| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > omp1eom | GIF version | ||
| Description: Adding one to ω. (Contributed by Jim Kingdon, 10-Jul-2023.) |
| Ref | Expression |
|---|---|
| omp1eom | ⊢ (ω ⊔ 1o) ≈ ω |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | omex 4630 | . . 3 ⊢ ω ∈ V | |
| 2 | eqeq1 2203 | . . . . . 6 ⊢ (𝑦 = 𝑥 → (𝑦 = ∅ ↔ 𝑥 = ∅)) | |
| 3 | fveq2 5561 | . . . . . 6 ⊢ (𝑦 = 𝑥 → (inr‘𝑦) = (inr‘𝑥)) | |
| 4 | unieq 3849 | . . . . . . 7 ⊢ (𝑦 = 𝑥 → ∪ 𝑦 = ∪ 𝑥) | |
| 5 | 4 | fveq2d 5565 | . . . . . 6 ⊢ (𝑦 = 𝑥 → (inl‘∪ 𝑦) = (inl‘∪ 𝑥)) |
| 6 | 2, 3, 5 | ifbieq12d 3588 | . . . . 5 ⊢ (𝑦 = 𝑥 → if(𝑦 = ∅, (inr‘𝑦), (inl‘∪ 𝑦)) = if(𝑥 = ∅, (inr‘𝑥), (inl‘∪ 𝑥))) |
| 7 | 6 | cbvmptv 4130 | . . . 4 ⊢ (𝑦 ∈ ω ↦ if(𝑦 = ∅, (inr‘𝑦), (inl‘∪ 𝑦))) = (𝑥 ∈ ω ↦ if(𝑥 = ∅, (inr‘𝑥), (inl‘∪ 𝑥))) |
| 8 | suceq 4438 | . . . . 5 ⊢ (𝑦 = 𝑥 → suc 𝑦 = suc 𝑥) | |
| 9 | 8 | cbvmptv 4130 | . . . 4 ⊢ (𝑦 ∈ ω ↦ suc 𝑦) = (𝑥 ∈ ω ↦ suc 𝑥) |
| 10 | eqid 2196 | . . . 4 ⊢ case((𝑦 ∈ ω ↦ suc 𝑦), ( I ↾ 1o)) = case((𝑦 ∈ ω ↦ suc 𝑦), ( I ↾ 1o)) | |
| 11 | 7, 9, 10 | omp1eomlem 7169 | . . 3 ⊢ (𝑦 ∈ ω ↦ if(𝑦 = ∅, (inr‘𝑦), (inl‘∪ 𝑦))):ω–1-1-onto→(ω ⊔ 1o) |
| 12 | f1oeng 6825 | . . 3 ⊢ ((ω ∈ V ∧ (𝑦 ∈ ω ↦ if(𝑦 = ∅, (inr‘𝑦), (inl‘∪ 𝑦))):ω–1-1-onto→(ω ⊔ 1o)) → ω ≈ (ω ⊔ 1o)) | |
| 13 | 1, 11, 12 | mp2an 426 | . 2 ⊢ ω ≈ (ω ⊔ 1o) |
| 14 | 13 | ensymi 6850 | 1 ⊢ (ω ⊔ 1o) ≈ ω |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1364 ∈ wcel 2167 Vcvv 2763 ∅c0 3451 ifcif 3562 ∪ cuni 3840 class class class wbr 4034 ↦ cmpt 4095 I cid 4324 suc csuc 4401 ωcom 4627 ↾ cres 4666 –1-1-onto→wf1o 5258 ‘cfv 5259 1oc1o 6476 ≈ cen 6806 ⊔ cdju 7112 inlcinl 7120 inrcinr 7121 casecdjucase 7158 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-iinf 4625 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-if 3563 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-tr 4133 df-id 4329 df-iord 4402 df-on 4404 df-suc 4407 df-iom 4628 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-1st 6207 df-2nd 6208 df-1o 6483 df-er 6601 df-en 6809 df-dju 7113 df-inl 7122 df-inr 7123 df-case 7159 |
| This theorem is referenced by: difinfsn 7175 sbthom 15757 |
| Copyright terms: Public domain | W3C validator |