ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1imaen2g GIF version

Theorem f1imaen2g 6759
Description: A one-to-one function's image under a subset of its domain is equinumerous to the subset. (This version of f1imaen 6760 does not need ax-setind 4514.) (Contributed by Mario Carneiro, 16-Nov-2014.) (Revised by Mario Carneiro, 25-Jun-2015.)
Assertion
Ref Expression
f1imaen2g (((𝐹:𝐴1-1𝐵𝐵𝑉) ∧ (𝐶𝐴𝐶𝑉)) → (𝐹𝐶) ≈ 𝐶)

Proof of Theorem f1imaen2g
StepHypRef Expression
1 simprr 522 . . 3 (((𝐹:𝐴1-1𝐵𝐵𝑉) ∧ (𝐶𝐴𝐶𝑉)) → 𝐶𝑉)
2 simplr 520 . . . 4 (((𝐹:𝐴1-1𝐵𝐵𝑉) ∧ (𝐶𝐴𝐶𝑉)) → 𝐵𝑉)
3 f1f 5393 . . . . . 6 (𝐹:𝐴1-1𝐵𝐹:𝐴𝐵)
4 imassrn 4957 . . . . . . 7 (𝐹𝐶) ⊆ ran 𝐹
5 frn 5346 . . . . . . 7 (𝐹:𝐴𝐵 → ran 𝐹𝐵)
64, 5sstrid 3153 . . . . . 6 (𝐹:𝐴𝐵 → (𝐹𝐶) ⊆ 𝐵)
73, 6syl 14 . . . . 5 (𝐹:𝐴1-1𝐵 → (𝐹𝐶) ⊆ 𝐵)
87ad2antrr 480 . . . 4 (((𝐹:𝐴1-1𝐵𝐵𝑉) ∧ (𝐶𝐴𝐶𝑉)) → (𝐹𝐶) ⊆ 𝐵)
92, 8ssexd 4122 . . 3 (((𝐹:𝐴1-1𝐵𝐵𝑉) ∧ (𝐶𝐴𝐶𝑉)) → (𝐹𝐶) ∈ V)
10 f1ores 5447 . . . 4 ((𝐹:𝐴1-1𝐵𝐶𝐴) → (𝐹𝐶):𝐶1-1-onto→(𝐹𝐶))
1110ad2ant2r 501 . . 3 (((𝐹:𝐴1-1𝐵𝐵𝑉) ∧ (𝐶𝐴𝐶𝑉)) → (𝐹𝐶):𝐶1-1-onto→(𝐹𝐶))
12 f1oen2g 6721 . . 3 ((𝐶𝑉 ∧ (𝐹𝐶) ∈ V ∧ (𝐹𝐶):𝐶1-1-onto→(𝐹𝐶)) → 𝐶 ≈ (𝐹𝐶))
131, 9, 11, 12syl3anc 1228 . 2 (((𝐹:𝐴1-1𝐵𝐵𝑉) ∧ (𝐶𝐴𝐶𝑉)) → 𝐶 ≈ (𝐹𝐶))
1413ensymd 6749 1 (((𝐹:𝐴1-1𝐵𝐵𝑉) ∧ (𝐶𝐴𝐶𝑉)) → (𝐹𝐶) ≈ 𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wcel 2136  Vcvv 2726  wss 3116   class class class wbr 3982  ran crn 4605  cres 4606  cima 4607  wf 5184  1-1wf1 5185  1-1-ontowf1o 5187  cen 6704
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-er 6501  df-en 6707
This theorem is referenced by:  ssenen  6817  phplem4  6821  phplem4dom  6828  phplem4on  6833  fiintim  6894
  Copyright terms: Public domain W3C validator