Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > isinfinf | GIF version |
Description: An infinite set contains subsets of arbitrarily large finite cardinality. (Contributed by Jim Kingdon, 15-Jun-2022.) |
Ref | Expression |
---|---|
isinfinf | ⊢ (ω ≼ 𝐴 → ∀𝑛 ∈ ω ∃𝑥(𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝑛)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brdomi 6727 | . . . 4 ⊢ (ω ≼ 𝐴 → ∃𝑓 𝑓:ω–1-1→𝐴) | |
2 | 1 | adantr 274 | . . 3 ⊢ ((ω ≼ 𝐴 ∧ 𝑛 ∈ ω) → ∃𝑓 𝑓:ω–1-1→𝐴) |
3 | vex 2733 | . . . . 5 ⊢ 𝑓 ∈ V | |
4 | imaexg 4965 | . . . . 5 ⊢ (𝑓 ∈ V → (𝑓 “ 𝑛) ∈ V) | |
5 | 3, 4 | ax-mp 5 | . . . 4 ⊢ (𝑓 “ 𝑛) ∈ V |
6 | imassrn 4964 | . . . . . 6 ⊢ (𝑓 “ 𝑛) ⊆ ran 𝑓 | |
7 | simpr 109 | . . . . . . 7 ⊢ (((ω ≼ 𝐴 ∧ 𝑛 ∈ ω) ∧ 𝑓:ω–1-1→𝐴) → 𝑓:ω–1-1→𝐴) | |
8 | f1f 5403 | . . . . . . 7 ⊢ (𝑓:ω–1-1→𝐴 → 𝑓:ω⟶𝐴) | |
9 | frn 5356 | . . . . . . 7 ⊢ (𝑓:ω⟶𝐴 → ran 𝑓 ⊆ 𝐴) | |
10 | 7, 8, 9 | 3syl 17 | . . . . . 6 ⊢ (((ω ≼ 𝐴 ∧ 𝑛 ∈ ω) ∧ 𝑓:ω–1-1→𝐴) → ran 𝑓 ⊆ 𝐴) |
11 | 6, 10 | sstrid 3158 | . . . . 5 ⊢ (((ω ≼ 𝐴 ∧ 𝑛 ∈ ω) ∧ 𝑓:ω–1-1→𝐴) → (𝑓 “ 𝑛) ⊆ 𝐴) |
12 | ordom 4591 | . . . . . . . 8 ⊢ Ord ω | |
13 | ordelss 4364 | . . . . . . . 8 ⊢ ((Ord ω ∧ 𝑛 ∈ ω) → 𝑛 ⊆ ω) | |
14 | 12, 13 | mpan 422 | . . . . . . 7 ⊢ (𝑛 ∈ ω → 𝑛 ⊆ ω) |
15 | 14 | ad2antlr 486 | . . . . . 6 ⊢ (((ω ≼ 𝐴 ∧ 𝑛 ∈ ω) ∧ 𝑓:ω–1-1→𝐴) → 𝑛 ⊆ ω) |
16 | simplr 525 | . . . . . 6 ⊢ (((ω ≼ 𝐴 ∧ 𝑛 ∈ ω) ∧ 𝑓:ω–1-1→𝐴) → 𝑛 ∈ ω) | |
17 | f1imaeng 6770 | . . . . . 6 ⊢ ((𝑓:ω–1-1→𝐴 ∧ 𝑛 ⊆ ω ∧ 𝑛 ∈ ω) → (𝑓 “ 𝑛) ≈ 𝑛) | |
18 | 7, 15, 16, 17 | syl3anc 1233 | . . . . 5 ⊢ (((ω ≼ 𝐴 ∧ 𝑛 ∈ ω) ∧ 𝑓:ω–1-1→𝐴) → (𝑓 “ 𝑛) ≈ 𝑛) |
19 | 11, 18 | jca 304 | . . . 4 ⊢ (((ω ≼ 𝐴 ∧ 𝑛 ∈ ω) ∧ 𝑓:ω–1-1→𝐴) → ((𝑓 “ 𝑛) ⊆ 𝐴 ∧ (𝑓 “ 𝑛) ≈ 𝑛)) |
20 | sseq1 3170 | . . . . . 6 ⊢ (𝑥 = (𝑓 “ 𝑛) → (𝑥 ⊆ 𝐴 ↔ (𝑓 “ 𝑛) ⊆ 𝐴)) | |
21 | breq1 3992 | . . . . . 6 ⊢ (𝑥 = (𝑓 “ 𝑛) → (𝑥 ≈ 𝑛 ↔ (𝑓 “ 𝑛) ≈ 𝑛)) | |
22 | 20, 21 | anbi12d 470 | . . . . 5 ⊢ (𝑥 = (𝑓 “ 𝑛) → ((𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝑛) ↔ ((𝑓 “ 𝑛) ⊆ 𝐴 ∧ (𝑓 “ 𝑛) ≈ 𝑛))) |
23 | 22 | spcegv 2818 | . . . 4 ⊢ ((𝑓 “ 𝑛) ∈ V → (((𝑓 “ 𝑛) ⊆ 𝐴 ∧ (𝑓 “ 𝑛) ≈ 𝑛) → ∃𝑥(𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝑛))) |
24 | 5, 19, 23 | mpsyl 65 | . . 3 ⊢ (((ω ≼ 𝐴 ∧ 𝑛 ∈ ω) ∧ 𝑓:ω–1-1→𝐴) → ∃𝑥(𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝑛)) |
25 | 2, 24 | exlimddv 1891 | . 2 ⊢ ((ω ≼ 𝐴 ∧ 𝑛 ∈ ω) → ∃𝑥(𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝑛)) |
26 | 25 | ralrimiva 2543 | 1 ⊢ (ω ≼ 𝐴 → ∀𝑛 ∈ ω ∃𝑥(𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝑛)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1348 ∃wex 1485 ∈ wcel 2141 ∀wral 2448 Vcvv 2730 ⊆ wss 3121 class class class wbr 3989 Ord word 4347 ωcom 4574 ran crn 4612 “ cima 4614 ⟶wf 5194 –1-1→wf1 5195 ≈ cen 6716 ≼ cdom 6717 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-iinf 4572 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-tr 4088 df-id 4278 df-iord 4351 df-suc 4356 df-iom 4575 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-er 6513 df-en 6719 df-dom 6720 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |