![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > f1imaen2g | GIF version |
Description: A one-to-one function's image under a subset of its domain is equinumerous to the subset. (This version of f1imaen 6848 does not need ax-setind 4569.) (Contributed by Mario Carneiro, 16-Nov-2014.) (Revised by Mario Carneiro, 25-Jun-2015.) |
Ref | Expression |
---|---|
f1imaen2g | ⊢ (((𝐹:𝐴–1-1→𝐵 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ⊆ 𝐴 ∧ 𝐶 ∈ 𝑉)) → (𝐹 “ 𝐶) ≈ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simprr 531 | . . 3 ⊢ (((𝐹:𝐴–1-1→𝐵 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ⊆ 𝐴 ∧ 𝐶 ∈ 𝑉)) → 𝐶 ∈ 𝑉) | |
2 | simplr 528 | . . . 4 ⊢ (((𝐹:𝐴–1-1→𝐵 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ⊆ 𝐴 ∧ 𝐶 ∈ 𝑉)) → 𝐵 ∈ 𝑉) | |
3 | f1f 5459 | . . . . . 6 ⊢ (𝐹:𝐴–1-1→𝐵 → 𝐹:𝐴⟶𝐵) | |
4 | imassrn 5016 | . . . . . . 7 ⊢ (𝐹 “ 𝐶) ⊆ ran 𝐹 | |
5 | frn 5412 | . . . . . . 7 ⊢ (𝐹:𝐴⟶𝐵 → ran 𝐹 ⊆ 𝐵) | |
6 | 4, 5 | sstrid 3190 | . . . . . 6 ⊢ (𝐹:𝐴⟶𝐵 → (𝐹 “ 𝐶) ⊆ 𝐵) |
7 | 3, 6 | syl 14 | . . . . 5 ⊢ (𝐹:𝐴–1-1→𝐵 → (𝐹 “ 𝐶) ⊆ 𝐵) |
8 | 7 | ad2antrr 488 | . . . 4 ⊢ (((𝐹:𝐴–1-1→𝐵 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ⊆ 𝐴 ∧ 𝐶 ∈ 𝑉)) → (𝐹 “ 𝐶) ⊆ 𝐵) |
9 | 2, 8 | ssexd 4169 | . . 3 ⊢ (((𝐹:𝐴–1-1→𝐵 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ⊆ 𝐴 ∧ 𝐶 ∈ 𝑉)) → (𝐹 “ 𝐶) ∈ V) |
10 | f1ores 5515 | . . . 4 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐶 ⊆ 𝐴) → (𝐹 ↾ 𝐶):𝐶–1-1-onto→(𝐹 “ 𝐶)) | |
11 | 10 | ad2ant2r 509 | . . 3 ⊢ (((𝐹:𝐴–1-1→𝐵 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ⊆ 𝐴 ∧ 𝐶 ∈ 𝑉)) → (𝐹 ↾ 𝐶):𝐶–1-1-onto→(𝐹 “ 𝐶)) |
12 | f1oen2g 6809 | . . 3 ⊢ ((𝐶 ∈ 𝑉 ∧ (𝐹 “ 𝐶) ∈ V ∧ (𝐹 ↾ 𝐶):𝐶–1-1-onto→(𝐹 “ 𝐶)) → 𝐶 ≈ (𝐹 “ 𝐶)) | |
13 | 1, 9, 11, 12 | syl3anc 1249 | . 2 ⊢ (((𝐹:𝐴–1-1→𝐵 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ⊆ 𝐴 ∧ 𝐶 ∈ 𝑉)) → 𝐶 ≈ (𝐹 “ 𝐶)) |
14 | 13 | ensymd 6837 | 1 ⊢ (((𝐹:𝐴–1-1→𝐵 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ⊆ 𝐴 ∧ 𝐶 ∈ 𝑉)) → (𝐹 “ 𝐶) ≈ 𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2164 Vcvv 2760 ⊆ wss 3153 class class class wbr 4029 ran crn 4660 ↾ cres 4661 “ cima 4662 ⟶wf 5250 –1-1→wf1 5251 –1-1-onto→wf1o 5253 ≈ cen 6792 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4464 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-br 4030 df-opab 4091 df-id 4324 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-ima 4672 df-fun 5256 df-fn 5257 df-f 5258 df-f1 5259 df-fo 5260 df-f1o 5261 df-er 6587 df-en 6795 |
This theorem is referenced by: ssenen 6907 phplem4 6911 phplem4dom 6918 phplem4on 6923 fiintim 6985 |
Copyright terms: Public domain | W3C validator |