Step | Hyp | Ref
| Expression |
1 | | 0xr 7966 |
. . . . . 6
⊢ 0 ∈
ℝ* |
2 | 1 | a1i 9 |
. . . . 5
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → 0 ∈ ℝ*) |
3 | | pnfxr 7972 |
. . . . . 6
⊢ +∞
∈ ℝ* |
4 | 3 | a1i 9 |
. . . . 5
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → +∞ ∈
ℝ*) |
5 | | xrmnfdc 9800 |
. . . . . 6
⊢ (𝐵 ∈ ℝ*
→ DECID 𝐵 = -∞) |
6 | 5 | adantl 275 |
. . . . 5
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → DECID 𝐵 = -∞) |
7 | 2, 4, 6 | ifcldcd 3561 |
. . . 4
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → if(𝐵 = -∞, 0, +∞) ∈
ℝ*) |
8 | 7 | adantr 274 |
. . 3
⊢ (((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ 𝐴 = +∞) → if(𝐵 = -∞, 0, +∞) ∈
ℝ*) |
9 | | mnfxr 7976 |
. . . . . . 7
⊢ -∞
∈ ℝ* |
10 | 9 | a1i 9 |
. . . . . 6
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → -∞ ∈
ℝ*) |
11 | | xrpnfdc 9799 |
. . . . . . 7
⊢ (𝐵 ∈ ℝ*
→ DECID 𝐵 = +∞) |
12 | 11 | adantl 275 |
. . . . . 6
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → DECID 𝐵 = +∞) |
13 | 2, 10, 12 | ifcldcd 3561 |
. . . . 5
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → if(𝐵 = +∞, 0, -∞) ∈
ℝ*) |
14 | 13 | ad2antrr 485 |
. . . 4
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ ¬ 𝐴 = +∞) ∧ 𝐴 = -∞) → if(𝐵 = +∞, 0, -∞) ∈
ℝ*) |
15 | 3 | a1i 9 |
. . . . 5
⊢
(((((𝐴 ∈
ℝ* ∧ 𝐵
∈ ℝ*) ∧ ¬ 𝐴 = +∞) ∧ ¬ 𝐴 = -∞) ∧ 𝐵 = +∞) → +∞ ∈
ℝ*) |
16 | 9 | a1i 9 |
. . . . . 6
⊢
((((((𝐴 ∈
ℝ* ∧ 𝐵
∈ ℝ*) ∧ ¬ 𝐴 = +∞) ∧ ¬ 𝐴 = -∞) ∧ ¬ 𝐵 = +∞) ∧ 𝐵 = -∞) → -∞ ∈
ℝ*) |
17 | | simp-4r 537 |
. . . . . . . . 9
⊢
((((((𝐴 ∈
ℝ* ∧ 𝐵
∈ ℝ*) ∧ ¬ 𝐴 = +∞) ∧ ¬ 𝐴 = -∞) ∧ ¬ 𝐵 = +∞) ∧ ¬ 𝐵 = -∞) → ¬ 𝐴 = +∞) |
18 | | simpl 108 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → 𝐴 ∈
ℝ*) |
19 | 18 | ad4antr 491 |
. . . . . . . . . 10
⊢
((((((𝐴 ∈
ℝ* ∧ 𝐵
∈ ℝ*) ∧ ¬ 𝐴 = +∞) ∧ ¬ 𝐴 = -∞) ∧ ¬ 𝐵 = +∞) ∧ ¬ 𝐵 = -∞) → 𝐴 ∈
ℝ*) |
20 | | simpllr 529 |
. . . . . . . . . . 11
⊢
((((((𝐴 ∈
ℝ* ∧ 𝐵
∈ ℝ*) ∧ ¬ 𝐴 = +∞) ∧ ¬ 𝐴 = -∞) ∧ ¬ 𝐵 = +∞) ∧ ¬ 𝐵 = -∞) → ¬ 𝐴 = -∞) |
