Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dom3d | GIF version |
Description: A mapping (first hypothesis) that is one-to-one (second hypothesis) implies its domain is dominated by its codomain. (Contributed by Mario Carneiro, 20-May-2013.) |
Ref | Expression |
---|---|
dom2d.1 | ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝐶 ∈ 𝐵)) |
dom2d.2 | ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝐶 = 𝐷 ↔ 𝑥 = 𝑦))) |
dom3d.3 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
dom3d.4 | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
Ref | Expression |
---|---|
dom3d | ⊢ (𝜑 → 𝐴 ≼ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dom2d.1 | . . . . . 6 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝐶 ∈ 𝐵)) | |
2 | dom2d.2 | . . . . . 6 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝐶 = 𝐷 ↔ 𝑥 = 𝑦))) | |
3 | 1, 2 | dom2lem 6750 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶):𝐴–1-1→𝐵) |
4 | f1f 5403 | . . . . 5 ⊢ ((𝑥 ∈ 𝐴 ↦ 𝐶):𝐴–1-1→𝐵 → (𝑥 ∈ 𝐴 ↦ 𝐶):𝐴⟶𝐵) | |
5 | 3, 4 | syl 14 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶):𝐴⟶𝐵) |
6 | dom3d.3 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
7 | dom3d.4 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
8 | fex2 5366 | . . . 4 ⊢ (((𝑥 ∈ 𝐴 ↦ 𝐶):𝐴⟶𝐵 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝑥 ∈ 𝐴 ↦ 𝐶) ∈ V) | |
9 | 5, 6, 7, 8 | syl3anc 1233 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶) ∈ V) |
10 | f1eq1 5398 | . . . 4 ⊢ (𝑧 = (𝑥 ∈ 𝐴 ↦ 𝐶) → (𝑧:𝐴–1-1→𝐵 ↔ (𝑥 ∈ 𝐴 ↦ 𝐶):𝐴–1-1→𝐵)) | |
11 | 10 | spcegv 2818 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ↦ 𝐶) ∈ V → ((𝑥 ∈ 𝐴 ↦ 𝐶):𝐴–1-1→𝐵 → ∃𝑧 𝑧:𝐴–1-1→𝐵)) |
12 | 9, 3, 11 | sylc 62 | . 2 ⊢ (𝜑 → ∃𝑧 𝑧:𝐴–1-1→𝐵) |
13 | brdomg 6726 | . . 3 ⊢ (𝐵 ∈ 𝑊 → (𝐴 ≼ 𝐵 ↔ ∃𝑧 𝑧:𝐴–1-1→𝐵)) | |
14 | 7, 13 | syl 14 | . 2 ⊢ (𝜑 → (𝐴 ≼ 𝐵 ↔ ∃𝑧 𝑧:𝐴–1-1→𝐵)) |
15 | 12, 14 | mpbird 166 | 1 ⊢ (𝜑 → 𝐴 ≼ 𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 = wceq 1348 ∃wex 1485 ∈ wcel 2141 Vcvv 2730 class class class wbr 3989 ↦ cmpt 4050 ⟶wf 5194 –1-1→wf1 5195 ≼ cdom 6717 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fv 5206 df-dom 6720 |
This theorem is referenced by: dom3 6754 xpdom2 6809 fopwdom 6814 |
Copyright terms: Public domain | W3C validator |