Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > casef1 | GIF version |
Description: The "case" construction of two injective functions with disjoint ranges is an injective function. (Contributed by BJ, 10-Jul-2022.) |
Ref | Expression |
---|---|
casef1.f | ⊢ (𝜑 → 𝐹:𝐴–1-1→𝑋) |
casef1.g | ⊢ (𝜑 → 𝐺:𝐵–1-1→𝑋) |
casef1.disj | ⊢ (𝜑 → (ran 𝐹 ∩ ran 𝐺) = ∅) |
Ref | Expression |
---|---|
casef1 | ⊢ (𝜑 → case(𝐹, 𝐺):(𝐴 ⊔ 𝐵)–1-1→𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | casef1.f | . . . 4 ⊢ (𝜑 → 𝐹:𝐴–1-1→𝑋) | |
2 | f1f 5393 | . . . 4 ⊢ (𝐹:𝐴–1-1→𝑋 → 𝐹:𝐴⟶𝑋) | |
3 | 1, 2 | syl 14 | . . 3 ⊢ (𝜑 → 𝐹:𝐴⟶𝑋) |
4 | casef1.g | . . . 4 ⊢ (𝜑 → 𝐺:𝐵–1-1→𝑋) | |
5 | f1f 5393 | . . . 4 ⊢ (𝐺:𝐵–1-1→𝑋 → 𝐺:𝐵⟶𝑋) | |
6 | 4, 5 | syl 14 | . . 3 ⊢ (𝜑 → 𝐺:𝐵⟶𝑋) |
7 | 3, 6 | casef 7053 | . 2 ⊢ (𝜑 → case(𝐹, 𝐺):(𝐴 ⊔ 𝐵)⟶𝑋) |
8 | df-f1 5193 | . . . . 5 ⊢ (𝐹:𝐴–1-1→𝑋 ↔ (𝐹:𝐴⟶𝑋 ∧ Fun ◡𝐹)) | |
9 | 8 | simprbi 273 | . . . 4 ⊢ (𝐹:𝐴–1-1→𝑋 → Fun ◡𝐹) |
10 | 1, 9 | syl 14 | . . 3 ⊢ (𝜑 → Fun ◡𝐹) |
11 | df-f1 5193 | . . . . 5 ⊢ (𝐺:𝐵–1-1→𝑋 ↔ (𝐺:𝐵⟶𝑋 ∧ Fun ◡𝐺)) | |
12 | 11 | simprbi 273 | . . . 4 ⊢ (𝐺:𝐵–1-1→𝑋 → Fun ◡𝐺) |
13 | 4, 12 | syl 14 | . . 3 ⊢ (𝜑 → Fun ◡𝐺) |
14 | casef1.disj | . . 3 ⊢ (𝜑 → (ran 𝐹 ∩ ran 𝐺) = ∅) | |
15 | 10, 13, 14 | caseinj 7054 | . 2 ⊢ (𝜑 → Fun ◡case(𝐹, 𝐺)) |
16 | df-f1 5193 | . 2 ⊢ (case(𝐹, 𝐺):(𝐴 ⊔ 𝐵)–1-1→𝑋 ↔ (case(𝐹, 𝐺):(𝐴 ⊔ 𝐵)⟶𝑋 ∧ Fun ◡case(𝐹, 𝐺))) | |
17 | 7, 15, 16 | sylanbrc 414 | 1 ⊢ (𝜑 → case(𝐹, 𝐺):(𝐴 ⊔ 𝐵)–1-1→𝑋) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1343 ∩ cin 3115 ∅c0 3409 ◡ccnv 4603 ran crn 4605 Fun wfun 5182 ⟶wf 5184 –1-1→wf1 5185 ⊔ cdju 7002 casecdjucase 7048 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-v 2728 df-sbc 2952 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-mpt 4045 df-tr 4081 df-id 4271 df-iord 4344 df-on 4346 df-suc 4349 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-1st 6108 df-2nd 6109 df-1o 6384 df-dju 7003 df-inl 7012 df-inr 7013 df-case 7049 |
This theorem is referenced by: djudom 7058 exmidsbthrlem 13901 |
Copyright terms: Public domain | W3C validator |