21 | 20 | neqned 2347 |
. . . . . . . . . 10
⊢
((((((𝐴 ∈
ℝ* ∧ 𝐵
∈ ℝ*) ∧ ¬ 𝐴 = +∞) ∧ ¬ 𝐴 = -∞) ∧ ¬ 𝐵 = +∞) ∧ ¬ 𝐵 = -∞) → 𝐴 ≠ -∞) |
22 | | xrnemnf 9734 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℝ*
∧ 𝐴 ≠ -∞)
↔ (𝐴 ∈ ℝ
∨ 𝐴 =
+∞)) |
23 | 22 | biimpi 119 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℝ*
∧ 𝐴 ≠ -∞)
→ (𝐴 ∈ ℝ
∨ 𝐴 =
+∞)) |
24 | 19, 21, 23 | syl2anc 409 |
. . . . . . . . 9
⊢
((((((𝐴 ∈
ℝ* ∧ 𝐵
∈ ℝ*) ∧ ¬ 𝐴 = +∞) ∧ ¬ 𝐴 = -∞) ∧ ¬ 𝐵 = +∞) ∧ ¬ 𝐵 = -∞) → (𝐴 ∈ ℝ ∨ 𝐴 = +∞)) |
25 | 17, 24 | ecased 1344 |
. . . . . . . 8
⊢
((((((𝐴 ∈
ℝ* ∧ 𝐵
∈ ℝ*) ∧ ¬ 𝐴 = +∞) ∧ ¬ 𝐴 = -∞) ∧ ¬ 𝐵 = +∞) ∧ ¬ 𝐵 = -∞) → 𝐴 ∈ ℝ) |
26 | | simplr 525 |
. . . . . . . . 9
⊢
((((((𝐴 ∈
ℝ* ∧ 𝐵
∈ ℝ*) ∧ ¬ 𝐴 = +∞) ∧ ¬ 𝐴 = -∞) ∧ ¬ 𝐵 = +∞) ∧ ¬ 𝐵 = -∞) → ¬ 𝐵 = +∞) |
27 | | simpr 109 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → 𝐵 ∈
ℝ*) |
28 | 27 | ad4antr 491 |
. . . . . . . . . 10
⊢
((((((𝐴 ∈
ℝ* ∧ 𝐵
∈ ℝ*) ∧ ¬ 𝐴 = +∞) ∧ ¬ 𝐴 = -∞) ∧ ¬ 𝐵 = +∞) ∧ ¬ 𝐵 = -∞) → 𝐵 ∈
ℝ*) |
29 | | simpr 109 |
. . . . . . . . . . 11
⊢
((((((𝐴 ∈
ℝ* ∧ 𝐵
∈ ℝ*) ∧ ¬ 𝐴 = +∞) ∧ ¬ 𝐴 = -∞) ∧ ¬ 𝐵 = +∞) ∧ ¬ 𝐵 = -∞) → ¬ 𝐵 = -∞) |
30 | 29 | neqned 2347 |
. . . . . . . . . 10
⊢
((((((𝐴 ∈
ℝ* ∧ 𝐵
∈ ℝ*) ∧ ¬ 𝐴 = +∞) ∧ ¬ 𝐴 = -∞) ∧ ¬ 𝐵 = +∞) ∧ ¬ 𝐵 = -∞) → 𝐵 ≠ -∞) |
31 | | xrnemnf 9734 |
. . . . . . . . . . 11
⊢ ((𝐵 ∈ ℝ*
∧ 𝐵 ≠ -∞)
↔ (𝐵 ∈ ℝ
∨ 𝐵 =
+∞)) |
32 | 31 | biimpi 119 |
. . . . . . . . . 10
⊢ ((𝐵 ∈ ℝ*
∧ 𝐵 ≠ -∞)
→ (𝐵 ∈ ℝ
∨ 𝐵 =
+∞)) |
33 | 28, 30, 32 | syl2anc 409 |
. . . . . . . . 9
⊢
((((((𝐴 ∈
ℝ* ∧ 𝐵
∈ ℝ*) ∧ ¬ 𝐴 = +∞) ∧ ¬ 𝐴 = -∞) ∧ ¬ 𝐵 = +∞) ∧ ¬ 𝐵 = -∞) → (𝐵 ∈ ℝ ∨ 𝐵 = +∞)) |
34 | 26, 33 | ecased 1344 |
. . . . . . . 8
⊢
((((((𝐴 ∈
ℝ* ∧ 𝐵
∈ ℝ*) ∧ ¬ 𝐴 = +∞) ∧ ¬ 𝐴 = -∞) ∧ ¬ 𝐵 = +∞) ∧ ¬ 𝐵 = -∞) → 𝐵 ∈ ℝ) |
35 | 25, 34 | readdcld 7949 |
. . . . . . 7
⊢
((((((𝐴 ∈
ℝ* ∧ 𝐵
∈ ℝ*) ∧ ¬ 𝐴 = +∞) ∧ ¬ 𝐴 = -∞) ∧ ¬ 𝐵 = +∞) ∧ ¬ 𝐵 = -∞) → (𝐴 + 𝐵) ∈ ℝ) |
36 | 35 | rexrd 7969 |
. . . . . 6
⊢
((((((𝐴 ∈
ℝ* ∧ 𝐵
∈ ℝ*) ∧ ¬ 𝐴 = +∞) ∧ ¬ 𝐴 = -∞) ∧ ¬ 𝐵 = +∞) ∧ ¬ 𝐵 = -∞) → (𝐴 + 𝐵) ∈
