ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isinfinf GIF version

Theorem isinfinf 7067
Description: An infinite set contains subsets of arbitrarily large finite cardinality. (Contributed by Jim Kingdon, 15-Jun-2022.)
Assertion
Ref Expression
isinfinf (ω ≼ 𝐴 → ∀𝑛 ∈ ω ∃𝑥(𝑥𝐴𝑥𝑛))
Distinct variable group:   𝐴,𝑛,𝑥

Proof of Theorem isinfinf
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 brdomi 6906 . . . 4 (ω ≼ 𝐴 → ∃𝑓 𝑓:ω–1-1𝐴)
21adantr 276 . . 3 ((ω ≼ 𝐴𝑛 ∈ ω) → ∃𝑓 𝑓:ω–1-1𝐴)
3 vex 2802 . . . . 5 𝑓 ∈ V
4 imaexg 5082 . . . . 5 (𝑓 ∈ V → (𝑓𝑛) ∈ V)
53, 4ax-mp 5 . . . 4 (𝑓𝑛) ∈ V
6 imassrn 5079 . . . . . 6 (𝑓𝑛) ⊆ ran 𝑓
7 simpr 110 . . . . . . 7 (((ω ≼ 𝐴𝑛 ∈ ω) ∧ 𝑓:ω–1-1𝐴) → 𝑓:ω–1-1𝐴)
8 f1f 5533 . . . . . . 7 (𝑓:ω–1-1𝐴𝑓:ω⟶𝐴)
9 frn 5482 . . . . . . 7 (𝑓:ω⟶𝐴 → ran 𝑓𝐴)
107, 8, 93syl 17 . . . . . 6 (((ω ≼ 𝐴𝑛 ∈ ω) ∧ 𝑓:ω–1-1𝐴) → ran 𝑓𝐴)
116, 10sstrid 3235 . . . . 5 (((ω ≼ 𝐴𝑛 ∈ ω) ∧ 𝑓:ω–1-1𝐴) → (𝑓𝑛) ⊆ 𝐴)
12 ordom 4699 . . . . . . . 8 Ord ω
13 ordelss 4470 . . . . . . . 8 ((Ord ω ∧ 𝑛 ∈ ω) → 𝑛 ⊆ ω)
1412, 13mpan 424 . . . . . . 7 (𝑛 ∈ ω → 𝑛 ⊆ ω)
1514ad2antlr 489 . . . . . 6 (((ω ≼ 𝐴𝑛 ∈ ω) ∧ 𝑓:ω–1-1𝐴) → 𝑛 ⊆ ω)
16 simplr 528 . . . . . 6 (((ω ≼ 𝐴𝑛 ∈ ω) ∧ 𝑓:ω–1-1𝐴) → 𝑛 ∈ ω)
17 f1imaeng 6952 . . . . . 6 ((𝑓:ω–1-1𝐴𝑛 ⊆ ω ∧ 𝑛 ∈ ω) → (𝑓𝑛) ≈ 𝑛)
187, 15, 16, 17syl3anc 1271 . . . . 5 (((ω ≼ 𝐴𝑛 ∈ ω) ∧ 𝑓:ω–1-1𝐴) → (𝑓𝑛) ≈ 𝑛)
1911, 18jca 306 . . . 4 (((ω ≼ 𝐴𝑛 ∈ ω) ∧ 𝑓:ω–1-1𝐴) → ((𝑓𝑛) ⊆ 𝐴 ∧ (𝑓𝑛) ≈ 𝑛))
20 sseq1 3247 . . . . . 6 (𝑥 = (𝑓𝑛) → (𝑥𝐴 ↔ (𝑓𝑛) ⊆ 𝐴))
21 breq1 4086 . . . . . 6 (𝑥 = (𝑓𝑛) → (𝑥𝑛 ↔ (𝑓𝑛) ≈ 𝑛))
2220, 21anbi12d 473 . . . . 5 (𝑥 = (𝑓𝑛) → ((𝑥𝐴𝑥𝑛) ↔ ((𝑓𝑛) ⊆ 𝐴 ∧ (𝑓𝑛) ≈ 𝑛)))
2322spcegv 2891 . . . 4 ((𝑓𝑛) ∈ V → (((𝑓𝑛) ⊆ 𝐴 ∧ (𝑓𝑛) ≈ 𝑛) → ∃𝑥(𝑥𝐴𝑥𝑛)))
245, 19, 23mpsyl 65 . . 3 (((ω ≼ 𝐴𝑛 ∈ ω) ∧ 𝑓:ω–1-1𝐴) → ∃𝑥(𝑥𝐴𝑥𝑛))
252, 24exlimddv 1945 . 2 ((ω ≼ 𝐴𝑛 ∈ ω) → ∃𝑥(𝑥𝐴𝑥𝑛))
2625ralrimiva 2603 1 (ω ≼ 𝐴 → ∀𝑛 ∈ ω ∃𝑥(𝑥𝐴𝑥𝑛))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1395  wex 1538  wcel 2200  wral 2508  Vcvv 2799  wss 3197   class class class wbr 4083  Ord word 4453  ωcom 4682  ran crn 4720  cima 4722  wf 5314  1-1wf1 5315  cen 6893  cdom 6894
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-iinf 4680
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-iord 4457  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-er 6688  df-en 6896  df-dom 6897
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator