ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  infm GIF version

Theorem infm 6960
Description: An infinite set is inhabited. (Contributed by Jim Kingdon, 18-Feb-2022.)
Assertion
Ref Expression
infm (ω ≼ 𝐴 → ∃𝑥 𝑥𝐴)
Distinct variable group:   𝑥,𝐴

Proof of Theorem infm
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 brdomi 6803 . 2 (ω ≼ 𝐴 → ∃𝑓 𝑓:ω–1-1𝐴)
2 f1f 5459 . . . . 5 (𝑓:ω–1-1𝐴𝑓:ω⟶𝐴)
32adantl 277 . . . 4 ((ω ≼ 𝐴𝑓:ω–1-1𝐴) → 𝑓:ω⟶𝐴)
4 peano1 4626 . . . . 5 ∅ ∈ ω
54a1i 9 . . . 4 ((ω ≼ 𝐴𝑓:ω–1-1𝐴) → ∅ ∈ ω)
63, 5ffvelcdmd 5694 . . 3 ((ω ≼ 𝐴𝑓:ω–1-1𝐴) → (𝑓‘∅) ∈ 𝐴)
7 elex2 2776 . . 3 ((𝑓‘∅) ∈ 𝐴 → ∃𝑥 𝑥𝐴)
86, 7syl 14 . 2 ((ω ≼ 𝐴𝑓:ω–1-1𝐴) → ∃𝑥 𝑥𝐴)
91, 8exlimddv 1910 1 (ω ≼ 𝐴 → ∃𝑥 𝑥𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wex 1503  wcel 2164  c0 3446   class class class wbr 4029  ωcom 4622  wf 5250  1-1wf1 5251  cfv 5254  cdom 6793
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-sbc 2986  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-br 4030  df-opab 4091  df-id 4324  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fv 5262  df-dom 6796
This theorem is referenced by:  infn0  6961  inffiexmid  6962  inffinp1  12586  unbendc  12611
  Copyright terms: Public domain W3C validator