ℝ*) |
37 | 6 | ad3antrrr 489 |
. . . . . 6
⊢
(((((𝐴 ∈
ℝ* ∧ 𝐵
∈ ℝ*) ∧ ¬ 𝐴 = +∞) ∧ ¬ 𝐴 = -∞) ∧ ¬ 𝐵 = +∞) → DECID
𝐵 =
-∞) |
38 | 16, 36, 37 | ifcldadc 3555 |
. . . . 5
⊢
(((((𝐴 ∈
ℝ* ∧ 𝐵
∈ ℝ*) ∧ ¬ 𝐴 = +∞) ∧ ¬ 𝐴 = -∞) ∧ ¬ 𝐵 = +∞) → if(𝐵 = -∞, -∞, (𝐴 + 𝐵)) ∈
ℝ*) |
39 | 12 | ad2antrr 485 |
. . . . 5
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ ¬ 𝐴 = +∞) ∧ ¬ 𝐴 = -∞) → DECID
𝐵 =
+∞) |
40 | 15, 38, 39 | ifcldadc 3555 |
. . . 4
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ ¬ 𝐴 = +∞) ∧ ¬ 𝐴 = -∞) → if(𝐵 = +∞, +∞, if(𝐵 = -∞, -∞, (𝐴 + 𝐵))) ∈
ℝ*) |
41 | | xrmnfdc 9800 |
. . . . 5
⊢ (𝐴 ∈ ℝ*
→ DECID 𝐴 = -∞) |
42 | 41 | ad2antrr 485 |
. . . 4
⊢ (((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ ¬ 𝐴 = +∞) → DECID
𝐴 =
-∞) |
43 | 14, 40, 42 | ifcldadc 3555 |
. . 3
⊢ (((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ ¬ 𝐴 = +∞) → if(𝐴 = -∞, if(𝐵 = +∞, 0, -∞), if(𝐵 = +∞, +∞, if(𝐵 = -∞, -∞, (𝐴 + 𝐵)))) ∈
ℝ*) |
44 | | xrpnfdc 9799 |
. . . 4
⊢ (𝐴 ∈ ℝ*
→ DECID 𝐴 = +∞) |
45 | 44 | adantr 274 |
. . 3
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → DECID 𝐴 = +∞) |
46 | 8, 43, 45 | ifcldadc 3555 |
. 2
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → if(𝐴 = +∞, if(𝐵 = -∞, 0, +∞), if(𝐴 = -∞, if(𝐵 = +∞, 0, -∞),
if(𝐵 = +∞, +∞,
if(𝐵 = -∞, -∞,
(𝐴 + 𝐵))))) ∈
ℝ*) |
47 | | simpl 108 |
. . . . 5
⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → 𝑥 = 𝐴) |
48 | 47 | eqeq1d 2179 |
. . . 4
⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝑥 = +∞ ↔ 𝐴 = +∞)) |
49 | | simpr 109 |
. . . . . 6
⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → 𝑦 = 𝐵) |
50 | 49 | eqeq1d 2179 |
. . . . 5
⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝑦 = -∞ ↔ 𝐵 = -∞)) |
51 | 50 | ifbid 3547 |
. . . 4
⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → if(𝑦 = -∞, 0, +∞) = if(𝐵 = -∞, 0,
+∞)) |
52 | 47 | eqeq1d 2179 |
. . . . 5
⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝑥 = -∞ ↔ 𝐴 = -∞)) |
