ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dom3d GIF version

Theorem dom3d 6774
Description: A mapping (first hypothesis) that is one-to-one (second hypothesis) implies its domain is dominated by its codomain. (Contributed by Mario Carneiro, 20-May-2013.)
Hypotheses
Ref Expression
dom2d.1 (𝜑 → (𝑥𝐴𝐶𝐵))
dom2d.2 (𝜑 → ((𝑥𝐴𝑦𝐴) → (𝐶 = 𝐷𝑥 = 𝑦)))
dom3d.3 (𝜑𝐴𝑉)
dom3d.4 (𝜑𝐵𝑊)
Assertion
Ref Expression
dom3d (𝜑𝐴𝐵)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑦,𝐶   𝑥,𝐷   𝜑,𝑥,𝑦
Allowed substitution hints:   𝐶(𝑥)   𝐷(𝑦)   𝑉(𝑥,𝑦)   𝑊(𝑥,𝑦)

Proof of Theorem dom3d
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 dom2d.1 . . . . . 6 (𝜑 → (𝑥𝐴𝐶𝐵))
2 dom2d.2 . . . . . 6 (𝜑 → ((𝑥𝐴𝑦𝐴) → (𝐶 = 𝐷𝑥 = 𝑦)))
31, 2dom2lem 6772 . . . . 5 (𝜑 → (𝑥𝐴𝐶):𝐴1-1𝐵)
4 f1f 5422 . . . . 5 ((𝑥𝐴𝐶):𝐴1-1𝐵 → (𝑥𝐴𝐶):𝐴𝐵)
53, 4syl 14 . . . 4 (𝜑 → (𝑥𝐴𝐶):𝐴𝐵)
6 dom3d.3 . . . 4 (𝜑𝐴𝑉)
7 dom3d.4 . . . 4 (𝜑𝐵𝑊)
8 fex2 5385 . . . 4 (((𝑥𝐴𝐶):𝐴𝐵𝐴𝑉𝐵𝑊) → (𝑥𝐴𝐶) ∈ V)
95, 6, 7, 8syl3anc 1238 . . 3 (𝜑 → (𝑥𝐴𝐶) ∈ V)
10 f1eq1 5417 . . . 4 (𝑧 = (𝑥𝐴𝐶) → (𝑧:𝐴1-1𝐵 ↔ (𝑥𝐴𝐶):𝐴1-1𝐵))
1110spcegv 2826 . . 3 ((𝑥𝐴𝐶) ∈ V → ((𝑥𝐴𝐶):𝐴1-1𝐵 → ∃𝑧 𝑧:𝐴1-1𝐵))
129, 3, 11sylc 62 . 2 (𝜑 → ∃𝑧 𝑧:𝐴1-1𝐵)
13 brdomg 6748 . . 3 (𝐵𝑊 → (𝐴𝐵 ↔ ∃𝑧 𝑧:𝐴1-1𝐵))
147, 13syl 14 . 2 (𝜑 → (𝐴𝐵 ↔ ∃𝑧 𝑧:𝐴1-1𝐵))
1512, 14mpbird 167 1 (𝜑𝐴𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1353  wex 1492  wcel 2148  Vcvv 2738   class class class wbr 4004  cmpt 4065  wf 5213  1-1wf1 5214  cdom 6739
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4122  ax-pow 4175  ax-pr 4210  ax-un 4434
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2740  df-sbc 2964  df-csb 3059  df-un 3134  df-in 3136  df-ss 3143  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-br 4005  df-opab 4066  df-mpt 4067  df-id 4294  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-rn 4638  df-res 4639  df-ima 4640  df-iota 5179  df-fun 5219  df-fn 5220  df-f 5221  df-f1 5222  df-fv 5225  df-dom 6742
This theorem is referenced by:  dom3  6776  xpdom2  6831  fopwdom  6836
  Copyright terms: Public domain W3C validator