| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > infm | GIF version | ||
| Description: An infinite set is inhabited. (Contributed by Jim Kingdon, 18-Feb-2022.) |
| Ref | Expression |
|---|---|
| infm | ⊢ (ω ≼ 𝐴 → ∃𝑥 𝑥 ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brdomi 6896 | . 2 ⊢ (ω ≼ 𝐴 → ∃𝑓 𝑓:ω–1-1→𝐴) | |
| 2 | f1f 5530 | . . . . 5 ⊢ (𝑓:ω–1-1→𝐴 → 𝑓:ω⟶𝐴) | |
| 3 | 2 | adantl 277 | . . . 4 ⊢ ((ω ≼ 𝐴 ∧ 𝑓:ω–1-1→𝐴) → 𝑓:ω⟶𝐴) |
| 4 | peano1 4685 | . . . . 5 ⊢ ∅ ∈ ω | |
| 5 | 4 | a1i 9 | . . . 4 ⊢ ((ω ≼ 𝐴 ∧ 𝑓:ω–1-1→𝐴) → ∅ ∈ ω) |
| 6 | 3, 5 | ffvelcdmd 5770 | . . 3 ⊢ ((ω ≼ 𝐴 ∧ 𝑓:ω–1-1→𝐴) → (𝑓‘∅) ∈ 𝐴) |
| 7 | elex2 2816 | . . 3 ⊢ ((𝑓‘∅) ∈ 𝐴 → ∃𝑥 𝑥 ∈ 𝐴) | |
| 8 | 6, 7 | syl 14 | . 2 ⊢ ((ω ≼ 𝐴 ∧ 𝑓:ω–1-1→𝐴) → ∃𝑥 𝑥 ∈ 𝐴) |
| 9 | 1, 8 | exlimddv 1945 | 1 ⊢ (ω ≼ 𝐴 → ∃𝑥 𝑥 ∈ 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∃wex 1538 ∈ wcel 2200 ∅c0 3491 class class class wbr 4082 ωcom 4681 ⟶wf 5313 –1-1→wf1 5314 ‘cfv 5317 ≼ cdom 6884 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4523 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-br 4083 df-opab 4145 df-id 4383 df-iom 4682 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fv 5325 df-dom 6887 |
| This theorem is referenced by: infn0 7063 inffiexmid 7064 inffinp1 12995 unbendc 13020 |
| Copyright terms: Public domain | W3C validator |