| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > casef1 | GIF version | ||
| Description: The "case" construction of two injective functions with disjoint ranges is an injective function. (Contributed by BJ, 10-Jul-2022.) |
| Ref | Expression |
|---|---|
| casef1.f | ⊢ (𝜑 → 𝐹:𝐴–1-1→𝑋) |
| casef1.g | ⊢ (𝜑 → 𝐺:𝐵–1-1→𝑋) |
| casef1.disj | ⊢ (𝜑 → (ran 𝐹 ∩ ran 𝐺) = ∅) |
| Ref | Expression |
|---|---|
| casef1 | ⊢ (𝜑 → case(𝐹, 𝐺):(𝐴 ⊔ 𝐵)–1-1→𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | casef1.f | . . . 4 ⊢ (𝜑 → 𝐹:𝐴–1-1→𝑋) | |
| 2 | f1f 5480 | . . . 4 ⊢ (𝐹:𝐴–1-1→𝑋 → 𝐹:𝐴⟶𝑋) | |
| 3 | 1, 2 | syl 14 | . . 3 ⊢ (𝜑 → 𝐹:𝐴⟶𝑋) |
| 4 | casef1.g | . . . 4 ⊢ (𝜑 → 𝐺:𝐵–1-1→𝑋) | |
| 5 | f1f 5480 | . . . 4 ⊢ (𝐺:𝐵–1-1→𝑋 → 𝐺:𝐵⟶𝑋) | |
| 6 | 4, 5 | syl 14 | . . 3 ⊢ (𝜑 → 𝐺:𝐵⟶𝑋) |
| 7 | 3, 6 | casef 7189 | . 2 ⊢ (𝜑 → case(𝐹, 𝐺):(𝐴 ⊔ 𝐵)⟶𝑋) |
| 8 | df-f1 5275 | . . . . 5 ⊢ (𝐹:𝐴–1-1→𝑋 ↔ (𝐹:𝐴⟶𝑋 ∧ Fun ◡𝐹)) | |
| 9 | 8 | simprbi 275 | . . . 4 ⊢ (𝐹:𝐴–1-1→𝑋 → Fun ◡𝐹) |
| 10 | 1, 9 | syl 14 | . . 3 ⊢ (𝜑 → Fun ◡𝐹) |
| 11 | df-f1 5275 | . . . . 5 ⊢ (𝐺:𝐵–1-1→𝑋 ↔ (𝐺:𝐵⟶𝑋 ∧ Fun ◡𝐺)) | |
| 12 | 11 | simprbi 275 | . . . 4 ⊢ (𝐺:𝐵–1-1→𝑋 → Fun ◡𝐺) |
| 13 | 4, 12 | syl 14 | . . 3 ⊢ (𝜑 → Fun ◡𝐺) |
| 14 | casef1.disj | . . 3 ⊢ (𝜑 → (ran 𝐹 ∩ ran 𝐺) = ∅) | |
| 15 | 10, 13, 14 | caseinj 7190 | . 2 ⊢ (𝜑 → Fun ◡case(𝐹, 𝐺)) |
| 16 | df-f1 5275 | . 2 ⊢ (case(𝐹, 𝐺):(𝐴 ⊔ 𝐵)–1-1→𝑋 ↔ (case(𝐹, 𝐺):(𝐴 ⊔ 𝐵)⟶𝑋 ∧ Fun ◡case(𝐹, 𝐺))) | |
| 17 | 7, 15, 16 | sylanbrc 417 | 1 ⊢ (𝜑 → case(𝐹, 𝐺):(𝐴 ⊔ 𝐵)–1-1→𝑋) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1372 ∩ cin 3164 ∅c0 3459 ◡ccnv 4673 ran crn 4675 Fun wfun 5264 ⟶wf 5266 –1-1→wf1 5267 ⊔ cdju 7138 casecdjucase 7184 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-nul 4169 ax-pow 4217 ax-pr 4252 ax-un 4479 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-ral 2488 df-rex 2489 df-v 2773 df-sbc 2998 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-br 4044 df-opab 4105 df-mpt 4106 df-tr 4142 df-id 4339 df-iord 4412 df-on 4414 df-suc 4417 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-ima 4687 df-iota 5231 df-fun 5272 df-fn 5273 df-f 5274 df-f1 5275 df-fo 5276 df-f1o 5277 df-fv 5278 df-1st 6225 df-2nd 6226 df-1o 6501 df-dju 7139 df-inl 7148 df-inr 7149 df-case 7185 |
| This theorem is referenced by: djudom 7194 exmidsbthrlem 15923 |
| Copyright terms: Public domain | W3C validator |