ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isinfinf GIF version

Theorem isinfinf 6855
Description: An infinite set contains subsets of arbitrarily large finite cardinality. (Contributed by Jim Kingdon, 15-Jun-2022.)
Assertion
Ref Expression
isinfinf (ω ≼ 𝐴 → ∀𝑛 ∈ ω ∃𝑥(𝑥𝐴𝑥𝑛))
Distinct variable group:   𝐴,𝑛,𝑥

Proof of Theorem isinfinf
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 brdomi 6707 . . . 4 (ω ≼ 𝐴 → ∃𝑓 𝑓:ω–1-1𝐴)
21adantr 274 . . 3 ((ω ≼ 𝐴𝑛 ∈ ω) → ∃𝑓 𝑓:ω–1-1𝐴)
3 vex 2725 . . . . 5 𝑓 ∈ V
4 imaexg 4953 . . . . 5 (𝑓 ∈ V → (𝑓𝑛) ∈ V)
53, 4ax-mp 5 . . . 4 (𝑓𝑛) ∈ V
6 imassrn 4952 . . . . . 6 (𝑓𝑛) ⊆ ran 𝑓
7 simpr 109 . . . . . . 7 (((ω ≼ 𝐴𝑛 ∈ ω) ∧ 𝑓:ω–1-1𝐴) → 𝑓:ω–1-1𝐴)
8 f1f 5388 . . . . . . 7 (𝑓:ω–1-1𝐴𝑓:ω⟶𝐴)
9 frn 5341 . . . . . . 7 (𝑓:ω⟶𝐴 → ran 𝑓𝐴)
107, 8, 93syl 17 . . . . . 6 (((ω ≼ 𝐴𝑛 ∈ ω) ∧ 𝑓:ω–1-1𝐴) → ran 𝑓𝐴)
116, 10sstrid 3149 . . . . 5 (((ω ≼ 𝐴𝑛 ∈ ω) ∧ 𝑓:ω–1-1𝐴) → (𝑓𝑛) ⊆ 𝐴)
12 ordom 4579 . . . . . . . 8 Ord ω
13 ordelss 4352 . . . . . . . 8 ((Ord ω ∧ 𝑛 ∈ ω) → 𝑛 ⊆ ω)
1412, 13mpan 421 . . . . . . 7 (𝑛 ∈ ω → 𝑛 ⊆ ω)
1514ad2antlr 481 . . . . . 6 (((ω ≼ 𝐴𝑛 ∈ ω) ∧ 𝑓:ω–1-1𝐴) → 𝑛 ⊆ ω)
16 simplr 520 . . . . . 6 (((ω ≼ 𝐴𝑛 ∈ ω) ∧ 𝑓:ω–1-1𝐴) → 𝑛 ∈ ω)
17 f1imaeng 6750 . . . . . 6 ((𝑓:ω–1-1𝐴𝑛 ⊆ ω ∧ 𝑛 ∈ ω) → (𝑓𝑛) ≈ 𝑛)
187, 15, 16, 17syl3anc 1227 . . . . 5 (((ω ≼ 𝐴𝑛 ∈ ω) ∧ 𝑓:ω–1-1𝐴) → (𝑓𝑛) ≈ 𝑛)
1911, 18jca 304 . . . 4 (((ω ≼ 𝐴𝑛 ∈ ω) ∧ 𝑓:ω–1-1𝐴) → ((𝑓𝑛) ⊆ 𝐴 ∧ (𝑓𝑛) ≈ 𝑛))
20 sseq1 3161 . . . . . 6 (𝑥 = (𝑓𝑛) → (𝑥𝐴 ↔ (𝑓𝑛) ⊆ 𝐴))
21 breq1 3980 . . . . . 6 (𝑥 = (𝑓𝑛) → (𝑥𝑛 ↔ (𝑓𝑛) ≈ 𝑛))
2220, 21anbi12d 465 . . . . 5 (𝑥 = (𝑓𝑛) → ((𝑥𝐴𝑥𝑛) ↔ ((𝑓𝑛) ⊆ 𝐴 ∧ (𝑓𝑛) ≈ 𝑛)))
2322spcegv 2810 . . . 4 ((𝑓𝑛) ∈ V → (((𝑓𝑛) ⊆ 𝐴 ∧ (𝑓𝑛) ≈ 𝑛) → ∃𝑥(𝑥𝐴𝑥𝑛)))
245, 19, 23mpsyl 65 . . 3 (((ω ≼ 𝐴𝑛 ∈ ω) ∧ 𝑓:ω–1-1𝐴) → ∃𝑥(𝑥𝐴𝑥𝑛))
252, 24exlimddv 1885 . 2 ((ω ≼ 𝐴𝑛 ∈ ω) → ∃𝑥(𝑥𝐴𝑥𝑛))
2625ralrimiva 2537 1 (ω ≼ 𝐴 → ∀𝑛 ∈ ω ∃𝑥(𝑥𝐴𝑥𝑛))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1342  wex 1479  wcel 2135  wral 2442  Vcvv 2722  wss 3112   class class class wbr 3977  Ord word 4335  ωcom 4562  ran crn 4600  cima 4602  wf 5179  1-1wf1 5180  cen 6696  cdom 6697
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-13 2137  ax-14 2138  ax-ext 2146  ax-coll 4092  ax-sep 4095  ax-nul 4103  ax-pow 4148  ax-pr 4182  ax-un 4406  ax-iinf 4560
This theorem depends on definitions:  df-bi 116  df-3an 969  df-tru 1345  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ral 2447  df-rex 2448  df-reu 2449  df-rab 2451  df-v 2724  df-sbc 2948  df-csb 3042  df-dif 3114  df-un 3116  df-in 3118  df-ss 3125  df-nul 3406  df-pw 3556  df-sn 3577  df-pr 3578  df-op 3580  df-uni 3785  df-int 3820  df-iun 3863  df-br 3978  df-opab 4039  df-mpt 4040  df-tr 4076  df-id 4266  df-iord 4339  df-suc 4344  df-iom 4563  df-xp 4605  df-rel 4606  df-cnv 4607  df-co 4608  df-dm 4609  df-rn 4610  df-res 4611  df-ima 4612  df-iota 5148  df-fun 5185  df-fn 5186  df-f 5187  df-f1 5188  df-fo 5189  df-f1o 5190  df-fv 5191  df-er 6493  df-en 6699  df-dom 6700
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator