ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  omp1eom GIF version

Theorem omp1eom 7204
Description: Adding one to ω. (Contributed by Jim Kingdon, 10-Jul-2023.)
Assertion
Ref Expression
omp1eom (ω ⊔ 1o) ≈ ω

Proof of Theorem omp1eom
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 omex 4645 . . 3 ω ∈ V
2 eqeq1 2213 . . . . . 6 (𝑦 = 𝑥 → (𝑦 = ∅ ↔ 𝑥 = ∅))
3 fveq2 5583 . . . . . 6 (𝑦 = 𝑥 → (inr‘𝑦) = (inr‘𝑥))
4 unieq 3861 . . . . . . 7 (𝑦 = 𝑥 𝑦 = 𝑥)
54fveq2d 5587 . . . . . 6 (𝑦 = 𝑥 → (inl‘ 𝑦) = (inl‘ 𝑥))
62, 3, 5ifbieq12d 3598 . . . . 5 (𝑦 = 𝑥 → if(𝑦 = ∅, (inr‘𝑦), (inl‘ 𝑦)) = if(𝑥 = ∅, (inr‘𝑥), (inl‘ 𝑥)))
76cbvmptv 4144 . . . 4 (𝑦 ∈ ω ↦ if(𝑦 = ∅, (inr‘𝑦), (inl‘ 𝑦))) = (𝑥 ∈ ω ↦ if(𝑥 = ∅, (inr‘𝑥), (inl‘ 𝑥)))
8 suceq 4453 . . . . 5 (𝑦 = 𝑥 → suc 𝑦 = suc 𝑥)
98cbvmptv 4144 . . . 4 (𝑦 ∈ ω ↦ suc 𝑦) = (𝑥 ∈ ω ↦ suc 𝑥)
10 eqid 2206 . . . 4 case((𝑦 ∈ ω ↦ suc 𝑦), ( I ↾ 1o)) = case((𝑦 ∈ ω ↦ suc 𝑦), ( I ↾ 1o))
117, 9, 10omp1eomlem 7203 . . 3 (𝑦 ∈ ω ↦ if(𝑦 = ∅, (inr‘𝑦), (inl‘ 𝑦))):ω–1-1-onto→(ω ⊔ 1o)
12 f1oeng 6855 . . 3 ((ω ∈ V ∧ (𝑦 ∈ ω ↦ if(𝑦 = ∅, (inr‘𝑦), (inl‘ 𝑦))):ω–1-1-onto→(ω ⊔ 1o)) → ω ≈ (ω ⊔ 1o))
131, 11, 12mp2an 426 . 2 ω ≈ (ω ⊔ 1o)
1413ensymi 6881 1 (ω ⊔ 1o) ≈ ω
Colors of variables: wff set class
Syntax hints:   = wceq 1373  wcel 2177  Vcvv 2773  c0 3461  ifcif 3572   cuni 3852   class class class wbr 4047  cmpt 4109   I cid 4339  suc csuc 4416  ωcom 4642  cres 4681  1-1-ontowf1o 5275  cfv 5276  1oc1o 6502  cen 6832  cdju 7146  inlcinl 7154  inrcinr 7155  casecdjucase 7192
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4163  ax-sep 4166  ax-nul 4174  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-setind 4589  ax-iinf 4640
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3000  df-csb 3095  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-nul 3462  df-if 3573  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-int 3888  df-iun 3931  df-br 4048  df-opab 4110  df-mpt 4111  df-tr 4147  df-id 4344  df-iord 4417  df-on 4419  df-suc 4422  df-iom 4643  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-f 5280  df-f1 5281  df-fo 5282  df-f1o 5283  df-fv 5284  df-1st 6233  df-2nd 6234  df-1o 6509  df-er 6627  df-en 6835  df-dju 7147  df-inl 7156  df-inr 7157  df-case 7193
This theorem is referenced by:  difinfsn  7209  sbthom  16039
  Copyright terms: Public domain W3C validator