Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > shftfib | GIF version |
Description: Value of a fiber of the relation 𝐹. (Contributed by Mario Carneiro, 4-Nov-2013.) |
Ref | Expression |
---|---|
shftfval.1 | ⊢ 𝐹 ∈ V |
Ref | Expression |
---|---|
shftfib | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐹 shift 𝐴) “ {𝐵}) = (𝐹 “ {(𝐵 − 𝐴)})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | shftfval.1 | . . . . . . 7 ⊢ 𝐹 ∈ V | |
2 | 1 | shftfval 10772 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (𝐹 shift 𝐴) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℂ ∧ (𝑥 − 𝐴)𝐹𝑦)}) |
3 | 2 | breqd 3998 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (𝐵(𝐹 shift 𝐴)𝑧 ↔ 𝐵{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℂ ∧ (𝑥 − 𝐴)𝐹𝑦)}𝑧)) |
4 | vex 2733 | . . . . . 6 ⊢ 𝑧 ∈ V | |
5 | eleq1 2233 | . . . . . . . 8 ⊢ (𝑥 = 𝐵 → (𝑥 ∈ ℂ ↔ 𝐵 ∈ ℂ)) | |
6 | oveq1 5857 | . . . . . . . . 9 ⊢ (𝑥 = 𝐵 → (𝑥 − 𝐴) = (𝐵 − 𝐴)) | |
7 | 6 | breq1d 3997 | . . . . . . . 8 ⊢ (𝑥 = 𝐵 → ((𝑥 − 𝐴)𝐹𝑦 ↔ (𝐵 − 𝐴)𝐹𝑦)) |
8 | 5, 7 | anbi12d 470 | . . . . . . 7 ⊢ (𝑥 = 𝐵 → ((𝑥 ∈ ℂ ∧ (𝑥 − 𝐴)𝐹𝑦) ↔ (𝐵 ∈ ℂ ∧ (𝐵 − 𝐴)𝐹𝑦))) |
9 | breq2 3991 | . . . . . . . 8 ⊢ (𝑦 = 𝑧 → ((𝐵 − 𝐴)𝐹𝑦 ↔ (𝐵 − 𝐴)𝐹𝑧)) | |
10 | 9 | anbi2d 461 | . . . . . . 7 ⊢ (𝑦 = 𝑧 → ((𝐵 ∈ ℂ ∧ (𝐵 − 𝐴)𝐹𝑦) ↔ (𝐵 ∈ ℂ ∧ (𝐵 − 𝐴)𝐹𝑧))) |
11 | eqid 2170 | . . . . . . 7 ⊢ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℂ ∧ (𝑥 − 𝐴)𝐹𝑦)} = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℂ ∧ (𝑥 − 𝐴)𝐹𝑦)} | |
12 | 8, 10, 11 | brabg 4252 | . . . . . 6 ⊢ ((𝐵 ∈ ℂ ∧ 𝑧 ∈ V) → (𝐵{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℂ ∧ (𝑥 − 𝐴)𝐹𝑦)}𝑧 ↔ (𝐵 ∈ ℂ ∧ (𝐵 − 𝐴)𝐹𝑧))) |
13 | 4, 12 | mpan2 423 | . . . . 5 ⊢ (𝐵 ∈ ℂ → (𝐵{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℂ ∧ (𝑥 − 𝐴)𝐹𝑦)}𝑧 ↔ (𝐵 ∈ ℂ ∧ (𝐵 − 𝐴)𝐹𝑧))) |
14 | 3, 13 | sylan9bb 459 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐵(𝐹 shift 𝐴)𝑧 ↔ (𝐵 ∈ ℂ ∧ (𝐵 − 𝐴)𝐹𝑧))) |
15 | ibar 299 | . . . . 5 ⊢ (𝐵 ∈ ℂ → ((𝐵 − 𝐴)𝐹𝑧 ↔ (𝐵 ∈ ℂ ∧ (𝐵 − 𝐴)𝐹𝑧))) | |
16 | 15 | adantl 275 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐵 − 𝐴)𝐹𝑧 ↔ (𝐵 ∈ ℂ ∧ (𝐵 − 𝐴)𝐹𝑧))) |
17 | 14, 16 | bitr4d 190 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐵(𝐹 shift 𝐴)𝑧 ↔ (𝐵 − 𝐴)𝐹𝑧)) |
18 | 17 | abbidv 2288 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → {𝑧 ∣ 𝐵(𝐹 shift 𝐴)𝑧} = {𝑧 ∣ (𝐵 − 𝐴)𝐹𝑧}) |
19 | imasng 4974 | . . 3 ⊢ (𝐵 ∈ ℂ → ((𝐹 shift 𝐴) “ {𝐵}) = {𝑧 ∣ 𝐵(𝐹 shift 𝐴)𝑧}) | |
20 | 19 | adantl 275 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐹 shift 𝐴) “ {𝐵}) = {𝑧 ∣ 𝐵(𝐹 shift 𝐴)𝑧}) |
21 | simpr 109 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐵 ∈ ℂ) | |
22 | simpl 108 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐴 ∈ ℂ) | |
23 | 21, 22 | subcld 8217 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐵 − 𝐴) ∈ ℂ) |
24 | imasng 4974 | . . 3 ⊢ ((𝐵 − 𝐴) ∈ ℂ → (𝐹 “ {(𝐵 − 𝐴)}) = {𝑧 ∣ (𝐵 − 𝐴)𝐹𝑧}) | |
25 | 23, 24 | syl 14 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐹 “ {(𝐵 − 𝐴)}) = {𝑧 ∣ (𝐵 − 𝐴)𝐹𝑧}) |
26 | 18, 20, 25 | 3eqtr4d 2213 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐹 shift 𝐴) “ {𝐵}) = (𝐹 “ {(𝐵 − 𝐴)})) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 = wceq 1348 ∈ wcel 2141 {cab 2156 Vcvv 2730 {csn 3581 class class class wbr 3987 {copab 4047 “ cima 4612 (class class class)co 5850 ℂcc 7759 − cmin 8077 shift cshi 10765 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4102 ax-sep 4105 ax-pow 4158 ax-pr 4192 ax-un 4416 ax-setind 4519 ax-resscn 7853 ax-1cn 7854 ax-icn 7856 ax-addcl 7857 ax-addrcl 7858 ax-mulcl 7859 ax-addcom 7861 ax-addass 7863 ax-distr 7865 ax-i2m1 7866 ax-0id 7869 ax-rnegex 7870 ax-cnre 7872 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3566 df-sn 3587 df-pr 3588 df-op 3590 df-uni 3795 df-iun 3873 df-br 3988 df-opab 4049 df-mpt 4050 df-id 4276 df-xp 4615 df-rel 4616 df-cnv 4617 df-co 4618 df-dm 4619 df-rn 4620 df-res 4621 df-ima 4622 df-iota 5158 df-fun 5198 df-fn 5199 df-f 5200 df-f1 5201 df-fo 5202 df-f1o 5203 df-fv 5204 df-riota 5806 df-ov 5853 df-oprab 5854 df-mpo 5855 df-sub 8079 df-shft 10766 |
This theorem is referenced by: shftval 10776 |
Copyright terms: Public domain | W3C validator |