Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  dom3d GIF version

Theorem dom3d 6661
 Description: A mapping (first hypothesis) that is one-to-one (second hypothesis) implies its domain is dominated by its codomain. (Contributed by Mario Carneiro, 20-May-2013.)
Hypotheses
Ref Expression
dom2d.1 (𝜑 → (𝑥𝐴𝐶𝐵))
dom2d.2 (𝜑 → ((𝑥𝐴𝑦𝐴) → (𝐶 = 𝐷𝑥 = 𝑦)))
dom3d.3 (𝜑𝐴𝑉)
dom3d.4 (𝜑𝐵𝑊)
Assertion
Ref Expression
dom3d (𝜑𝐴𝐵)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑦,𝐶   𝑥,𝐷   𝜑,𝑥,𝑦
Allowed substitution hints:   𝐶(𝑥)   𝐷(𝑦)   𝑉(𝑥,𝑦)   𝑊(𝑥,𝑦)

Proof of Theorem dom3d
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 dom2d.1 . . . . . 6 (𝜑 → (𝑥𝐴𝐶𝐵))
2 dom2d.2 . . . . . 6 (𝜑 → ((𝑥𝐴𝑦𝐴) → (𝐶 = 𝐷𝑥 = 𝑦)))
31, 2dom2lem 6659 . . . . 5 (𝜑 → (𝑥𝐴𝐶):𝐴1-1𝐵)
4 f1f 5323 . . . . 5 ((𝑥𝐴𝐶):𝐴1-1𝐵 → (𝑥𝐴𝐶):𝐴𝐵)
53, 4syl 14 . . . 4 (𝜑 → (𝑥𝐴𝐶):𝐴𝐵)
6 dom3d.3 . . . 4 (𝜑𝐴𝑉)
7 dom3d.4 . . . 4 (𝜑𝐵𝑊)
8 fex2 5286 . . . 4 (((𝑥𝐴𝐶):𝐴𝐵𝐴𝑉𝐵𝑊) → (𝑥𝐴𝐶) ∈ V)
95, 6, 7, 8syl3anc 1216 . . 3 (𝜑 → (𝑥𝐴𝐶) ∈ V)
10 f1eq1 5318 . . . 4 (𝑧 = (𝑥𝐴𝐶) → (𝑧:𝐴1-1𝐵 ↔ (𝑥𝐴𝐶):𝐴1-1𝐵))
1110spcegv 2769 . . 3 ((𝑥𝐴𝐶) ∈ V → ((𝑥𝐴𝐶):𝐴1-1𝐵 → ∃𝑧 𝑧:𝐴1-1𝐵))
129, 3, 11sylc 62 . 2 (𝜑 → ∃𝑧 𝑧:𝐴1-1𝐵)
13 brdomg 6635 . . 3 (𝐵𝑊 → (𝐴𝐵 ↔ ∃𝑧 𝑧:𝐴1-1𝐵))
147, 13syl 14 . 2 (𝜑 → (𝐴𝐵 ↔ ∃𝑧 𝑧:𝐴1-1𝐵))
1512, 14mpbird 166 1 (𝜑𝐴𝐵)
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 103   ↔ wb 104   = wceq 1331  ∃wex 1468   ∈ wcel 1480  Vcvv 2681   class class class wbr 3924   ↦ cmpt 3984  ⟶wf 5114  –1-1→wf1 5115   ≼ cdom 6626 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-sep 4041  ax-pow 4093  ax-pr 4126  ax-un 4350 This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ral 2419  df-rex 2420  df-rab 2423  df-v 2683  df-sbc 2905  df-csb 2999  df-un 3070  df-in 3072  df-ss 3079  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-br 3925  df-opab 3985  df-mpt 3986  df-id 4210  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-f1 5123  df-fv 5126  df-dom 6629 This theorem is referenced by:  dom3  6663  xpdom2  6718  fopwdom  6723
 Copyright terms: Public domain W3C validator