Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1imaen2g GIF version

Theorem f1imaen2g 6687
 Description: A one-to-one function's image under a subset of its domain is equinumerous to the subset. (This version of f1imaen 6688 does not need ax-setind 4452.) (Contributed by Mario Carneiro, 16-Nov-2014.) (Revised by Mario Carneiro, 25-Jun-2015.)
Assertion
Ref Expression
f1imaen2g (((𝐹:𝐴1-1𝐵𝐵𝑉) ∧ (𝐶𝐴𝐶𝑉)) → (𝐹𝐶) ≈ 𝐶)

Proof of Theorem f1imaen2g
StepHypRef Expression
1 simprr 521 . . 3 (((𝐹:𝐴1-1𝐵𝐵𝑉) ∧ (𝐶𝐴𝐶𝑉)) → 𝐶𝑉)
2 simplr 519 . . . 4 (((𝐹:𝐴1-1𝐵𝐵𝑉) ∧ (𝐶𝐴𝐶𝑉)) → 𝐵𝑉)
3 f1f 5328 . . . . . 6 (𝐹:𝐴1-1𝐵𝐹:𝐴𝐵)
4 imassrn 4892 . . . . . . 7 (𝐹𝐶) ⊆ ran 𝐹
5 frn 5281 . . . . . . 7 (𝐹:𝐴𝐵 → ran 𝐹𝐵)
64, 5sstrid 3108 . . . . . 6 (𝐹:𝐴𝐵 → (𝐹𝐶) ⊆ 𝐵)
73, 6syl 14 . . . . 5 (𝐹:𝐴1-1𝐵 → (𝐹𝐶) ⊆ 𝐵)
87ad2antrr 479 . . . 4 (((𝐹:𝐴1-1𝐵𝐵𝑉) ∧ (𝐶𝐴𝐶𝑉)) → (𝐹𝐶) ⊆ 𝐵)
92, 8ssexd 4068 . . 3 (((𝐹:𝐴1-1𝐵𝐵𝑉) ∧ (𝐶𝐴𝐶𝑉)) → (𝐹𝐶) ∈ V)
10 f1ores 5382 . . . 4 ((𝐹:𝐴1-1𝐵𝐶𝐴) → (𝐹𝐶):𝐶1-1-onto→(𝐹𝐶))
1110ad2ant2r 500 . . 3 (((𝐹:𝐴1-1𝐵𝐵𝑉) ∧ (𝐶𝐴𝐶𝑉)) → (𝐹𝐶):𝐶1-1-onto→(𝐹𝐶))
12 f1oen2g 6649 . . 3 ((𝐶𝑉 ∧ (𝐹𝐶) ∈ V ∧ (𝐹𝐶):𝐶1-1-onto→(𝐹𝐶)) → 𝐶 ≈ (𝐹𝐶))
131, 9, 11, 12syl3anc 1216 . 2 (((𝐹:𝐴1-1𝐵𝐵𝑉) ∧ (𝐶𝐴𝐶𝑉)) → 𝐶 ≈ (𝐹𝐶))
1413ensymd 6677 1 (((𝐹:𝐴1-1𝐵𝐵𝑉) ∧ (𝐶𝐴𝐶𝑉)) → (𝐹𝐶) ≈ 𝐶)
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 103   ∈ wcel 1480  Vcvv 2686   ⊆ wss 3071   class class class wbr 3929  ran crn 4540   ↾ cres 4541   “ cima 4542  ⟶wf 5119  –1-1→wf1 5120  –1-1-onto→wf1o 5122   ≈ cen 6632 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355 This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-rex 2422  df-v 2688  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-br 3930  df-opab 3990  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-er 6429  df-en 6635 This theorem is referenced by:  ssenen  6745  phplem4  6749  phplem4dom  6756  phplem4on  6761  fiintim  6817
 Copyright terms: Public domain W3C validator