Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dom3d | GIF version |
Description: A mapping (first hypothesis) that is one-to-one (second hypothesis) implies its domain is dominated by its codomain. (Contributed by Mario Carneiro, 20-May-2013.) |
Ref | Expression |
---|---|
dom2d.1 | ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝐶 ∈ 𝐵)) |
dom2d.2 | ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝐶 = 𝐷 ↔ 𝑥 = 𝑦))) |
dom3d.3 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
dom3d.4 | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
Ref | Expression |
---|---|
dom3d | ⊢ (𝜑 → 𝐴 ≼ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dom2d.1 | . . . . . 6 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝐶 ∈ 𝐵)) | |
2 | dom2d.2 | . . . . . 6 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝐶 = 𝐷 ↔ 𝑥 = 𝑦))) | |
3 | 1, 2 | dom2lem 6738 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶):𝐴–1-1→𝐵) |
4 | f1f 5393 | . . . . 5 ⊢ ((𝑥 ∈ 𝐴 ↦ 𝐶):𝐴–1-1→𝐵 → (𝑥 ∈ 𝐴 ↦ 𝐶):𝐴⟶𝐵) | |
5 | 3, 4 | syl 14 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶):𝐴⟶𝐵) |
6 | dom3d.3 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
7 | dom3d.4 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
8 | fex2 5356 | . . . 4 ⊢ (((𝑥 ∈ 𝐴 ↦ 𝐶):𝐴⟶𝐵 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝑥 ∈ 𝐴 ↦ 𝐶) ∈ V) | |
9 | 5, 6, 7, 8 | syl3anc 1228 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶) ∈ V) |
10 | f1eq1 5388 | . . . 4 ⊢ (𝑧 = (𝑥 ∈ 𝐴 ↦ 𝐶) → (𝑧:𝐴–1-1→𝐵 ↔ (𝑥 ∈ 𝐴 ↦ 𝐶):𝐴–1-1→𝐵)) | |
11 | 10 | spcegv 2814 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ↦ 𝐶) ∈ V → ((𝑥 ∈ 𝐴 ↦ 𝐶):𝐴–1-1→𝐵 → ∃𝑧 𝑧:𝐴–1-1→𝐵)) |
12 | 9, 3, 11 | sylc 62 | . 2 ⊢ (𝜑 → ∃𝑧 𝑧:𝐴–1-1→𝐵) |
13 | brdomg 6714 | . . 3 ⊢ (𝐵 ∈ 𝑊 → (𝐴 ≼ 𝐵 ↔ ∃𝑧 𝑧:𝐴–1-1→𝐵)) | |
14 | 7, 13 | syl 14 | . 2 ⊢ (𝜑 → (𝐴 ≼ 𝐵 ↔ ∃𝑧 𝑧:𝐴–1-1→𝐵)) |
15 | 12, 14 | mpbird 166 | 1 ⊢ (𝜑 → 𝐴 ≼ 𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 = wceq 1343 ∃wex 1480 ∈ wcel 2136 Vcvv 2726 class class class wbr 3982 ↦ cmpt 4043 ⟶wf 5184 –1-1→wf1 5185 ≼ cdom 6705 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fv 5196 df-dom 6708 |
This theorem is referenced by: dom3 6742 xpdom2 6797 fopwdom 6802 |
Copyright terms: Public domain | W3C validator |