ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  infm GIF version

Theorem infm 7016
Description: An infinite set is inhabited. (Contributed by Jim Kingdon, 18-Feb-2022.)
Assertion
Ref Expression
infm (ω ≼ 𝐴 → ∃𝑥 𝑥𝐴)
Distinct variable group:   𝑥,𝐴

Proof of Theorem infm
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 brdomi 6851 . 2 (ω ≼ 𝐴 → ∃𝑓 𝑓:ω–1-1𝐴)
2 f1f 5493 . . . . 5 (𝑓:ω–1-1𝐴𝑓:ω⟶𝐴)
32adantl 277 . . . 4 ((ω ≼ 𝐴𝑓:ω–1-1𝐴) → 𝑓:ω⟶𝐴)
4 peano1 4650 . . . . 5 ∅ ∈ ω
54a1i 9 . . . 4 ((ω ≼ 𝐴𝑓:ω–1-1𝐴) → ∅ ∈ ω)
63, 5ffvelcdmd 5729 . . 3 ((ω ≼ 𝐴𝑓:ω–1-1𝐴) → (𝑓‘∅) ∈ 𝐴)
7 elex2 2790 . . 3 ((𝑓‘∅) ∈ 𝐴 → ∃𝑥 𝑥𝐴)
86, 7syl 14 . 2 ((ω ≼ 𝐴𝑓:ω–1-1𝐴) → ∃𝑥 𝑥𝐴)
91, 8exlimddv 1923 1 (ω ≼ 𝐴 → ∃𝑥 𝑥𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wex 1516  wcel 2177  c0 3464   class class class wbr 4051  ωcom 4646  wf 5276  1-1wf1 5277  cfv 5280  cdom 6839
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-nul 4178  ax-pow 4226  ax-pr 4261  ax-un 4488
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-sbc 3003  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-int 3892  df-br 4052  df-opab 4114  df-id 4348  df-iom 4647  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-iota 5241  df-fun 5282  df-fn 5283  df-f 5284  df-f1 5285  df-fv 5288  df-dom 6842
This theorem is referenced by:  infn0  7017  inffiexmid  7018  inffinp1  12875  unbendc  12900
  Copyright terms: Public domain W3C validator