ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  omp1eom GIF version

Theorem omp1eom 7156
Description: Adding one to ω. (Contributed by Jim Kingdon, 10-Jul-2023.)
Assertion
Ref Expression
omp1eom (ω ⊔ 1o) ≈ ω

Proof of Theorem omp1eom
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 omex 4626 . . 3 ω ∈ V
2 eqeq1 2200 . . . . . 6 (𝑦 = 𝑥 → (𝑦 = ∅ ↔ 𝑥 = ∅))
3 fveq2 5555 . . . . . 6 (𝑦 = 𝑥 → (inr‘𝑦) = (inr‘𝑥))
4 unieq 3845 . . . . . . 7 (𝑦 = 𝑥 𝑦 = 𝑥)
54fveq2d 5559 . . . . . 6 (𝑦 = 𝑥 → (inl‘ 𝑦) = (inl‘ 𝑥))
62, 3, 5ifbieq12d 3584 . . . . 5 (𝑦 = 𝑥 → if(𝑦 = ∅, (inr‘𝑦), (inl‘ 𝑦)) = if(𝑥 = ∅, (inr‘𝑥), (inl‘ 𝑥)))
76cbvmptv 4126 . . . 4 (𝑦 ∈ ω ↦ if(𝑦 = ∅, (inr‘𝑦), (inl‘ 𝑦))) = (𝑥 ∈ ω ↦ if(𝑥 = ∅, (inr‘𝑥), (inl‘ 𝑥)))
8 suceq 4434 . . . . 5 (𝑦 = 𝑥 → suc 𝑦 = suc 𝑥)
98cbvmptv 4126 . . . 4 (𝑦 ∈ ω ↦ suc 𝑦) = (𝑥 ∈ ω ↦ suc 𝑥)
10 eqid 2193 . . . 4 case((𝑦 ∈ ω ↦ suc 𝑦), ( I ↾ 1o)) = case((𝑦 ∈ ω ↦ suc 𝑦), ( I ↾ 1o))
117, 9, 10omp1eomlem 7155 . . 3 (𝑦 ∈ ω ↦ if(𝑦 = ∅, (inr‘𝑦), (inl‘ 𝑦))):ω–1-1-onto→(ω ⊔ 1o)
12 f1oeng 6813 . . 3 ((ω ∈ V ∧ (𝑦 ∈ ω ↦ if(𝑦 = ∅, (inr‘𝑦), (inl‘ 𝑦))):ω–1-1-onto→(ω ⊔ 1o)) → ω ≈ (ω ⊔ 1o))
131, 11, 12mp2an 426 . 2 ω ≈ (ω ⊔ 1o)
1413ensymi 6838 1 (ω ⊔ 1o) ≈ ω
Colors of variables: wff set class
Syntax hints:   = wceq 1364  wcel 2164  Vcvv 2760  c0 3447  ifcif 3558   cuni 3836   class class class wbr 4030  cmpt 4091   I cid 4320  suc csuc 4397  ωcom 4623  cres 4662  1-1-ontowf1o 5254  cfv 5255  1oc1o 6464  cen 6794  cdju 7098  inlcinl 7106  inrcinr 7107  casecdjucase 7144
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-if 3559  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-id 4325  df-iord 4398  df-on 4400  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-1st 6195  df-2nd 6196  df-1o 6471  df-er 6589  df-en 6797  df-dju 7099  df-inl 7108  df-inr 7109  df-case 7145
This theorem is referenced by:  difinfsn  7161  sbthom  15586
  Copyright terms: Public domain W3C validator