![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > resgrpisgrp | GIF version |
Description: If the base set of a group is contained in the base set of another group, and the group operation of the group is the restriction of the group operation of the other group to its base set, then the other group restricted to the base set of the group is a group. (Contributed by AV, 14-Mar-2019.) |
Ref | Expression |
---|---|
grpissubg.b | ⊢ 𝐵 = (Base‘𝐺) |
grpissubg.s | ⊢ 𝑆 = (Base‘𝐻) |
Ref | Expression |
---|---|
resgrpisgrp | ⊢ ((𝐺 ∈ Grp ∧ 𝐻 ∈ Grp) → ((𝑆 ⊆ 𝐵 ∧ (+g‘𝐻) = ((+g‘𝐺) ↾ (𝑆 × 𝑆))) → (𝐺 ↾s 𝑆) ∈ Grp)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grpissubg.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐺) | |
2 | grpissubg.s | . . . . 5 ⊢ 𝑆 = (Base‘𝐻) | |
3 | 1, 2 | grpissubg 13054 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝐻 ∈ Grp) → ((𝑆 ⊆ 𝐵 ∧ (+g‘𝐻) = ((+g‘𝐺) ↾ (𝑆 × 𝑆))) → 𝑆 ∈ (SubGrp‘𝐺))) |
4 | 3 | imp 124 | . . 3 ⊢ (((𝐺 ∈ Grp ∧ 𝐻 ∈ Grp) ∧ (𝑆 ⊆ 𝐵 ∧ (+g‘𝐻) = ((+g‘𝐺) ↾ (𝑆 × 𝑆)))) → 𝑆 ∈ (SubGrp‘𝐺)) |
5 | ibar 301 | . . . . . 6 ⊢ ((𝐺 ∈ Grp ∧ 𝑆 ⊆ 𝐵) → ((𝐺 ↾s 𝑆) ∈ Grp ↔ ((𝐺 ∈ Grp ∧ 𝑆 ⊆ 𝐵) ∧ (𝐺 ↾s 𝑆) ∈ Grp))) | |
6 | 5 | ad2ant2r 509 | . . . . 5 ⊢ (((𝐺 ∈ Grp ∧ 𝐻 ∈ Grp) ∧ (𝑆 ⊆ 𝐵 ∧ (+g‘𝐻) = ((+g‘𝐺) ↾ (𝑆 × 𝑆)))) → ((𝐺 ↾s 𝑆) ∈ Grp ↔ ((𝐺 ∈ Grp ∧ 𝑆 ⊆ 𝐵) ∧ (𝐺 ↾s 𝑆) ∈ Grp))) |
7 | df-3an 980 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ 𝑆 ⊆ 𝐵 ∧ (𝐺 ↾s 𝑆) ∈ Grp) ↔ ((𝐺 ∈ Grp ∧ 𝑆 ⊆ 𝐵) ∧ (𝐺 ↾s 𝑆) ∈ Grp)) | |
8 | 6, 7 | bitr4di 198 | . . . 4 ⊢ (((𝐺 ∈ Grp ∧ 𝐻 ∈ Grp) ∧ (𝑆 ⊆ 𝐵 ∧ (+g‘𝐻) = ((+g‘𝐺) ↾ (𝑆 × 𝑆)))) → ((𝐺 ↾s 𝑆) ∈ Grp ↔ (𝐺 ∈ Grp ∧ 𝑆 ⊆ 𝐵 ∧ (𝐺 ↾s 𝑆) ∈ Grp))) |
9 | 1 | issubg 13033 | . . . 4 ⊢ (𝑆 ∈ (SubGrp‘𝐺) ↔ (𝐺 ∈ Grp ∧ 𝑆 ⊆ 𝐵 ∧ (𝐺 ↾s 𝑆) ∈ Grp)) |
10 | 8, 9 | bitr4di 198 | . . 3 ⊢ (((𝐺 ∈ Grp ∧ 𝐻 ∈ Grp) ∧ (𝑆 ⊆ 𝐵 ∧ (+g‘𝐻) = ((+g‘𝐺) ↾ (𝑆 × 𝑆)))) → ((𝐺 ↾s 𝑆) ∈ Grp ↔ 𝑆 ∈ (SubGrp‘𝐺))) |
11 | 4, 10 | mpbird 167 | . 2 ⊢ (((𝐺 ∈ Grp ∧ 𝐻 ∈ Grp) ∧ (𝑆 ⊆ 𝐵 ∧ (+g‘𝐻) = ((+g‘𝐺) ↾ (𝑆 × 𝑆)))) → (𝐺 ↾s 𝑆) ∈ Grp) |
12 | 11 | ex 115 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝐻 ∈ Grp) → ((𝑆 ⊆ 𝐵 ∧ (+g‘𝐻) = ((+g‘𝐺) ↾ (𝑆 × 𝑆))) → (𝐺 ↾s 𝑆) ∈ Grp)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 978 = wceq 1353 ∈ wcel 2148 ⊆ wss 3130 × cxp 4625 ↾ cres 4629 ‘cfv 5217 (class class class)co 5875 Basecbs 12462 ↾s cress 12463 +gcplusg 12536 Grpcgrp 12877 SubGrpcsubg 13027 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-coll 4119 ax-sep 4122 ax-pow 4175 ax-pr 4210 ax-un 4434 ax-setind 4537 ax-cnex 7902 ax-resscn 7903 ax-1cn 7904 ax-1re 7905 ax-icn 7906 ax-addcl 7907 ax-addrcl 7908 ax-mulcl 7909 ax-addcom 7911 ax-addass 7913 ax-i2m1 7916 ax-0lt1 7917 ax-0id 7919 ax-rnegex 7920 ax-pre-ltirr 7923 ax-pre-ltadd 7927 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-reu 2462 df-rmo 2463 df-rab 2464 df-v 2740 df-sbc 2964 df-csb 3059 df-dif 3132 df-un 3134 df-in 3136 df-ss 3143 df-nul 3424 df-pw 3578 df-sn 3599 df-pr 3600 df-op 3602 df-uni 3811 df-int 3846 df-iun 3889 df-br 4005 df-opab 4066 df-mpt 4067 df-id 4294 df-xp 4633 df-rel 4634 df-cnv 4635 df-co 4636 df-dm 4637 df-rn 4638 df-res 4639 df-ima 4640 df-iota 5179 df-fun 5219 df-fn 5220 df-f 5221 df-f1 5222 df-fo 5223 df-f1o 5224 df-fv 5225 df-riota 5831 df-ov 5878 df-oprab 5879 df-mpo 5880 df-pnf 7994 df-mnf 7995 df-ltxr 7997 df-inn 8920 df-2 8978 df-ndx 12465 df-slot 12466 df-base 12468 df-sets 12469 df-iress 12470 df-plusg 12549 df-0g 12707 df-mgm 12775 df-sgrp 12808 df-mnd 12818 df-grp 12880 df-minusg 12881 df-subg 13030 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |