Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > shftfib | GIF version |
Description: Value of a fiber of the relation 𝐹. (Contributed by Mario Carneiro, 4-Nov-2013.) |
Ref | Expression |
---|---|
shftfval.1 | ⊢ 𝐹 ∈ V |
Ref | Expression |
---|---|
shftfib | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐹 shift 𝐴) “ {𝐵}) = (𝐹 “ {(𝐵 − 𝐴)})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | shftfval.1 | . . . . . . 7 ⊢ 𝐹 ∈ V | |
2 | 1 | shftfval 10763 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (𝐹 shift 𝐴) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℂ ∧ (𝑥 − 𝐴)𝐹𝑦)}) |
3 | 2 | breqd 3993 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (𝐵(𝐹 shift 𝐴)𝑧 ↔ 𝐵{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℂ ∧ (𝑥 − 𝐴)𝐹𝑦)}𝑧)) |
4 | vex 2729 | . . . . . 6 ⊢ 𝑧 ∈ V | |
5 | eleq1 2229 | . . . . . . . 8 ⊢ (𝑥 = 𝐵 → (𝑥 ∈ ℂ ↔ 𝐵 ∈ ℂ)) | |
6 | oveq1 5849 | . . . . . . . . 9 ⊢ (𝑥 = 𝐵 → (𝑥 − 𝐴) = (𝐵 − 𝐴)) | |
7 | 6 | breq1d 3992 | . . . . . . . 8 ⊢ (𝑥 = 𝐵 → ((𝑥 − 𝐴)𝐹𝑦 ↔ (𝐵 − 𝐴)𝐹𝑦)) |
8 | 5, 7 | anbi12d 465 | . . . . . . 7 ⊢ (𝑥 = 𝐵 → ((𝑥 ∈ ℂ ∧ (𝑥 − 𝐴)𝐹𝑦) ↔ (𝐵 ∈ ℂ ∧ (𝐵 − 𝐴)𝐹𝑦))) |
9 | breq2 3986 | . . . . . . . 8 ⊢ (𝑦 = 𝑧 → ((𝐵 − 𝐴)𝐹𝑦 ↔ (𝐵 − 𝐴)𝐹𝑧)) | |
10 | 9 | anbi2d 460 | . . . . . . 7 ⊢ (𝑦 = 𝑧 → ((𝐵 ∈ ℂ ∧ (𝐵 − 𝐴)𝐹𝑦) ↔ (𝐵 ∈ ℂ ∧ (𝐵 − 𝐴)𝐹𝑧))) |
11 | eqid 2165 | . . . . . . 7 ⊢ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℂ ∧ (𝑥 − 𝐴)𝐹𝑦)} = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℂ ∧ (𝑥 − 𝐴)𝐹𝑦)} | |
12 | 8, 10, 11 | brabg 4247 | . . . . . 6 ⊢ ((𝐵 ∈ ℂ ∧ 𝑧 ∈ V) → (𝐵{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℂ ∧ (𝑥 − 𝐴)𝐹𝑦)}𝑧 ↔ (𝐵 ∈ ℂ ∧ (𝐵 − 𝐴)𝐹𝑧))) |
13 | 4, 12 | mpan2 422 | . . . . 5 ⊢ (𝐵 ∈ ℂ → (𝐵{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℂ ∧ (𝑥 − 𝐴)𝐹𝑦)}𝑧 ↔ (𝐵 ∈ ℂ ∧ (𝐵 − 𝐴)𝐹𝑧))) |
14 | 3, 13 | sylan9bb 458 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐵(𝐹 shift 𝐴)𝑧 ↔ (𝐵 ∈ ℂ ∧ (𝐵 − 𝐴)𝐹𝑧))) |
15 | ibar 299 | . . . . 5 ⊢ (𝐵 ∈ ℂ → ((𝐵 − 𝐴)𝐹𝑧 ↔ (𝐵 ∈ ℂ ∧ (𝐵 − 𝐴)𝐹𝑧))) | |
16 | 15 | adantl 275 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐵 − 𝐴)𝐹𝑧 ↔ (𝐵 ∈ ℂ ∧ (𝐵 − 𝐴)𝐹𝑧))) |
17 | 14, 16 | bitr4d 190 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐵(𝐹 shift 𝐴)𝑧 ↔ (𝐵 − 𝐴)𝐹𝑧)) |
18 | 17 | abbidv 2284 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → {𝑧 ∣ 𝐵(𝐹 shift 𝐴)𝑧} = {𝑧 ∣ (𝐵 − 𝐴)𝐹𝑧}) |
19 | imasng 4969 | . . 3 ⊢ (𝐵 ∈ ℂ → ((𝐹 shift 𝐴) “ {𝐵}) = {𝑧 ∣ 𝐵(𝐹 shift 𝐴)𝑧}) | |
20 | 19 | adantl 275 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐹 shift 𝐴) “ {𝐵}) = {𝑧 ∣ 𝐵(𝐹 shift 𝐴)𝑧}) |
21 | simpr 109 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐵 ∈ ℂ) | |
22 | simpl 108 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐴 ∈ ℂ) | |
23 | 21, 22 | subcld 8209 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐵 − 𝐴) ∈ ℂ) |
24 | imasng 4969 | . . 3 ⊢ ((𝐵 − 𝐴) ∈ ℂ → (𝐹 “ {(𝐵 − 𝐴)}) = {𝑧 ∣ (𝐵 − 𝐴)𝐹𝑧}) | |
25 | 23, 24 | syl 14 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐹 “ {(𝐵 − 𝐴)}) = {𝑧 ∣ (𝐵 − 𝐴)𝐹𝑧}) |
26 | 18, 20, 25 | 3eqtr4d 2208 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐹 shift 𝐴) “ {𝐵}) = (𝐹 “ {(𝐵 − 𝐴)})) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 = wceq 1343 ∈ wcel 2136 {cab 2151 Vcvv 2726 {csn 3576 class class class wbr 3982 {copab 4042 “ cima 4607 (class class class)co 5842 ℂcc 7751 − cmin 8069 shift cshi 10756 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-resscn 7845 ax-1cn 7846 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-addcom 7853 ax-addass 7855 ax-distr 7857 ax-i2m1 7858 ax-0id 7861 ax-rnegex 7862 ax-cnre 7864 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-riota 5798 df-ov 5845 df-oprab 5846 df-mpo 5847 df-sub 8071 df-shft 10757 |
This theorem is referenced by: shftval 10767 |
Copyright terms: Public domain | W3C validator |