ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  infm GIF version

Theorem infm 6727
Description: An infinite set is inhabited. (Contributed by Jim Kingdon, 18-Feb-2022.)
Assertion
Ref Expression
infm (ω ≼ 𝐴 → ∃𝑥 𝑥𝐴)
Distinct variable group:   𝑥,𝐴

Proof of Theorem infm
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 brdomi 6573 . 2 (ω ≼ 𝐴 → ∃𝑓 𝑓:ω–1-1𝐴)
2 f1f 5264 . . . . 5 (𝑓:ω–1-1𝐴𝑓:ω⟶𝐴)
32adantl 273 . . . 4 ((ω ≼ 𝐴𝑓:ω–1-1𝐴) → 𝑓:ω⟶𝐴)
4 peano1 4446 . . . . 5 ∅ ∈ ω
54a1i 9 . . . 4 ((ω ≼ 𝐴𝑓:ω–1-1𝐴) → ∅ ∈ ω)
63, 5ffvelrnd 5488 . . 3 ((ω ≼ 𝐴𝑓:ω–1-1𝐴) → (𝑓‘∅) ∈ 𝐴)
7 elex2 2657 . . 3 ((𝑓‘∅) ∈ 𝐴 → ∃𝑥 𝑥𝐴)
86, 7syl 14 . 2 ((ω ≼ 𝐴𝑓:ω–1-1𝐴) → ∃𝑥 𝑥𝐴)
91, 8exlimddv 1837 1 (ω ≼ 𝐴 → ∃𝑥 𝑥𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wex 1436  wcel 1448  c0 3310   class class class wbr 3875  ωcom 4442  wf 5055  1-1wf1 5056  cfv 5059  cdom 6563
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 584  ax-in2 585  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-13 1459  ax-14 1460  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082  ax-sep 3986  ax-nul 3994  ax-pow 4038  ax-pr 4069  ax-un 4293
This theorem depends on definitions:  df-bi 116  df-3an 932  df-tru 1302  df-nf 1405  df-sb 1704  df-eu 1963  df-mo 1964  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-ral 2380  df-rex 2381  df-v 2643  df-sbc 2863  df-dif 3023  df-un 3025  df-in 3027  df-ss 3034  df-nul 3311  df-pw 3459  df-sn 3480  df-pr 3481  df-op 3483  df-uni 3684  df-int 3719  df-br 3876  df-opab 3930  df-id 4153  df-iom 4443  df-xp 4483  df-rel 4484  df-cnv 4485  df-co 4486  df-dm 4487  df-rn 4488  df-iota 5024  df-fun 5061  df-fn 5062  df-f 5063  df-f1 5064  df-fv 5067  df-dom 6566
This theorem is referenced by:  infn0  6728  inffiexmid  6729  inffinp1  11734
  Copyright terms: Public domain W3C validator