ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  casef1 GIF version

Theorem casef1 7055
Description: The "case" construction of two injective functions with disjoint ranges is an injective function. (Contributed by BJ, 10-Jul-2022.)
Hypotheses
Ref Expression
casef1.f (𝜑𝐹:𝐴1-1𝑋)
casef1.g (𝜑𝐺:𝐵1-1𝑋)
casef1.disj (𝜑 → (ran 𝐹 ∩ ran 𝐺) = ∅)
Assertion
Ref Expression
casef1 (𝜑 → case(𝐹, 𝐺):(𝐴𝐵)–1-1𝑋)

Proof of Theorem casef1
StepHypRef Expression
1 casef1.f . . . 4 (𝜑𝐹:𝐴1-1𝑋)
2 f1f 5393 . . . 4 (𝐹:𝐴1-1𝑋𝐹:𝐴𝑋)
31, 2syl 14 . . 3 (𝜑𝐹:𝐴𝑋)
4 casef1.g . . . 4 (𝜑𝐺:𝐵1-1𝑋)
5 f1f 5393 . . . 4 (𝐺:𝐵1-1𝑋𝐺:𝐵𝑋)
64, 5syl 14 . . 3 (𝜑𝐺:𝐵𝑋)
73, 6casef 7053 . 2 (𝜑 → case(𝐹, 𝐺):(𝐴𝐵)⟶𝑋)
8 df-f1 5193 . . . . 5 (𝐹:𝐴1-1𝑋 ↔ (𝐹:𝐴𝑋 ∧ Fun 𝐹))
98simprbi 273 . . . 4 (𝐹:𝐴1-1𝑋 → Fun 𝐹)
101, 9syl 14 . . 3 (𝜑 → Fun 𝐹)
11 df-f1 5193 . . . . 5 (𝐺:𝐵1-1𝑋 ↔ (𝐺:𝐵𝑋 ∧ Fun 𝐺))
1211simprbi 273 . . . 4 (𝐺:𝐵1-1𝑋 → Fun 𝐺)
134, 12syl 14 . . 3 (𝜑 → Fun 𝐺)
14 casef1.disj . . 3 (𝜑 → (ran 𝐹 ∩ ran 𝐺) = ∅)
1510, 13, 14caseinj 7054 . 2 (𝜑 → Fun case(𝐹, 𝐺))
16 df-f1 5193 . 2 (case(𝐹, 𝐺):(𝐴𝐵)–1-1𝑋 ↔ (case(𝐹, 𝐺):(𝐴𝐵)⟶𝑋 ∧ Fun case(𝐹, 𝐺)))
177, 15, 16sylanbrc 414 1 (𝜑 → case(𝐹, 𝐺):(𝐴𝐵)–1-1𝑋)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1343  cin 3115  c0 3409  ccnv 4603  ran crn 4605  Fun wfun 5182  wf 5184  1-1wf1 5185  cdju 7002  casecdjucase 7048
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-v 2728  df-sbc 2952  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-iord 4344  df-on 4346  df-suc 4349  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-1st 6108  df-2nd 6109  df-1o 6384  df-dju 7003  df-inl 7012  df-inr 7013  df-case 7049
This theorem is referenced by:  djudom  7058  exmidsbthrlem  13901
  Copyright terms: Public domain W3C validator