Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > casef1 | GIF version |
Description: The "case" construction of two injective functions with disjoint ranges is an injective function. (Contributed by BJ, 10-Jul-2022.) |
Ref | Expression |
---|---|
casef1.f | ⊢ (𝜑 → 𝐹:𝐴–1-1→𝑋) |
casef1.g | ⊢ (𝜑 → 𝐺:𝐵–1-1→𝑋) |
casef1.disj | ⊢ (𝜑 → (ran 𝐹 ∩ ran 𝐺) = ∅) |
Ref | Expression |
---|---|
casef1 | ⊢ (𝜑 → case(𝐹, 𝐺):(𝐴 ⊔ 𝐵)–1-1→𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | casef1.f | . . . 4 ⊢ (𝜑 → 𝐹:𝐴–1-1→𝑋) | |
2 | f1f 5374 | . . . 4 ⊢ (𝐹:𝐴–1-1→𝑋 → 𝐹:𝐴⟶𝑋) | |
3 | 1, 2 | syl 14 | . . 3 ⊢ (𝜑 → 𝐹:𝐴⟶𝑋) |
4 | casef1.g | . . . 4 ⊢ (𝜑 → 𝐺:𝐵–1-1→𝑋) | |
5 | f1f 5374 | . . . 4 ⊢ (𝐺:𝐵–1-1→𝑋 → 𝐺:𝐵⟶𝑋) | |
6 | 4, 5 | syl 14 | . . 3 ⊢ (𝜑 → 𝐺:𝐵⟶𝑋) |
7 | 3, 6 | casef 7026 | . 2 ⊢ (𝜑 → case(𝐹, 𝐺):(𝐴 ⊔ 𝐵)⟶𝑋) |
8 | df-f1 5174 | . . . . 5 ⊢ (𝐹:𝐴–1-1→𝑋 ↔ (𝐹:𝐴⟶𝑋 ∧ Fun ◡𝐹)) | |
9 | 8 | simprbi 273 | . . . 4 ⊢ (𝐹:𝐴–1-1→𝑋 → Fun ◡𝐹) |
10 | 1, 9 | syl 14 | . . 3 ⊢ (𝜑 → Fun ◡𝐹) |
11 | df-f1 5174 | . . . . 5 ⊢ (𝐺:𝐵–1-1→𝑋 ↔ (𝐺:𝐵⟶𝑋 ∧ Fun ◡𝐺)) | |
12 | 11 | simprbi 273 | . . . 4 ⊢ (𝐺:𝐵–1-1→𝑋 → Fun ◡𝐺) |
13 | 4, 12 | syl 14 | . . 3 ⊢ (𝜑 → Fun ◡𝐺) |
14 | casef1.disj | . . 3 ⊢ (𝜑 → (ran 𝐹 ∩ ran 𝐺) = ∅) | |
15 | 10, 13, 14 | caseinj 7027 | . 2 ⊢ (𝜑 → Fun ◡case(𝐹, 𝐺)) |
16 | df-f1 5174 | . 2 ⊢ (case(𝐹, 𝐺):(𝐴 ⊔ 𝐵)–1-1→𝑋 ↔ (case(𝐹, 𝐺):(𝐴 ⊔ 𝐵)⟶𝑋 ∧ Fun ◡case(𝐹, 𝐺))) | |
17 | 7, 15, 16 | sylanbrc 414 | 1 ⊢ (𝜑 → case(𝐹, 𝐺):(𝐴 ⊔ 𝐵)–1-1→𝑋) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1335 ∩ cin 3101 ∅c0 3394 ◡ccnv 4584 ran crn 4586 Fun wfun 5163 ⟶wf 5165 –1-1→wf1 5166 ⊔ cdju 6975 casecdjucase 7021 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-nul 4090 ax-pow 4135 ax-pr 4169 ax-un 4393 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-ral 2440 df-rex 2441 df-v 2714 df-sbc 2938 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-nul 3395 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-br 3966 df-opab 4026 df-mpt 4027 df-tr 4063 df-id 4253 df-iord 4326 df-on 4328 df-suc 4331 df-xp 4591 df-rel 4592 df-cnv 4593 df-co 4594 df-dm 4595 df-rn 4596 df-res 4597 df-ima 4598 df-iota 5134 df-fun 5171 df-fn 5172 df-f 5173 df-f1 5174 df-fo 5175 df-f1o 5176 df-fv 5177 df-1st 6085 df-2nd 6086 df-1o 6360 df-dju 6976 df-inl 6985 df-inr 6986 df-case 7022 |
This theorem is referenced by: djudom 7031 exmidsbthrlem 13564 |
Copyright terms: Public domain | W3C validator |