| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > infm | GIF version | ||
| Description: An infinite set is inhabited. (Contributed by Jim Kingdon, 18-Feb-2022.) |
| Ref | Expression |
|---|---|
| infm | ⊢ (ω ≼ 𝐴 → ∃𝑥 𝑥 ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brdomi 6851 | . 2 ⊢ (ω ≼ 𝐴 → ∃𝑓 𝑓:ω–1-1→𝐴) | |
| 2 | f1f 5493 | . . . . 5 ⊢ (𝑓:ω–1-1→𝐴 → 𝑓:ω⟶𝐴) | |
| 3 | 2 | adantl 277 | . . . 4 ⊢ ((ω ≼ 𝐴 ∧ 𝑓:ω–1-1→𝐴) → 𝑓:ω⟶𝐴) |
| 4 | peano1 4650 | . . . . 5 ⊢ ∅ ∈ ω | |
| 5 | 4 | a1i 9 | . . . 4 ⊢ ((ω ≼ 𝐴 ∧ 𝑓:ω–1-1→𝐴) → ∅ ∈ ω) |
| 6 | 3, 5 | ffvelcdmd 5729 | . . 3 ⊢ ((ω ≼ 𝐴 ∧ 𝑓:ω–1-1→𝐴) → (𝑓‘∅) ∈ 𝐴) |
| 7 | elex2 2790 | . . 3 ⊢ ((𝑓‘∅) ∈ 𝐴 → ∃𝑥 𝑥 ∈ 𝐴) | |
| 8 | 6, 7 | syl 14 | . 2 ⊢ ((ω ≼ 𝐴 ∧ 𝑓:ω–1-1→𝐴) → ∃𝑥 𝑥 ∈ 𝐴) |
| 9 | 1, 8 | exlimddv 1923 | 1 ⊢ (ω ≼ 𝐴 → ∃𝑥 𝑥 ∈ 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∃wex 1516 ∈ wcel 2177 ∅c0 3464 class class class wbr 4051 ωcom 4646 ⟶wf 5276 –1-1→wf1 5277 ‘cfv 5280 ≼ cdom 6839 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-nul 4178 ax-pow 4226 ax-pr 4261 ax-un 4488 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-sbc 3003 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-int 3892 df-br 4052 df-opab 4114 df-id 4348 df-iom 4647 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-rn 4694 df-iota 5241 df-fun 5282 df-fn 5283 df-f 5284 df-f1 5285 df-fv 5288 df-dom 6842 |
| This theorem is referenced by: infn0 7017 inffiexmid 7018 inffinp1 12875 unbendc 12900 |
| Copyright terms: Public domain | W3C validator |