| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > resgrpisgrp | GIF version | ||
| Description: If the base set of a group is contained in the base set of another group, and the group operation of the group is the restriction of the group operation of the other group to its base set, then the other group restricted to the base set of the group is a group. (Contributed by AV, 14-Mar-2019.) |
| Ref | Expression |
|---|---|
| grpissubg.b | ⊢ 𝐵 = (Base‘𝐺) |
| grpissubg.s | ⊢ 𝑆 = (Base‘𝐻) |
| Ref | Expression |
|---|---|
| resgrpisgrp | ⊢ ((𝐺 ∈ Grp ∧ 𝐻 ∈ Grp) → ((𝑆 ⊆ 𝐵 ∧ (+g‘𝐻) = ((+g‘𝐺) ↾ (𝑆 × 𝑆))) → (𝐺 ↾s 𝑆) ∈ Grp)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpissubg.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐺) | |
| 2 | grpissubg.s | . . . . 5 ⊢ 𝑆 = (Base‘𝐻) | |
| 3 | 1, 2 | grpissubg 13645 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝐻 ∈ Grp) → ((𝑆 ⊆ 𝐵 ∧ (+g‘𝐻) = ((+g‘𝐺) ↾ (𝑆 × 𝑆))) → 𝑆 ∈ (SubGrp‘𝐺))) |
| 4 | 3 | imp 124 | . . 3 ⊢ (((𝐺 ∈ Grp ∧ 𝐻 ∈ Grp) ∧ (𝑆 ⊆ 𝐵 ∧ (+g‘𝐻) = ((+g‘𝐺) ↾ (𝑆 × 𝑆)))) → 𝑆 ∈ (SubGrp‘𝐺)) |
| 5 | ibar 301 | . . . . . 6 ⊢ ((𝐺 ∈ Grp ∧ 𝑆 ⊆ 𝐵) → ((𝐺 ↾s 𝑆) ∈ Grp ↔ ((𝐺 ∈ Grp ∧ 𝑆 ⊆ 𝐵) ∧ (𝐺 ↾s 𝑆) ∈ Grp))) | |
| 6 | 5 | ad2ant2r 509 | . . . . 5 ⊢ (((𝐺 ∈ Grp ∧ 𝐻 ∈ Grp) ∧ (𝑆 ⊆ 𝐵 ∧ (+g‘𝐻) = ((+g‘𝐺) ↾ (𝑆 × 𝑆)))) → ((𝐺 ↾s 𝑆) ∈ Grp ↔ ((𝐺 ∈ Grp ∧ 𝑆 ⊆ 𝐵) ∧ (𝐺 ↾s 𝑆) ∈ Grp))) |
| 7 | df-3an 983 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ 𝑆 ⊆ 𝐵 ∧ (𝐺 ↾s 𝑆) ∈ Grp) ↔ ((𝐺 ∈ Grp ∧ 𝑆 ⊆ 𝐵) ∧ (𝐺 ↾s 𝑆) ∈ Grp)) | |
| 8 | 6, 7 | bitr4di 198 | . . . 4 ⊢ (((𝐺 ∈ Grp ∧ 𝐻 ∈ Grp) ∧ (𝑆 ⊆ 𝐵 ∧ (+g‘𝐻) = ((+g‘𝐺) ↾ (𝑆 × 𝑆)))) → ((𝐺 ↾s 𝑆) ∈ Grp ↔ (𝐺 ∈ Grp ∧ 𝑆 ⊆ 𝐵 ∧ (𝐺 ↾s 𝑆) ∈ Grp))) |
| 9 | 1 | issubg 13624 | . . . 4 ⊢ (𝑆 ∈ (SubGrp‘𝐺) ↔ (𝐺 ∈ Grp ∧ 𝑆 ⊆ 𝐵 ∧ (𝐺 ↾s 𝑆) ∈ Grp)) |
| 10 | 8, 9 | bitr4di 198 | . . 3 ⊢ (((𝐺 ∈ Grp ∧ 𝐻 ∈ Grp) ∧ (𝑆 ⊆ 𝐵 ∧ (+g‘𝐻) = ((+g‘𝐺) ↾ (𝑆 × 𝑆)))) → ((𝐺 ↾s 𝑆) ∈ Grp ↔ 𝑆 ∈ (SubGrp‘𝐺))) |
| 11 | 4, 10 | mpbird 167 | . 2 ⊢ (((𝐺 ∈ Grp ∧ 𝐻 ∈ Grp) ∧ (𝑆 ⊆ 𝐵 ∧ (+g‘𝐻) = ((+g‘𝐺) ↾ (𝑆 × 𝑆)))) → (𝐺 ↾s 𝑆) ∈ Grp) |
| 12 | 11 | ex 115 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝐻 ∈ Grp) → ((𝑆 ⊆ 𝐵 ∧ (+g‘𝐻) = ((+g‘𝐺) ↾ (𝑆 × 𝑆))) → (𝐺 ↾s 𝑆) ∈ Grp)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 981 = wceq 1373 ∈ wcel 2178 ⊆ wss 3174 × cxp 4691 ↾ cres 4695 ‘cfv 5290 (class class class)co 5967 Basecbs 12947 ↾s cress 12948 +gcplusg 13024 Grpcgrp 13447 SubGrpcsubg 13618 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-coll 4175 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-addcom 8060 ax-addass 8062 ax-i2m1 8065 ax-0lt1 8066 ax-0id 8068 ax-rnegex 8069 ax-pre-ltirr 8072 ax-pre-ltadd 8076 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-reu 2493 df-rmo 2494 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-pnf 8144 df-mnf 8145 df-ltxr 8147 df-inn 9072 df-2 9130 df-ndx 12950 df-slot 12951 df-base 12953 df-sets 12954 df-iress 12955 df-plusg 13037 df-0g 13205 df-mgm 13303 df-sgrp 13349 df-mnd 13364 df-grp 13450 df-minusg 13451 df-subg 13621 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |