ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  casef1 GIF version

Theorem casef1 7156
Description: The "case" construction of two injective functions with disjoint ranges is an injective function. (Contributed by BJ, 10-Jul-2022.)
Hypotheses
Ref Expression
casef1.f (𝜑𝐹:𝐴1-1𝑋)
casef1.g (𝜑𝐺:𝐵1-1𝑋)
casef1.disj (𝜑 → (ran 𝐹 ∩ ran 𝐺) = ∅)
Assertion
Ref Expression
casef1 (𝜑 → case(𝐹, 𝐺):(𝐴𝐵)–1-1𝑋)

Proof of Theorem casef1
StepHypRef Expression
1 casef1.f . . . 4 (𝜑𝐹:𝐴1-1𝑋)
2 f1f 5463 . . . 4 (𝐹:𝐴1-1𝑋𝐹:𝐴𝑋)
31, 2syl 14 . . 3 (𝜑𝐹:𝐴𝑋)
4 casef1.g . . . 4 (𝜑𝐺:𝐵1-1𝑋)
5 f1f 5463 . . . 4 (𝐺:𝐵1-1𝑋𝐺:𝐵𝑋)
64, 5syl 14 . . 3 (𝜑𝐺:𝐵𝑋)
73, 6casef 7154 . 2 (𝜑 → case(𝐹, 𝐺):(𝐴𝐵)⟶𝑋)
8 df-f1 5263 . . . . 5 (𝐹:𝐴1-1𝑋 ↔ (𝐹:𝐴𝑋 ∧ Fun 𝐹))
98simprbi 275 . . . 4 (𝐹:𝐴1-1𝑋 → Fun 𝐹)
101, 9syl 14 . . 3 (𝜑 → Fun 𝐹)
11 df-f1 5263 . . . . 5 (𝐺:𝐵1-1𝑋 ↔ (𝐺:𝐵𝑋 ∧ Fun 𝐺))
1211simprbi 275 . . . 4 (𝐺:𝐵1-1𝑋 → Fun 𝐺)
134, 12syl 14 . . 3 (𝜑 → Fun 𝐺)
14 casef1.disj . . 3 (𝜑 → (ran 𝐹 ∩ ran 𝐺) = ∅)
1510, 13, 14caseinj 7155 . 2 (𝜑 → Fun case(𝐹, 𝐺))
16 df-f1 5263 . 2 (case(𝐹, 𝐺):(𝐴𝐵)–1-1𝑋 ↔ (case(𝐹, 𝐺):(𝐴𝐵)⟶𝑋 ∧ Fun case(𝐹, 𝐺)))
177, 15, 16sylanbrc 417 1 (𝜑 → case(𝐹, 𝐺):(𝐴𝐵)–1-1𝑋)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  cin 3156  c0 3450  ccnv 4662  ran crn 4664  Fun wfun 5252  wf 5254  1-1wf1 5255  cdju 7103  casecdjucase 7149
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-iord 4401  df-on 4403  df-suc 4406  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-1st 6198  df-2nd 6199  df-1o 6474  df-dju 7104  df-inl 7113  df-inr 7114  df-case 7150
This theorem is referenced by:  djudom  7159  exmidsbthrlem  15666
  Copyright terms: Public domain W3C validator