| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > omp1eom | GIF version | ||
| Description: Adding one to ω. (Contributed by Jim Kingdon, 10-Jul-2023.) |
| Ref | Expression |
|---|---|
| omp1eom | ⊢ (ω ⊔ 1o) ≈ ω |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | omex 4645 | . . 3 ⊢ ω ∈ V | |
| 2 | eqeq1 2213 | . . . . . 6 ⊢ (𝑦 = 𝑥 → (𝑦 = ∅ ↔ 𝑥 = ∅)) | |
| 3 | fveq2 5583 | . . . . . 6 ⊢ (𝑦 = 𝑥 → (inr‘𝑦) = (inr‘𝑥)) | |
| 4 | unieq 3861 | . . . . . . 7 ⊢ (𝑦 = 𝑥 → ∪ 𝑦 = ∪ 𝑥) | |
| 5 | 4 | fveq2d 5587 | . . . . . 6 ⊢ (𝑦 = 𝑥 → (inl‘∪ 𝑦) = (inl‘∪ 𝑥)) |
| 6 | 2, 3, 5 | ifbieq12d 3598 | . . . . 5 ⊢ (𝑦 = 𝑥 → if(𝑦 = ∅, (inr‘𝑦), (inl‘∪ 𝑦)) = if(𝑥 = ∅, (inr‘𝑥), (inl‘∪ 𝑥))) |
| 7 | 6 | cbvmptv 4144 | . . . 4 ⊢ (𝑦 ∈ ω ↦ if(𝑦 = ∅, (inr‘𝑦), (inl‘∪ 𝑦))) = (𝑥 ∈ ω ↦ if(𝑥 = ∅, (inr‘𝑥), (inl‘∪ 𝑥))) |
| 8 | suceq 4453 | . . . . 5 ⊢ (𝑦 = 𝑥 → suc 𝑦 = suc 𝑥) | |
| 9 | 8 | cbvmptv 4144 | . . . 4 ⊢ (𝑦 ∈ ω ↦ suc 𝑦) = (𝑥 ∈ ω ↦ suc 𝑥) |
| 10 | eqid 2206 | . . . 4 ⊢ case((𝑦 ∈ ω ↦ suc 𝑦), ( I ↾ 1o)) = case((𝑦 ∈ ω ↦ suc 𝑦), ( I ↾ 1o)) | |
| 11 | 7, 9, 10 | omp1eomlem 7203 | . . 3 ⊢ (𝑦 ∈ ω ↦ if(𝑦 = ∅, (inr‘𝑦), (inl‘∪ 𝑦))):ω–1-1-onto→(ω ⊔ 1o) |
| 12 | f1oeng 6855 | . . 3 ⊢ ((ω ∈ V ∧ (𝑦 ∈ ω ↦ if(𝑦 = ∅, (inr‘𝑦), (inl‘∪ 𝑦))):ω–1-1-onto→(ω ⊔ 1o)) → ω ≈ (ω ⊔ 1o)) | |
| 13 | 1, 11, 12 | mp2an 426 | . 2 ⊢ ω ≈ (ω ⊔ 1o) |
| 14 | 13 | ensymi 6881 | 1 ⊢ (ω ⊔ 1o) ≈ ω |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1373 ∈ wcel 2177 Vcvv 2773 ∅c0 3461 ifcif 3572 ∪ cuni 3852 class class class wbr 4047 ↦ cmpt 4109 I cid 4339 suc csuc 4416 ωcom 4642 ↾ cres 4681 –1-1-onto→wf1o 5275 ‘cfv 5276 1oc1o 6502 ≈ cen 6832 ⊔ cdju 7146 inlcinl 7154 inrcinr 7155 casecdjucase 7192 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4163 ax-sep 4166 ax-nul 4174 ax-pow 4222 ax-pr 4257 ax-un 4484 ax-setind 4589 ax-iinf 4640 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3000 df-csb 3095 df-dif 3169 df-un 3171 df-in 3173 df-ss 3180 df-nul 3462 df-if 3573 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-int 3888 df-iun 3931 df-br 4048 df-opab 4110 df-mpt 4111 df-tr 4147 df-id 4344 df-iord 4417 df-on 4419 df-suc 4422 df-iom 4643 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-rn 4690 df-res 4691 df-ima 4692 df-iota 5237 df-fun 5278 df-fn 5279 df-f 5280 df-f1 5281 df-fo 5282 df-f1o 5283 df-fv 5284 df-1st 6233 df-2nd 6234 df-1o 6509 df-er 6627 df-en 6835 df-dju 7147 df-inl 7156 df-inr 7157 df-case 7193 |
| This theorem is referenced by: difinfsn 7209 sbthom 16039 |
| Copyright terms: Public domain | W3C validator |