![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > isinfinf | GIF version |
Description: An infinite set contains subsets of arbitrarily large finite cardinality. (Contributed by Jim Kingdon, 15-Jun-2022.) |
Ref | Expression |
---|---|
isinfinf | ⊢ (ω ≼ 𝐴 → ∀𝑛 ∈ ω ∃𝑥(𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝑛)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brdomi 6751 | . . . 4 ⊢ (ω ≼ 𝐴 → ∃𝑓 𝑓:ω–1-1→𝐴) | |
2 | 1 | adantr 276 | . . 3 ⊢ ((ω ≼ 𝐴 ∧ 𝑛 ∈ ω) → ∃𝑓 𝑓:ω–1-1→𝐴) |
3 | vex 2742 | . . . . 5 ⊢ 𝑓 ∈ V | |
4 | imaexg 4984 | . . . . 5 ⊢ (𝑓 ∈ V → (𝑓 “ 𝑛) ∈ V) | |
5 | 3, 4 | ax-mp 5 | . . . 4 ⊢ (𝑓 “ 𝑛) ∈ V |
6 | imassrn 4983 | . . . . . 6 ⊢ (𝑓 “ 𝑛) ⊆ ran 𝑓 | |
7 | simpr 110 | . . . . . . 7 ⊢ (((ω ≼ 𝐴 ∧ 𝑛 ∈ ω) ∧ 𝑓:ω–1-1→𝐴) → 𝑓:ω–1-1→𝐴) | |
8 | f1f 5423 | . . . . . . 7 ⊢ (𝑓:ω–1-1→𝐴 → 𝑓:ω⟶𝐴) | |
9 | frn 5376 | . . . . . . 7 ⊢ (𝑓:ω⟶𝐴 → ran 𝑓 ⊆ 𝐴) | |
10 | 7, 8, 9 | 3syl 17 | . . . . . 6 ⊢ (((ω ≼ 𝐴 ∧ 𝑛 ∈ ω) ∧ 𝑓:ω–1-1→𝐴) → ran 𝑓 ⊆ 𝐴) |
11 | 6, 10 | sstrid 3168 | . . . . 5 ⊢ (((ω ≼ 𝐴 ∧ 𝑛 ∈ ω) ∧ 𝑓:ω–1-1→𝐴) → (𝑓 “ 𝑛) ⊆ 𝐴) |
12 | ordom 4608 | . . . . . . . 8 ⊢ Ord ω | |
13 | ordelss 4381 | . . . . . . . 8 ⊢ ((Ord ω ∧ 𝑛 ∈ ω) → 𝑛 ⊆ ω) | |
14 | 12, 13 | mpan 424 | . . . . . . 7 ⊢ (𝑛 ∈ ω → 𝑛 ⊆ ω) |
15 | 14 | ad2antlr 489 | . . . . . 6 ⊢ (((ω ≼ 𝐴 ∧ 𝑛 ∈ ω) ∧ 𝑓:ω–1-1→𝐴) → 𝑛 ⊆ ω) |
16 | simplr 528 | . . . . . 6 ⊢ (((ω ≼ 𝐴 ∧ 𝑛 ∈ ω) ∧ 𝑓:ω–1-1→𝐴) → 𝑛 ∈ ω) | |
17 | f1imaeng 6794 | . . . . . 6 ⊢ ((𝑓:ω–1-1→𝐴 ∧ 𝑛 ⊆ ω ∧ 𝑛 ∈ ω) → (𝑓 “ 𝑛) ≈ 𝑛) | |
18 | 7, 15, 16, 17 | syl3anc 1238 | . . . . 5 ⊢ (((ω ≼ 𝐴 ∧ 𝑛 ∈ ω) ∧ 𝑓:ω–1-1→𝐴) → (𝑓 “ 𝑛) ≈ 𝑛) |
19 | 11, 18 | jca 306 | . . . 4 ⊢ (((ω ≼ 𝐴 ∧ 𝑛 ∈ ω) ∧ 𝑓:ω–1-1→𝐴) → ((𝑓 “ 𝑛) ⊆ 𝐴 ∧ (𝑓 “ 𝑛) ≈ 𝑛)) |
20 | sseq1 3180 | . . . . . 6 ⊢ (𝑥 = (𝑓 “ 𝑛) → (𝑥 ⊆ 𝐴 ↔ (𝑓 “ 𝑛) ⊆ 𝐴)) | |
21 | breq1 4008 | . . . . . 6 ⊢ (𝑥 = (𝑓 “ 𝑛) → (𝑥 ≈ 𝑛 ↔ (𝑓 “ 𝑛) ≈ 𝑛)) | |
22 | 20, 21 | anbi12d 473 | . . . . 5 ⊢ (𝑥 = (𝑓 “ 𝑛) → ((𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝑛) ↔ ((𝑓 “ 𝑛) ⊆ 𝐴 ∧ (𝑓 “ 𝑛) ≈ 𝑛))) |
23 | 22 | spcegv 2827 | . . . 4 ⊢ ((𝑓 “ 𝑛) ∈ V → (((𝑓 “ 𝑛) ⊆ 𝐴 ∧ (𝑓 “ 𝑛) ≈ 𝑛) → ∃𝑥(𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝑛))) |
24 | 5, 19, 23 | mpsyl 65 | . . 3 ⊢ (((ω ≼ 𝐴 ∧ 𝑛 ∈ ω) ∧ 𝑓:ω–1-1→𝐴) → ∃𝑥(𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝑛)) |
25 | 2, 24 | exlimddv 1898 | . 2 ⊢ ((ω ≼ 𝐴 ∧ 𝑛 ∈ ω) → ∃𝑥(𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝑛)) |
26 | 25 | ralrimiva 2550 | 1 ⊢ (ω ≼ 𝐴 → ∀𝑛 ∈ ω ∃𝑥(𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝑛)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1353 ∃wex 1492 ∈ wcel 2148 ∀wral 2455 Vcvv 2739 ⊆ wss 3131 class class class wbr 4005 Ord word 4364 ωcom 4591 ran crn 4629 “ cima 4631 ⟶wf 5214 –1-1→wf1 5215 ≈ cen 6740 ≼ cdom 6741 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-coll 4120 ax-sep 4123 ax-nul 4131 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-iinf 4589 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-reu 2462 df-rab 2464 df-v 2741 df-sbc 2965 df-csb 3060 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-nul 3425 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-int 3847 df-iun 3890 df-br 4006 df-opab 4067 df-mpt 4068 df-tr 4104 df-id 4295 df-iord 4368 df-suc 4373 df-iom 4592 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-ima 4641 df-iota 5180 df-fun 5220 df-fn 5221 df-f 5222 df-f1 5223 df-fo 5224 df-f1o 5225 df-fv 5226 df-er 6537 df-en 6743 df-dom 6744 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |