ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  omp1eom GIF version

Theorem omp1eom 7072
Description: Adding one to ω. (Contributed by Jim Kingdon, 10-Jul-2023.)
Assertion
Ref Expression
omp1eom (ω ⊔ 1o) ≈ ω

Proof of Theorem omp1eom
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 omex 4577 . . 3 ω ∈ V
2 eqeq1 2177 . . . . . 6 (𝑦 = 𝑥 → (𝑦 = ∅ ↔ 𝑥 = ∅))
3 fveq2 5496 . . . . . 6 (𝑦 = 𝑥 → (inr‘𝑦) = (inr‘𝑥))
4 unieq 3805 . . . . . . 7 (𝑦 = 𝑥 𝑦 = 𝑥)
54fveq2d 5500 . . . . . 6 (𝑦 = 𝑥 → (inl‘ 𝑦) = (inl‘ 𝑥))
62, 3, 5ifbieq12d 3552 . . . . 5 (𝑦 = 𝑥 → if(𝑦 = ∅, (inr‘𝑦), (inl‘ 𝑦)) = if(𝑥 = ∅, (inr‘𝑥), (inl‘ 𝑥)))
76cbvmptv 4085 . . . 4 (𝑦 ∈ ω ↦ if(𝑦 = ∅, (inr‘𝑦), (inl‘ 𝑦))) = (𝑥 ∈ ω ↦ if(𝑥 = ∅, (inr‘𝑥), (inl‘ 𝑥)))
8 suceq 4387 . . . . 5 (𝑦 = 𝑥 → suc 𝑦 = suc 𝑥)
98cbvmptv 4085 . . . 4 (𝑦 ∈ ω ↦ suc 𝑦) = (𝑥 ∈ ω ↦ suc 𝑥)
10 eqid 2170 . . . 4 case((𝑦 ∈ ω ↦ suc 𝑦), ( I ↾ 1o)) = case((𝑦 ∈ ω ↦ suc 𝑦), ( I ↾ 1o))
117, 9, 10omp1eomlem 7071 . . 3 (𝑦 ∈ ω ↦ if(𝑦 = ∅, (inr‘𝑦), (inl‘ 𝑦))):ω–1-1-onto→(ω ⊔ 1o)
12 f1oeng 6735 . . 3 ((ω ∈ V ∧ (𝑦 ∈ ω ↦ if(𝑦 = ∅, (inr‘𝑦), (inl‘ 𝑦))):ω–1-1-onto→(ω ⊔ 1o)) → ω ≈ (ω ⊔ 1o))
131, 11, 12mp2an 424 . 2 ω ≈ (ω ⊔ 1o)
1413ensymi 6760 1 (ω ⊔ 1o) ≈ ω
Colors of variables: wff set class
Syntax hints:   = wceq 1348  wcel 2141  Vcvv 2730  c0 3414  ifcif 3526   cuni 3796   class class class wbr 3989  cmpt 4050   I cid 4273  suc csuc 4350  ωcom 4574  cres 4613  1-1-ontowf1o 5197  cfv 5198  1oc1o 6388  cen 6716  cdju 7014  inlcinl 7022  inrcinr 7023  casecdjucase 7060
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-iord 4351  df-on 4353  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-1st 6119  df-2nd 6120  df-1o 6395  df-er 6513  df-en 6719  df-dju 7015  df-inl 7024  df-inr 7025  df-case 7061
This theorem is referenced by:  difinfsn  7077  sbthom  14058
  Copyright terms: Public domain W3C validator