| 6 | dom3d.3 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 7 | dom3d.4 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
| 8 | fex2 5426 | . . . 4 ⊢ (((𝑥 ∈ 𝐴 ↦ 𝐶):𝐴⟶𝐵 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝑥 ∈ 𝐴 ↦ 𝐶) ∈ V) | |
| 9 | 5, 6, 7, 8 | syl3anc 1249 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶) ∈ V) |
| 10 | f1eq1 5458 | . . . 4 ⊢ (𝑧 = (𝑥 ∈ 𝐴 ↦ 𝐶) → (𝑧:𝐴–1-1→𝐵 ↔ (𝑥 ∈ 𝐴 ↦ 𝐶):𝐴–1-1→𝐵)) | |
| 11 | 10 | spcegv 2852 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ↦ 𝐶) ∈ V → ((𝑥 ∈ 𝐴 ↦ 𝐶):𝐴–1-1→𝐵 → ∃𝑧 𝑧:𝐴–1-1→𝐵)) |
| 12 | 9, 3, 11 | sylc 62 | . 2 ⊢ (𝜑 → ∃𝑧 𝑧:𝐴–1-1→𝐵) |
| 13 | brdomg 6807 | . . 3 ⊢ (𝐵 ∈ 𝑊 → (𝐴 ≼ 𝐵 ↔ ∃𝑧 𝑧:𝐴–1-1→𝐵)) | |
| 14 | 7, 13 | syl 14 | . 2 ⊢ (𝜑 → (𝐴 ≼ 𝐵 ↔ ∃𝑧 𝑧:𝐴–1-1→𝐵)) |
| 15 | 12, 14 | mpbird 167 | 1 ⊢ (𝜑 → 𝐴 ≼ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ∃wex 1506 ∈ wcel 2167 Vcvv 2763 class class class wbr 4033 ↦ cmpt 4094 ⟶wf 5254 –1-1→wf1 5255 ≼ cdom 6798 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fv 5266 df-dom 6801 |
| This theorem is referenced by: dom3 6835 xpdom2 6890 fopwdom 6897 nninfinf 10535 |
| Copyright terms: Public domain | W3C validator |