Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > infm | GIF version |
Description: An infinite set is inhabited. (Contributed by Jim Kingdon, 18-Feb-2022.) |
Ref | Expression |
---|---|
infm | ⊢ (ω ≼ 𝐴 → ∃𝑥 𝑥 ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brdomi 6727 | . 2 ⊢ (ω ≼ 𝐴 → ∃𝑓 𝑓:ω–1-1→𝐴) | |
2 | f1f 5403 | . . . . 5 ⊢ (𝑓:ω–1-1→𝐴 → 𝑓:ω⟶𝐴) | |
3 | 2 | adantl 275 | . . . 4 ⊢ ((ω ≼ 𝐴 ∧ 𝑓:ω–1-1→𝐴) → 𝑓:ω⟶𝐴) |
4 | peano1 4578 | . . . . 5 ⊢ ∅ ∈ ω | |
5 | 4 | a1i 9 | . . . 4 ⊢ ((ω ≼ 𝐴 ∧ 𝑓:ω–1-1→𝐴) → ∅ ∈ ω) |
6 | 3, 5 | ffvelrnd 5632 | . . 3 ⊢ ((ω ≼ 𝐴 ∧ 𝑓:ω–1-1→𝐴) → (𝑓‘∅) ∈ 𝐴) |
7 | elex2 2746 | . . 3 ⊢ ((𝑓‘∅) ∈ 𝐴 → ∃𝑥 𝑥 ∈ 𝐴) | |
8 | 6, 7 | syl 14 | . 2 ⊢ ((ω ≼ 𝐴 ∧ 𝑓:ω–1-1→𝐴) → ∃𝑥 𝑥 ∈ 𝐴) |
9 | 1, 8 | exlimddv 1891 | 1 ⊢ (ω ≼ 𝐴 → ∃𝑥 𝑥 ∈ 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∃wex 1485 ∈ wcel 2141 ∅c0 3414 class class class wbr 3989 ωcom 4574 ⟶wf 5194 –1-1→wf1 5195 ‘cfv 5198 ≼ cdom 6717 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-br 3990 df-opab 4051 df-id 4278 df-iom 4575 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fv 5206 df-dom 6720 |
This theorem is referenced by: infn0 6883 inffiexmid 6884 inffinp1 12384 unbendc 12409 |
Copyright terms: Public domain | W3C validator |