ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dom3d GIF version

Theorem dom3d 6676
Description: A mapping (first hypothesis) that is one-to-one (second hypothesis) implies its domain is dominated by its codomain. (Contributed by Mario Carneiro, 20-May-2013.)
Hypotheses
Ref Expression
dom2d.1 (𝜑 → (𝑥𝐴𝐶𝐵))
dom2d.2 (𝜑 → ((𝑥𝐴𝑦𝐴) → (𝐶 = 𝐷𝑥 = 𝑦)))
dom3d.3 (𝜑𝐴𝑉)
dom3d.4 (𝜑𝐵𝑊)
Assertion
Ref Expression
dom3d (𝜑𝐴𝐵)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑦,𝐶   𝑥,𝐷   𝜑,𝑥,𝑦
Allowed substitution hints:   𝐶(𝑥)   𝐷(𝑦)   𝑉(𝑥,𝑦)   𝑊(𝑥,𝑦)

Proof of Theorem dom3d
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 dom2d.1 . . . . . 6 (𝜑 → (𝑥𝐴𝐶𝐵))
2 dom2d.2 . . . . . 6 (𝜑 → ((𝑥𝐴𝑦𝐴) → (𝐶 = 𝐷𝑥 = 𝑦)))
31, 2dom2lem 6674 . . . . 5 (𝜑 → (𝑥𝐴𝐶):𝐴1-1𝐵)
4 f1f 5336 . . . . 5 ((𝑥𝐴𝐶):𝐴1-1𝐵 → (𝑥𝐴𝐶):𝐴𝐵)
53, 4syl 14 . . . 4 (𝜑 → (𝑥𝐴𝐶):𝐴𝐵)
6 dom3d.3 . . . 4 (𝜑𝐴𝑉)
7 dom3d.4 . . . 4 (𝜑𝐵𝑊)
8 fex2 5299 . . . 4 (((𝑥𝐴𝐶):𝐴𝐵𝐴𝑉𝐵𝑊) → (𝑥𝐴𝐶) ∈ V)
95, 6, 7, 8syl3anc 1217 . . 3 (𝜑 → (𝑥𝐴𝐶) ∈ V)
10 f1eq1 5331 . . . 4 (𝑧 = (𝑥𝐴𝐶) → (𝑧:𝐴1-1𝐵 ↔ (𝑥𝐴𝐶):𝐴1-1𝐵))
1110spcegv 2777 . . 3 ((𝑥𝐴𝐶) ∈ V → ((𝑥𝐴𝐶):𝐴1-1𝐵 → ∃𝑧 𝑧:𝐴1-1𝐵))
129, 3, 11sylc 62 . 2 (𝜑 → ∃𝑧 𝑧:𝐴1-1𝐵)
13 brdomg 6650 . . 3 (𝐵𝑊 → (𝐴𝐵 ↔ ∃𝑧 𝑧:𝐴1-1𝐵))
147, 13syl 14 . 2 (𝜑 → (𝐴𝐵 ↔ ∃𝑧 𝑧:𝐴1-1𝐵))
1512, 14mpbird 166 1 (𝜑𝐴𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1332  wex 1469  wcel 1481  Vcvv 2689   class class class wbr 3937  cmpt 3997  wf 5127  1-1wf1 5128  cdom 6641
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139  ax-un 4363
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ral 2422  df-rex 2423  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-un 3080  df-in 3082  df-ss 3089  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-br 3938  df-opab 3998  df-mpt 3999  df-id 4223  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fv 5139  df-dom 6644
This theorem is referenced by:  dom3  6678  xpdom2  6733  fopwdom  6738
  Copyright terms: Public domain W3C validator