Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > omp1eom | GIF version |
Description: Adding one to ω. (Contributed by Jim Kingdon, 10-Jul-2023.) |
Ref | Expression |
---|---|
omp1eom | ⊢ (ω ⊔ 1o) ≈ ω |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | omex 4570 | . . 3 ⊢ ω ∈ V | |
2 | eqeq1 2172 | . . . . . 6 ⊢ (𝑦 = 𝑥 → (𝑦 = ∅ ↔ 𝑥 = ∅)) | |
3 | fveq2 5486 | . . . . . 6 ⊢ (𝑦 = 𝑥 → (inr‘𝑦) = (inr‘𝑥)) | |
4 | unieq 3798 | . . . . . . 7 ⊢ (𝑦 = 𝑥 → ∪ 𝑦 = ∪ 𝑥) | |
5 | 4 | fveq2d 5490 | . . . . . 6 ⊢ (𝑦 = 𝑥 → (inl‘∪ 𝑦) = (inl‘∪ 𝑥)) |
6 | 2, 3, 5 | ifbieq12d 3546 | . . . . 5 ⊢ (𝑦 = 𝑥 → if(𝑦 = ∅, (inr‘𝑦), (inl‘∪ 𝑦)) = if(𝑥 = ∅, (inr‘𝑥), (inl‘∪ 𝑥))) |
7 | 6 | cbvmptv 4078 | . . . 4 ⊢ (𝑦 ∈ ω ↦ if(𝑦 = ∅, (inr‘𝑦), (inl‘∪ 𝑦))) = (𝑥 ∈ ω ↦ if(𝑥 = ∅, (inr‘𝑥), (inl‘∪ 𝑥))) |
8 | suceq 4380 | . . . . 5 ⊢ (𝑦 = 𝑥 → suc 𝑦 = suc 𝑥) | |
9 | 8 | cbvmptv 4078 | . . . 4 ⊢ (𝑦 ∈ ω ↦ suc 𝑦) = (𝑥 ∈ ω ↦ suc 𝑥) |
10 | eqid 2165 | . . . 4 ⊢ case((𝑦 ∈ ω ↦ suc 𝑦), ( I ↾ 1o)) = case((𝑦 ∈ ω ↦ suc 𝑦), ( I ↾ 1o)) | |
11 | 7, 9, 10 | omp1eomlem 7059 | . . 3 ⊢ (𝑦 ∈ ω ↦ if(𝑦 = ∅, (inr‘𝑦), (inl‘∪ 𝑦))):ω–1-1-onto→(ω ⊔ 1o) |
12 | f1oeng 6723 | . . 3 ⊢ ((ω ∈ V ∧ (𝑦 ∈ ω ↦ if(𝑦 = ∅, (inr‘𝑦), (inl‘∪ 𝑦))):ω–1-1-onto→(ω ⊔ 1o)) → ω ≈ (ω ⊔ 1o)) | |
13 | 1, 11, 12 | mp2an 423 | . 2 ⊢ ω ≈ (ω ⊔ 1o) |
14 | 13 | ensymi 6748 | 1 ⊢ (ω ⊔ 1o) ≈ ω |
Colors of variables: wff set class |
Syntax hints: = wceq 1343 ∈ wcel 2136 Vcvv 2726 ∅c0 3409 ifcif 3520 ∪ cuni 3789 class class class wbr 3982 ↦ cmpt 4043 I cid 4266 suc csuc 4343 ωcom 4567 ↾ cres 4606 –1-1-onto→wf1o 5187 ‘cfv 5188 1oc1o 6377 ≈ cen 6704 ⊔ cdju 7002 inlcinl 7010 inrcinr 7011 casecdjucase 7048 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-iinf 4565 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-if 3521 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-tr 4081 df-id 4271 df-iord 4344 df-on 4346 df-suc 4349 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-1st 6108 df-2nd 6109 df-1o 6384 df-er 6501 df-en 6707 df-dju 7003 df-inl 7012 df-inr 7013 df-case 7049 |
This theorem is referenced by: difinfsn 7065 sbthom 13905 |
Copyright terms: Public domain | W3C validator |