| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > isinfinf | GIF version | ||
| Description: An infinite set contains subsets of arbitrarily large finite cardinality. (Contributed by Jim Kingdon, 15-Jun-2022.) |
| Ref | Expression |
|---|---|
| isinfinf | ⊢ (ω ≼ 𝐴 → ∀𝑛 ∈ ω ∃𝑥(𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝑛)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brdomi 6845 | . . . 4 ⊢ (ω ≼ 𝐴 → ∃𝑓 𝑓:ω–1-1→𝐴) | |
| 2 | 1 | adantr 276 | . . 3 ⊢ ((ω ≼ 𝐴 ∧ 𝑛 ∈ ω) → ∃𝑓 𝑓:ω–1-1→𝐴) |
| 3 | vex 2776 | . . . . 5 ⊢ 𝑓 ∈ V | |
| 4 | imaexg 5041 | . . . . 5 ⊢ (𝑓 ∈ V → (𝑓 “ 𝑛) ∈ V) | |
| 5 | 3, 4 | ax-mp 5 | . . . 4 ⊢ (𝑓 “ 𝑛) ∈ V |
| 6 | imassrn 5038 | . . . . . 6 ⊢ (𝑓 “ 𝑛) ⊆ ran 𝑓 | |
| 7 | simpr 110 | . . . . . . 7 ⊢ (((ω ≼ 𝐴 ∧ 𝑛 ∈ ω) ∧ 𝑓:ω–1-1→𝐴) → 𝑓:ω–1-1→𝐴) | |
| 8 | f1f 5488 | . . . . . . 7 ⊢ (𝑓:ω–1-1→𝐴 → 𝑓:ω⟶𝐴) | |
| 9 | frn 5440 | . . . . . . 7 ⊢ (𝑓:ω⟶𝐴 → ran 𝑓 ⊆ 𝐴) | |
| 10 | 7, 8, 9 | 3syl 17 | . . . . . 6 ⊢ (((ω ≼ 𝐴 ∧ 𝑛 ∈ ω) ∧ 𝑓:ω–1-1→𝐴) → ran 𝑓 ⊆ 𝐴) |
| 11 | 6, 10 | sstrid 3205 | . . . . 5 ⊢ (((ω ≼ 𝐴 ∧ 𝑛 ∈ ω) ∧ 𝑓:ω–1-1→𝐴) → (𝑓 “ 𝑛) ⊆ 𝐴) |
| 12 | ordom 4659 | . . . . . . . 8 ⊢ Ord ω | |
| 13 | ordelss 4430 | . . . . . . . 8 ⊢ ((Ord ω ∧ 𝑛 ∈ ω) → 𝑛 ⊆ ω) | |
| 14 | 12, 13 | mpan 424 | . . . . . . 7 ⊢ (𝑛 ∈ ω → 𝑛 ⊆ ω) |
| 15 | 14 | ad2antlr 489 | . . . . . 6 ⊢ (((ω ≼ 𝐴 ∧ 𝑛 ∈ ω) ∧ 𝑓:ω–1-1→𝐴) → 𝑛 ⊆ ω) |
| 16 | simplr 528 | . . . . . 6 ⊢ (((ω ≼ 𝐴 ∧ 𝑛 ∈ ω) ∧ 𝑓:ω–1-1→𝐴) → 𝑛 ∈ ω) | |
| 17 | f1imaeng 6891 | . . . . . 6 ⊢ ((𝑓:ω–1-1→𝐴 ∧ 𝑛 ⊆ ω ∧ 𝑛 ∈ ω) → (𝑓 “ 𝑛) ≈ 𝑛) | |
| 18 | 7, 15, 16, 17 | syl3anc 1250 | . . . . 5 ⊢ (((ω ≼ 𝐴 ∧ 𝑛 ∈ ω) ∧ 𝑓:ω–1-1→𝐴) → (𝑓 “ 𝑛) ≈ 𝑛) |
| 19 | 11, 18 | jca 306 | . . . 4 ⊢ (((ω ≼ 𝐴 ∧ 𝑛 ∈ ω) ∧ 𝑓:ω–1-1→𝐴) → ((𝑓 “ 𝑛) ⊆ 𝐴 ∧ (𝑓 “ 𝑛) ≈ 𝑛)) |
| 20 | sseq1 3217 | . . . . . 6 ⊢ (𝑥 = (𝑓 “ 𝑛) → (𝑥 ⊆ 𝐴 ↔ (𝑓 “ 𝑛) ⊆ 𝐴)) | |
| 21 | breq1 4050 | . . . . . 6 ⊢ (𝑥 = (𝑓 “ 𝑛) → (𝑥 ≈ 𝑛 ↔ (𝑓 “ 𝑛) ≈ 𝑛)) | |
| 22 | 20, 21 | anbi12d 473 | . . . . 5 ⊢ (𝑥 = (𝑓 “ 𝑛) → ((𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝑛) ↔ ((𝑓 “ 𝑛) ⊆ 𝐴 ∧ (𝑓 “ 𝑛) ≈ 𝑛))) |
| 23 | 22 | spcegv 2862 | . . . 4 ⊢ ((𝑓 “ 𝑛) ∈ V → (((𝑓 “ 𝑛) ⊆ 𝐴 ∧ (𝑓 “ 𝑛) ≈ 𝑛) → ∃𝑥(𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝑛))) |
| 24 | 5, 19, 23 | mpsyl 65 | . . 3 ⊢ (((ω ≼ 𝐴 ∧ 𝑛 ∈ ω) ∧ 𝑓:ω–1-1→𝐴) → ∃𝑥(𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝑛)) |
| 25 | 2, 24 | exlimddv 1923 | . 2 ⊢ ((ω ≼ 𝐴 ∧ 𝑛 ∈ ω) → ∃𝑥(𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝑛)) |
| 26 | 25 | ralrimiva 2580 | 1 ⊢ (ω ≼ 𝐴 → ∀𝑛 ∈ ω ∃𝑥(𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝑛)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 ∃wex 1516 ∈ wcel 2177 ∀wral 2485 Vcvv 2773 ⊆ wss 3167 class class class wbr 4047 Ord word 4413 ωcom 4642 ran crn 4680 “ cima 4682 ⟶wf 5272 –1-1→wf1 5273 ≈ cen 6832 ≼ cdom 6833 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4163 ax-sep 4166 ax-nul 4174 ax-pow 4222 ax-pr 4257 ax-un 4484 ax-iinf 4640 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3000 df-csb 3095 df-dif 3169 df-un 3171 df-in 3173 df-ss 3180 df-nul 3462 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-int 3888 df-iun 3931 df-br 4048 df-opab 4110 df-mpt 4111 df-tr 4147 df-id 4344 df-iord 4417 df-suc 4422 df-iom 4643 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-rn 4690 df-res 4691 df-ima 4692 df-iota 5237 df-fun 5278 df-fn 5279 df-f 5280 df-f1 5281 df-fo 5282 df-f1o 5283 df-fv 5284 df-er 6627 df-en 6835 df-dom 6836 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |