| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > omp1eom | GIF version | ||
| Description: Adding one to ω. (Contributed by Jim Kingdon, 10-Jul-2023.) |
| Ref | Expression |
|---|---|
| omp1eom | ⊢ (ω ⊔ 1o) ≈ ω |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | omex 4662 | . . 3 ⊢ ω ∈ V | |
| 2 | eqeq1 2216 | . . . . . 6 ⊢ (𝑦 = 𝑥 → (𝑦 = ∅ ↔ 𝑥 = ∅)) | |
| 3 | fveq2 5603 | . . . . . 6 ⊢ (𝑦 = 𝑥 → (inr‘𝑦) = (inr‘𝑥)) | |
| 4 | unieq 3876 | . . . . . . 7 ⊢ (𝑦 = 𝑥 → ∪ 𝑦 = ∪ 𝑥) | |
| 5 | 4 | fveq2d 5607 | . . . . . 6 ⊢ (𝑦 = 𝑥 → (inl‘∪ 𝑦) = (inl‘∪ 𝑥)) |
| 6 | 2, 3, 5 | ifbieq12d 3609 | . . . . 5 ⊢ (𝑦 = 𝑥 → if(𝑦 = ∅, (inr‘𝑦), (inl‘∪ 𝑦)) = if(𝑥 = ∅, (inr‘𝑥), (inl‘∪ 𝑥))) |
| 7 | 6 | cbvmptv 4159 | . . . 4 ⊢ (𝑦 ∈ ω ↦ if(𝑦 = ∅, (inr‘𝑦), (inl‘∪ 𝑦))) = (𝑥 ∈ ω ↦ if(𝑥 = ∅, (inr‘𝑥), (inl‘∪ 𝑥))) |
| 8 | suceq 4470 | . . . . 5 ⊢ (𝑦 = 𝑥 → suc 𝑦 = suc 𝑥) | |
| 9 | 8 | cbvmptv 4159 | . . . 4 ⊢ (𝑦 ∈ ω ↦ suc 𝑦) = (𝑥 ∈ ω ↦ suc 𝑥) |
| 10 | eqid 2209 | . . . 4 ⊢ case((𝑦 ∈ ω ↦ suc 𝑦), ( I ↾ 1o)) = case((𝑦 ∈ ω ↦ suc 𝑦), ( I ↾ 1o)) | |
| 11 | 7, 9, 10 | omp1eomlem 7229 | . . 3 ⊢ (𝑦 ∈ ω ↦ if(𝑦 = ∅, (inr‘𝑦), (inl‘∪ 𝑦))):ω–1-1-onto→(ω ⊔ 1o) |
| 12 | f1oeng 6878 | . . 3 ⊢ ((ω ∈ V ∧ (𝑦 ∈ ω ↦ if(𝑦 = ∅, (inr‘𝑦), (inl‘∪ 𝑦))):ω–1-1-onto→(ω ⊔ 1o)) → ω ≈ (ω ⊔ 1o)) | |
| 13 | 1, 11, 12 | mp2an 426 | . 2 ⊢ ω ≈ (ω ⊔ 1o) |
| 14 | 13 | ensymi 6904 | 1 ⊢ (ω ⊔ 1o) ≈ ω |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1375 ∈ wcel 2180 Vcvv 2779 ∅c0 3471 ifcif 3582 ∪ cuni 3867 class class class wbr 4062 ↦ cmpt 4124 I cid 4356 suc csuc 4433 ωcom 4659 ↾ cres 4698 –1-1-onto→wf1o 5293 ‘cfv 5294 1oc1o 6525 ≈ cen 6855 ⊔ cdju 7172 inlcinl 7180 inrcinr 7181 casecdjucase 7218 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-coll 4178 ax-sep 4181 ax-nul 4189 ax-pow 4237 ax-pr 4272 ax-un 4501 ax-setind 4606 ax-iinf 4657 |
| This theorem depends on definitions: df-bi 117 df-dc 839 df-3an 985 df-tru 1378 df-fal 1381 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ne 2381 df-ral 2493 df-rex 2494 df-reu 2495 df-rab 2497 df-v 2781 df-sbc 3009 df-csb 3105 df-dif 3179 df-un 3181 df-in 3183 df-ss 3190 df-nul 3472 df-if 3583 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-int 3903 df-iun 3946 df-br 4063 df-opab 4125 df-mpt 4126 df-tr 4162 df-id 4361 df-iord 4434 df-on 4436 df-suc 4439 df-iom 4660 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-res 4708 df-ima 4709 df-iota 5254 df-fun 5296 df-fn 5297 df-f 5298 df-f1 5299 df-fo 5300 df-f1o 5301 df-fv 5302 df-1st 6256 df-2nd 6257 df-1o 6532 df-er 6650 df-en 6858 df-dju 7173 df-inl 7182 df-inr 7183 df-case 7219 |
| This theorem is referenced by: difinfsn 7235 sbthom 16305 |
| Copyright terms: Public domain | W3C validator |