53 | 49 | eqeq1d 2179 |
. . . . . 6
⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝑦 = +∞ ↔ 𝐵 = +∞)) |
54 | 53 | ifbid 3547 |
. . . . 5
⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → if(𝑦 = +∞, 0, -∞) = if(𝐵 = +∞, 0,
-∞)) |
55 | | oveq12 5862 |
. . . . . . 7
⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝑥 + 𝑦) = (𝐴 + 𝐵)) |
56 | 50, 55 | ifbieq2d 3550 |
. . . . . 6
⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → if(𝑦 = -∞, -∞, (𝑥 + 𝑦)) = if(𝐵 = -∞, -∞, (𝐴 + 𝐵))) |
57 | 53, 56 | ifbieq2d 3550 |
. . . . 5
⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → if(𝑦 = +∞, +∞, if(𝑦 = -∞, -∞, (𝑥 + 𝑦))) = if(𝐵 = +∞, +∞, if(𝐵 = -∞, -∞, (𝐴 + 𝐵)))) |
58 | 52, 54, 57 | ifbieq12d 3552 |
. . . 4
⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → if(𝑥 = -∞, if(𝑦 = +∞, 0, -∞), if(𝑦 = +∞, +∞, if(𝑦 = -∞, -∞, (𝑥 + 𝑦)))) = if(𝐴 = -∞, if(𝐵 = +∞, 0, -∞), if(𝐵 = +∞, +∞, if(𝐵 = -∞, -∞, (𝐴 + 𝐵))))) |
59 | 48, 51, 58 | ifbieq12d 3552 |
. . 3
⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → if(𝑥 = +∞, if(𝑦 = -∞, 0, +∞), if(𝑥 = -∞, if(𝑦 = +∞, 0, -∞),
if(𝑦 = +∞, +∞,
if(𝑦 = -∞, -∞,
(𝑥 + 𝑦))))) = if(𝐴 = +∞, if(𝐵 = -∞, 0, +∞), if(𝐴 = -∞, if(𝐵 = +∞, 0, -∞),
if(𝐵 = +∞, +∞,
if(𝐵 = -∞, -∞,
(𝐴 + 𝐵)))))) |
60 | | df-xadd 9730 |
. . 3
⊢
+𝑒 = (𝑥
∈ ℝ*, 𝑦 ∈ ℝ* ↦ if(𝑥 = +∞, if(𝑦 = -∞, 0, +∞),
if(𝑥 = -∞, if(𝑦 = +∞, 0, -∞),
if(𝑦 = +∞, +∞,
if(𝑦 = -∞, -∞,
(𝑥 + 𝑦)))))) |
61 | 59, 60 | ovmpoga 5982 |
. 2
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ if(𝐴 = +∞, if(𝐵 = -∞, 0, +∞), if(𝐴 = -∞, if(𝐵 = +∞, 0, -∞),
if(𝐵 = +∞, +∞,
if(𝐵 = -∞, -∞,
(𝐴 + 𝐵))))) ∈ ℝ*) →
(𝐴 +𝑒
𝐵) = if(𝐴 = +∞, if(𝐵 = -∞, 0, +∞), if(𝐴 = -∞, if(𝐵 = +∞, 0, -∞),
if(𝐵 = +∞, +∞,
if(𝐵 = -∞, -∞,
(𝐴 + 𝐵)))))) |
62 | 46, 61 | mpd3an3 1333 |
1
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → (𝐴 +𝑒 𝐵) = if(𝐴 = +∞, if(𝐵 = -∞, 0, +∞), if(𝐴 = -∞, if(𝐵 = +∞, 0, -∞),
if(𝐵 = +∞, +∞,
if(𝐵 = -∞, -∞,
(𝐴 + 𝐵)))))) |