![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > casef1 | GIF version |
Description: The "case" construction of two injective functions with disjoint ranges is an injective function. (Contributed by BJ, 10-Jul-2022.) |
Ref | Expression |
---|---|
casef1.f | ⊢ (𝜑 → 𝐹:𝐴–1-1→𝑋) |
casef1.g | ⊢ (𝜑 → 𝐺:𝐵–1-1→𝑋) |
casef1.disj | ⊢ (𝜑 → (ran 𝐹 ∩ ran 𝐺) = ∅) |
Ref | Expression |
---|---|
casef1 | ⊢ (𝜑 → case(𝐹, 𝐺):(𝐴 ⊔ 𝐵)–1-1→𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | casef1.f | . . . 4 ⊢ (𝜑 → 𝐹:𝐴–1-1→𝑋) | |
2 | f1f 5460 | . . . 4 ⊢ (𝐹:𝐴–1-1→𝑋 → 𝐹:𝐴⟶𝑋) | |
3 | 1, 2 | syl 14 | . . 3 ⊢ (𝜑 → 𝐹:𝐴⟶𝑋) |
4 | casef1.g | . . . 4 ⊢ (𝜑 → 𝐺:𝐵–1-1→𝑋) | |
5 | f1f 5460 | . . . 4 ⊢ (𝐺:𝐵–1-1→𝑋 → 𝐺:𝐵⟶𝑋) | |
6 | 4, 5 | syl 14 | . . 3 ⊢ (𝜑 → 𝐺:𝐵⟶𝑋) |
7 | 3, 6 | casef 7149 | . 2 ⊢ (𝜑 → case(𝐹, 𝐺):(𝐴 ⊔ 𝐵)⟶𝑋) |
8 | df-f1 5260 | . . . . 5 ⊢ (𝐹:𝐴–1-1→𝑋 ↔ (𝐹:𝐴⟶𝑋 ∧ Fun ◡𝐹)) | |
9 | 8 | simprbi 275 | . . . 4 ⊢ (𝐹:𝐴–1-1→𝑋 → Fun ◡𝐹) |
10 | 1, 9 | syl 14 | . . 3 ⊢ (𝜑 → Fun ◡𝐹) |
11 | df-f1 5260 | . . . . 5 ⊢ (𝐺:𝐵–1-1→𝑋 ↔ (𝐺:𝐵⟶𝑋 ∧ Fun ◡𝐺)) | |
12 | 11 | simprbi 275 | . . . 4 ⊢ (𝐺:𝐵–1-1→𝑋 → Fun ◡𝐺) |
13 | 4, 12 | syl 14 | . . 3 ⊢ (𝜑 → Fun ◡𝐺) |
14 | casef1.disj | . . 3 ⊢ (𝜑 → (ran 𝐹 ∩ ran 𝐺) = ∅) | |
15 | 10, 13, 14 | caseinj 7150 | . 2 ⊢ (𝜑 → Fun ◡case(𝐹, 𝐺)) |
16 | df-f1 5260 | . 2 ⊢ (case(𝐹, 𝐺):(𝐴 ⊔ 𝐵)–1-1→𝑋 ↔ (case(𝐹, 𝐺):(𝐴 ⊔ 𝐵)⟶𝑋 ∧ Fun ◡case(𝐹, 𝐺))) | |
17 | 7, 15, 16 | sylanbrc 417 | 1 ⊢ (𝜑 → case(𝐹, 𝐺):(𝐴 ⊔ 𝐵)–1-1→𝑋) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 ∩ cin 3153 ∅c0 3447 ◡ccnv 4659 ran crn 4661 Fun wfun 5249 ⟶wf 5251 –1-1→wf1 5252 ⊔ cdju 7098 casecdjucase 7144 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-nul 4156 ax-pow 4204 ax-pr 4239 ax-un 4465 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-rex 2478 df-v 2762 df-sbc 2987 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-nul 3448 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-br 4031 df-opab 4092 df-mpt 4093 df-tr 4129 df-id 4325 df-iord 4398 df-on 4400 df-suc 4403 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-f1 5260 df-fo 5261 df-f1o 5262 df-fv 5263 df-1st 6195 df-2nd 6196 df-1o 6471 df-dju 7099 df-inl 7108 df-inr 7109 df-case 7145 |
This theorem is referenced by: djudom 7154 exmidsbthrlem 15582 |
Copyright terms: Public domain | W3C validator |