![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > isinfinf | GIF version |
Description: An infinite set contains subsets of arbitrarily large finite cardinality. (Contributed by Jim Kingdon, 15-Jun-2022.) |
Ref | Expression |
---|---|
isinfinf | ⊢ (ω ≼ 𝐴 → ∀𝑛 ∈ ω ∃𝑥(𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝑛)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brdomi 6803 | . . . 4 ⊢ (ω ≼ 𝐴 → ∃𝑓 𝑓:ω–1-1→𝐴) | |
2 | 1 | adantr 276 | . . 3 ⊢ ((ω ≼ 𝐴 ∧ 𝑛 ∈ ω) → ∃𝑓 𝑓:ω–1-1→𝐴) |
3 | vex 2763 | . . . . 5 ⊢ 𝑓 ∈ V | |
4 | imaexg 5019 | . . . . 5 ⊢ (𝑓 ∈ V → (𝑓 “ 𝑛) ∈ V) | |
5 | 3, 4 | ax-mp 5 | . . . 4 ⊢ (𝑓 “ 𝑛) ∈ V |
6 | imassrn 5016 | . . . . . 6 ⊢ (𝑓 “ 𝑛) ⊆ ran 𝑓 | |
7 | simpr 110 | . . . . . . 7 ⊢ (((ω ≼ 𝐴 ∧ 𝑛 ∈ ω) ∧ 𝑓:ω–1-1→𝐴) → 𝑓:ω–1-1→𝐴) | |
8 | f1f 5459 | . . . . . . 7 ⊢ (𝑓:ω–1-1→𝐴 → 𝑓:ω⟶𝐴) | |
9 | frn 5412 | . . . . . . 7 ⊢ (𝑓:ω⟶𝐴 → ran 𝑓 ⊆ 𝐴) | |
10 | 7, 8, 9 | 3syl 17 | . . . . . 6 ⊢ (((ω ≼ 𝐴 ∧ 𝑛 ∈ ω) ∧ 𝑓:ω–1-1→𝐴) → ran 𝑓 ⊆ 𝐴) |
11 | 6, 10 | sstrid 3190 | . . . . 5 ⊢ (((ω ≼ 𝐴 ∧ 𝑛 ∈ ω) ∧ 𝑓:ω–1-1→𝐴) → (𝑓 “ 𝑛) ⊆ 𝐴) |
12 | ordom 4639 | . . . . . . . 8 ⊢ Ord ω | |
13 | ordelss 4410 | . . . . . . . 8 ⊢ ((Ord ω ∧ 𝑛 ∈ ω) → 𝑛 ⊆ ω) | |
14 | 12, 13 | mpan 424 | . . . . . . 7 ⊢ (𝑛 ∈ ω → 𝑛 ⊆ ω) |
15 | 14 | ad2antlr 489 | . . . . . 6 ⊢ (((ω ≼ 𝐴 ∧ 𝑛 ∈ ω) ∧ 𝑓:ω–1-1→𝐴) → 𝑛 ⊆ ω) |
16 | simplr 528 | . . . . . 6 ⊢ (((ω ≼ 𝐴 ∧ 𝑛 ∈ ω) ∧ 𝑓:ω–1-1→𝐴) → 𝑛 ∈ ω) | |
17 | f1imaeng 6846 | . . . . . 6 ⊢ ((𝑓:ω–1-1→𝐴 ∧ 𝑛 ⊆ ω ∧ 𝑛 ∈ ω) → (𝑓 “ 𝑛) ≈ 𝑛) | |
18 | 7, 15, 16, 17 | syl3anc 1249 | . . . . 5 ⊢ (((ω ≼ 𝐴 ∧ 𝑛 ∈ ω) ∧ 𝑓:ω–1-1→𝐴) → (𝑓 “ 𝑛) ≈ 𝑛) |
19 | 11, 18 | jca 306 | . . . 4 ⊢ (((ω ≼ 𝐴 ∧ 𝑛 ∈ ω) ∧ 𝑓:ω–1-1→𝐴) → ((𝑓 “ 𝑛) ⊆ 𝐴 ∧ (𝑓 “ 𝑛) ≈ 𝑛)) |
20 | sseq1 3202 | . . . . . 6 ⊢ (𝑥 = (𝑓 “ 𝑛) → (𝑥 ⊆ 𝐴 ↔ (𝑓 “ 𝑛) ⊆ 𝐴)) | |
21 | breq1 4032 | . . . . . 6 ⊢ (𝑥 = (𝑓 “ 𝑛) → (𝑥 ≈ 𝑛 ↔ (𝑓 “ 𝑛) ≈ 𝑛)) | |
22 | 20, 21 | anbi12d 473 | . . . . 5 ⊢ (𝑥 = (𝑓 “ 𝑛) → ((𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝑛) ↔ ((𝑓 “ 𝑛) ⊆ 𝐴 ∧ (𝑓 “ 𝑛) ≈ 𝑛))) |
23 | 22 | spcegv 2848 | . . . 4 ⊢ ((𝑓 “ 𝑛) ∈ V → (((𝑓 “ 𝑛) ⊆ 𝐴 ∧ (𝑓 “ 𝑛) ≈ 𝑛) → ∃𝑥(𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝑛))) |
24 | 5, 19, 23 | mpsyl 65 | . . 3 ⊢ (((ω ≼ 𝐴 ∧ 𝑛 ∈ ω) ∧ 𝑓:ω–1-1→𝐴) → ∃𝑥(𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝑛)) |
25 | 2, 24 | exlimddv 1910 | . 2 ⊢ ((ω ≼ 𝐴 ∧ 𝑛 ∈ ω) → ∃𝑥(𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝑛)) |
26 | 25 | ralrimiva 2567 | 1 ⊢ (ω ≼ 𝐴 → ∀𝑛 ∈ ω ∃𝑥(𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝑛)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∃wex 1503 ∈ wcel 2164 ∀wral 2472 Vcvv 2760 ⊆ wss 3153 class class class wbr 4029 Ord word 4393 ωcom 4622 ran crn 4660 “ cima 4662 ⟶wf 5250 –1-1→wf1 5251 ≈ cen 6792 ≼ cdom 6793 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4144 ax-sep 4147 ax-nul 4155 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-iinf 4620 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2986 df-csb 3081 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-iun 3914 df-br 4030 df-opab 4091 df-mpt 4092 df-tr 4128 df-id 4324 df-iord 4397 df-suc 4402 df-iom 4623 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-ima 4672 df-iota 5215 df-fun 5256 df-fn 5257 df-f 5258 df-f1 5259 df-fo 5260 df-f1o 5261 df-fv 5262 df-er 6587 df-en 6795 df-dom 6796 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |