ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  infm GIF version

Theorem infm 6974
Description: An infinite set is inhabited. (Contributed by Jim Kingdon, 18-Feb-2022.)
Assertion
Ref Expression
infm (ω ≼ 𝐴 → ∃𝑥 𝑥𝐴)
Distinct variable group:   𝑥,𝐴

Proof of Theorem infm
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 brdomi 6817 . 2 (ω ≼ 𝐴 → ∃𝑓 𝑓:ω–1-1𝐴)
2 f1f 5466 . . . . 5 (𝑓:ω–1-1𝐴𝑓:ω⟶𝐴)
32adantl 277 . . . 4 ((ω ≼ 𝐴𝑓:ω–1-1𝐴) → 𝑓:ω⟶𝐴)
4 peano1 4631 . . . . 5 ∅ ∈ ω
54a1i 9 . . . 4 ((ω ≼ 𝐴𝑓:ω–1-1𝐴) → ∅ ∈ ω)
63, 5ffvelcdmd 5701 . . 3 ((ω ≼ 𝐴𝑓:ω–1-1𝐴) → (𝑓‘∅) ∈ 𝐴)
7 elex2 2779 . . 3 ((𝑓‘∅) ∈ 𝐴 → ∃𝑥 𝑥𝐴)
86, 7syl 14 . 2 ((ω ≼ 𝐴𝑓:ω–1-1𝐴) → ∃𝑥 𝑥𝐴)
91, 8exlimddv 1913 1 (ω ≼ 𝐴 → ∃𝑥 𝑥𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wex 1506  wcel 2167  c0 3451   class class class wbr 4034  ωcom 4627  wf 5255  1-1wf1 5256  cfv 5259  cdom 6807
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-br 4035  df-opab 4096  df-id 4329  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fv 5267  df-dom 6810
This theorem is referenced by:  infn0  6975  inffiexmid  6976  inffinp1  12671  unbendc  12696
  Copyright terms: Public domain W3C validator