| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > casef1 | GIF version | ||
| Description: The "case" construction of two injective functions with disjoint ranges is an injective function. (Contributed by BJ, 10-Jul-2022.) | 
| Ref | Expression | 
|---|---|
| casef1.f | ⊢ (𝜑 → 𝐹:𝐴–1-1→𝑋) | 
| casef1.g | ⊢ (𝜑 → 𝐺:𝐵–1-1→𝑋) | 
| casef1.disj | ⊢ (𝜑 → (ran 𝐹 ∩ ran 𝐺) = ∅) | 
| Ref | Expression | 
|---|---|
| casef1 | ⊢ (𝜑 → case(𝐹, 𝐺):(𝐴 ⊔ 𝐵)–1-1→𝑋) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | casef1.f | . . . 4 ⊢ (𝜑 → 𝐹:𝐴–1-1→𝑋) | |
| 2 | f1f 5463 | . . . 4 ⊢ (𝐹:𝐴–1-1→𝑋 → 𝐹:𝐴⟶𝑋) | |
| 3 | 1, 2 | syl 14 | . . 3 ⊢ (𝜑 → 𝐹:𝐴⟶𝑋) | 
| 4 | casef1.g | . . . 4 ⊢ (𝜑 → 𝐺:𝐵–1-1→𝑋) | |
| 5 | f1f 5463 | . . . 4 ⊢ (𝐺:𝐵–1-1→𝑋 → 𝐺:𝐵⟶𝑋) | |
| 6 | 4, 5 | syl 14 | . . 3 ⊢ (𝜑 → 𝐺:𝐵⟶𝑋) | 
| 7 | 3, 6 | casef 7154 | . 2 ⊢ (𝜑 → case(𝐹, 𝐺):(𝐴 ⊔ 𝐵)⟶𝑋) | 
| 8 | df-f1 5263 | . . . . 5 ⊢ (𝐹:𝐴–1-1→𝑋 ↔ (𝐹:𝐴⟶𝑋 ∧ Fun ◡𝐹)) | |
| 9 | 8 | simprbi 275 | . . . 4 ⊢ (𝐹:𝐴–1-1→𝑋 → Fun ◡𝐹) | 
| 10 | 1, 9 | syl 14 | . . 3 ⊢ (𝜑 → Fun ◡𝐹) | 
| 11 | df-f1 5263 | . . . . 5 ⊢ (𝐺:𝐵–1-1→𝑋 ↔ (𝐺:𝐵⟶𝑋 ∧ Fun ◡𝐺)) | |
| 12 | 11 | simprbi 275 | . . . 4 ⊢ (𝐺:𝐵–1-1→𝑋 → Fun ◡𝐺) | 
| 13 | 4, 12 | syl 14 | . . 3 ⊢ (𝜑 → Fun ◡𝐺) | 
| 14 | casef1.disj | . . 3 ⊢ (𝜑 → (ran 𝐹 ∩ ran 𝐺) = ∅) | |
| 15 | 10, 13, 14 | caseinj 7155 | . 2 ⊢ (𝜑 → Fun ◡case(𝐹, 𝐺)) | 
| 16 | df-f1 5263 | . 2 ⊢ (case(𝐹, 𝐺):(𝐴 ⊔ 𝐵)–1-1→𝑋 ↔ (case(𝐹, 𝐺):(𝐴 ⊔ 𝐵)⟶𝑋 ∧ Fun ◡case(𝐹, 𝐺))) | |
| 17 | 7, 15, 16 | sylanbrc 417 | 1 ⊢ (𝜑 → case(𝐹, 𝐺):(𝐴 ⊔ 𝐵)–1-1→𝑋) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 = wceq 1364 ∩ cin 3156 ∅c0 3450 ◡ccnv 4662 ran crn 4664 Fun wfun 5252 ⟶wf 5254 –1-1→wf1 5255 ⊔ cdju 7103 casecdjucase 7149 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-id 4328 df-iord 4401 df-on 4403 df-suc 4406 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-1st 6198 df-2nd 6199 df-1o 6474 df-dju 7104 df-inl 7113 df-inr 7114 df-case 7150 | 
| This theorem is referenced by: djudom 7159 exmidsbthrlem 15666 | 
| Copyright terms: Public domain | W3C validator |