![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > omp1eom | GIF version |
Description: Adding one to ω. (Contributed by Jim Kingdon, 10-Jul-2023.) |
Ref | Expression |
---|---|
omp1eom | ⊢ (ω ⊔ 1o) ≈ ω |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | omex 4465 | . . 3 ⊢ ω ∈ V | |
2 | eqeq1 2119 | . . . . . 6 ⊢ (𝑦 = 𝑥 → (𝑦 = ∅ ↔ 𝑥 = ∅)) | |
3 | fveq2 5373 | . . . . . 6 ⊢ (𝑦 = 𝑥 → (inr‘𝑦) = (inr‘𝑥)) | |
4 | unieq 3709 | . . . . . . 7 ⊢ (𝑦 = 𝑥 → ∪ 𝑦 = ∪ 𝑥) | |
5 | 4 | fveq2d 5377 | . . . . . 6 ⊢ (𝑦 = 𝑥 → (inl‘∪ 𝑦) = (inl‘∪ 𝑥)) |
6 | 2, 3, 5 | ifbieq12d 3462 | . . . . 5 ⊢ (𝑦 = 𝑥 → if(𝑦 = ∅, (inr‘𝑦), (inl‘∪ 𝑦)) = if(𝑥 = ∅, (inr‘𝑥), (inl‘∪ 𝑥))) |
7 | 6 | cbvmptv 3982 | . . . 4 ⊢ (𝑦 ∈ ω ↦ if(𝑦 = ∅, (inr‘𝑦), (inl‘∪ 𝑦))) = (𝑥 ∈ ω ↦ if(𝑥 = ∅, (inr‘𝑥), (inl‘∪ 𝑥))) |
8 | suceq 4282 | . . . . 5 ⊢ (𝑦 = 𝑥 → suc 𝑦 = suc 𝑥) | |
9 | 8 | cbvmptv 3982 | . . . 4 ⊢ (𝑦 ∈ ω ↦ suc 𝑦) = (𝑥 ∈ ω ↦ suc 𝑥) |
10 | eqid 2113 | . . . 4 ⊢ case((𝑦 ∈ ω ↦ suc 𝑦), ( I ↾ 1o)) = case((𝑦 ∈ ω ↦ suc 𝑦), ( I ↾ 1o)) | |
11 | 7, 9, 10 | omp1eomlem 6929 | . . 3 ⊢ (𝑦 ∈ ω ↦ if(𝑦 = ∅, (inr‘𝑦), (inl‘∪ 𝑦))):ω–1-1-onto→(ω ⊔ 1o) |
12 | f1oeng 6603 | . . 3 ⊢ ((ω ∈ V ∧ (𝑦 ∈ ω ↦ if(𝑦 = ∅, (inr‘𝑦), (inl‘∪ 𝑦))):ω–1-1-onto→(ω ⊔ 1o)) → ω ≈ (ω ⊔ 1o)) | |
13 | 1, 11, 12 | mp2an 420 | . 2 ⊢ ω ≈ (ω ⊔ 1o) |
14 | 13 | ensymi 6628 | 1 ⊢ (ω ⊔ 1o) ≈ ω |
Colors of variables: wff set class |
Syntax hints: = wceq 1312 ∈ wcel 1461 Vcvv 2655 ∅c0 3327 ifcif 3438 ∪ cuni 3700 class class class wbr 3893 ↦ cmpt 3947 I cid 4168 suc csuc 4245 ωcom 4462 ↾ cres 4499 –1-1-onto→wf1o 5078 ‘cfv 5079 1oc1o 6258 ≈ cen 6584 ⊔ cdju 6872 inlcinl 6880 inrcinr 6881 casecdjucase 6918 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 586 ax-in2 587 ax-io 681 ax-5 1404 ax-7 1405 ax-gen 1406 ax-ie1 1450 ax-ie2 1451 ax-8 1463 ax-10 1464 ax-11 1465 ax-i12 1466 ax-bndl 1467 ax-4 1468 ax-13 1472 ax-14 1473 ax-17 1487 ax-i9 1491 ax-ial 1495 ax-i5r 1496 ax-ext 2095 ax-coll 4001 ax-sep 4004 ax-nul 4012 ax-pow 4056 ax-pr 4089 ax-un 4313 ax-setind 4410 ax-iinf 4460 |
This theorem depends on definitions: df-bi 116 df-dc 803 df-3an 945 df-tru 1315 df-fal 1318 df-nf 1418 df-sb 1717 df-eu 1976 df-mo 1977 df-clab 2100 df-cleq 2106 df-clel 2109 df-nfc 2242 df-ne 2281 df-ral 2393 df-rex 2394 df-reu 2395 df-rab 2397 df-v 2657 df-sbc 2877 df-csb 2970 df-dif 3037 df-un 3039 df-in 3041 df-ss 3048 df-nul 3328 df-if 3439 df-pw 3476 df-sn 3497 df-pr 3498 df-op 3500 df-uni 3701 df-int 3736 df-iun 3779 df-br 3894 df-opab 3948 df-mpt 3949 df-tr 3985 df-id 4173 df-iord 4246 df-on 4248 df-suc 4251 df-iom 4463 df-xp 4503 df-rel 4504 df-cnv 4505 df-co 4506 df-dm 4507 df-rn 4508 df-res 4509 df-ima 4510 df-iota 5044 df-fun 5081 df-fn 5082 df-f 5083 df-f1 5084 df-fo 5085 df-f1o 5086 df-fv 5087 df-1st 5990 df-2nd 5991 df-1o 6265 df-er 6381 df-en 6587 df-dju 6873 df-inl 6882 df-inr 6883 df-case 6919 |
This theorem is referenced by: difinfsn 6935 sbthom 12902 |
Copyright terms: Public domain | W3C validator |