Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > omp1eom | GIF version |
Description: Adding one to ω. (Contributed by Jim Kingdon, 10-Jul-2023.) |
Ref | Expression |
---|---|
omp1eom | ⊢ (ω ⊔ 1o) ≈ ω |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | omex 4577 | . . 3 ⊢ ω ∈ V | |
2 | eqeq1 2177 | . . . . . 6 ⊢ (𝑦 = 𝑥 → (𝑦 = ∅ ↔ 𝑥 = ∅)) | |
3 | fveq2 5496 | . . . . . 6 ⊢ (𝑦 = 𝑥 → (inr‘𝑦) = (inr‘𝑥)) | |
4 | unieq 3805 | . . . . . . 7 ⊢ (𝑦 = 𝑥 → ∪ 𝑦 = ∪ 𝑥) | |
5 | 4 | fveq2d 5500 | . . . . . 6 ⊢ (𝑦 = 𝑥 → (inl‘∪ 𝑦) = (inl‘∪ 𝑥)) |
6 | 2, 3, 5 | ifbieq12d 3552 | . . . . 5 ⊢ (𝑦 = 𝑥 → if(𝑦 = ∅, (inr‘𝑦), (inl‘∪ 𝑦)) = if(𝑥 = ∅, (inr‘𝑥), (inl‘∪ 𝑥))) |
7 | 6 | cbvmptv 4085 | . . . 4 ⊢ (𝑦 ∈ ω ↦ if(𝑦 = ∅, (inr‘𝑦), (inl‘∪ 𝑦))) = (𝑥 ∈ ω ↦ if(𝑥 = ∅, (inr‘𝑥), (inl‘∪ 𝑥))) |
8 | suceq 4387 | . . . . 5 ⊢ (𝑦 = 𝑥 → suc 𝑦 = suc 𝑥) | |
9 | 8 | cbvmptv 4085 | . . . 4 ⊢ (𝑦 ∈ ω ↦ suc 𝑦) = (𝑥 ∈ ω ↦ suc 𝑥) |
10 | eqid 2170 | . . . 4 ⊢ case((𝑦 ∈ ω ↦ suc 𝑦), ( I ↾ 1o)) = case((𝑦 ∈ ω ↦ suc 𝑦), ( I ↾ 1o)) | |
11 | 7, 9, 10 | omp1eomlem 7071 | . . 3 ⊢ (𝑦 ∈ ω ↦ if(𝑦 = ∅, (inr‘𝑦), (inl‘∪ 𝑦))):ω–1-1-onto→(ω ⊔ 1o) |
12 | f1oeng 6735 | . . 3 ⊢ ((ω ∈ V ∧ (𝑦 ∈ ω ↦ if(𝑦 = ∅, (inr‘𝑦), (inl‘∪ 𝑦))):ω–1-1-onto→(ω ⊔ 1o)) → ω ≈ (ω ⊔ 1o)) | |
13 | 1, 11, 12 | mp2an 424 | . 2 ⊢ ω ≈ (ω ⊔ 1o) |
14 | 13 | ensymi 6760 | 1 ⊢ (ω ⊔ 1o) ≈ ω |
Colors of variables: wff set class |
Syntax hints: = wceq 1348 ∈ wcel 2141 Vcvv 2730 ∅c0 3414 ifcif 3526 ∪ cuni 3796 class class class wbr 3989 ↦ cmpt 4050 I cid 4273 suc csuc 4350 ωcom 4574 ↾ cres 4613 –1-1-onto→wf1o 5197 ‘cfv 5198 1oc1o 6388 ≈ cen 6716 ⊔ cdju 7014 inlcinl 7022 inrcinr 7023 casecdjucase 7060 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-iinf 4572 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-if 3527 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-tr 4088 df-id 4278 df-iord 4351 df-on 4353 df-suc 4356 df-iom 4575 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-1st 6119 df-2nd 6120 df-1o 6395 df-er 6513 df-en 6719 df-dju 7015 df-inl 7024 df-inr 7025 df-case 7061 |
This theorem is referenced by: difinfsn 7077 sbthom 14058 |
Copyright terms: Public domain | W3C validator |