ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dom3d GIF version

Theorem dom3d 6740
Description: A mapping (first hypothesis) that is one-to-one (second hypothesis) implies its domain is dominated by its codomain. (Contributed by Mario Carneiro, 20-May-2013.)
Hypotheses
Ref Expression
dom2d.1 (𝜑 → (𝑥𝐴𝐶𝐵))
dom2d.2 (𝜑 → ((𝑥𝐴𝑦𝐴) → (𝐶 = 𝐷𝑥 = 𝑦)))
dom3d.3 (𝜑𝐴𝑉)
dom3d.4 (𝜑𝐵𝑊)
Assertion
Ref Expression
dom3d (𝜑𝐴𝐵)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑦,𝐶   𝑥,𝐷   𝜑,𝑥,𝑦
Allowed substitution hints:   𝐶(𝑥)   𝐷(𝑦)   𝑉(𝑥,𝑦)   𝑊(𝑥,𝑦)

Proof of Theorem dom3d
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 dom2d.1 . . . . . 6 (𝜑 → (𝑥𝐴𝐶𝐵))
2 dom2d.2 . . . . . 6 (𝜑 → ((𝑥𝐴𝑦𝐴) → (𝐶 = 𝐷𝑥 = 𝑦)))
31, 2dom2lem 6738 . . . . 5 (𝜑 → (𝑥𝐴𝐶):𝐴1-1𝐵)
4 f1f 5393 . . . . 5 ((𝑥𝐴𝐶):𝐴1-1𝐵 → (𝑥𝐴𝐶):𝐴𝐵)
53, 4syl 14 . . . 4 (𝜑 → (𝑥𝐴𝐶):𝐴𝐵)
6 dom3d.3 . . . 4 (𝜑𝐴𝑉)
7 dom3d.4 . . . 4 (𝜑𝐵𝑊)
8 fex2 5356 . . . 4 (((𝑥𝐴𝐶):𝐴𝐵𝐴𝑉𝐵𝑊) → (𝑥𝐴𝐶) ∈ V)
95, 6, 7, 8syl3anc 1228 . . 3 (𝜑 → (𝑥𝐴𝐶) ∈ V)
10 f1eq1 5388 . . . 4 (𝑧 = (𝑥𝐴𝐶) → (𝑧:𝐴1-1𝐵 ↔ (𝑥𝐴𝐶):𝐴1-1𝐵))
1110spcegv 2814 . . 3 ((𝑥𝐴𝐶) ∈ V → ((𝑥𝐴𝐶):𝐴1-1𝐵 → ∃𝑧 𝑧:𝐴1-1𝐵))
129, 3, 11sylc 62 . 2 (𝜑 → ∃𝑧 𝑧:𝐴1-1𝐵)
13 brdomg 6714 . . 3 (𝐵𝑊 → (𝐴𝐵 ↔ ∃𝑧 𝑧:𝐴1-1𝐵))
147, 13syl 14 . 2 (𝜑 → (𝐴𝐵 ↔ ∃𝑧 𝑧:𝐴1-1𝐵))
1512, 14mpbird 166 1 (𝜑𝐴𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1343  wex 1480  wcel 2136  Vcvv 2726   class class class wbr 3982  cmpt 4043  wf 5184  1-1wf1 5185  cdom 6705
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fv 5196  df-dom 6708
This theorem is referenced by:  dom3  6742  xpdom2  6797  fopwdom  6802
  Copyright terms: Public domain W3C validator