| Step | Hyp | Ref
 | Expression | 
| 1 |   | 0xr 8073 | 
. . . . . 6
⊢ 0 ∈
ℝ* | 
| 2 | 1 | a1i 9 | 
. . . . 5
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → 0 ∈ ℝ*) | 
| 3 |   | pnfxr 8079 | 
. . . . . 6
⊢ +∞
∈ ℝ* | 
| 4 | 3 | a1i 9 | 
. . . . 5
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → +∞ ∈
ℝ*) | 
| 5 |   | xrmnfdc 9918 | 
. . . . . 6
⊢ (𝐵 ∈ ℝ*
→ DECID 𝐵 = -∞) | 
| 6 | 5 | adantl 277 | 
. . . . 5
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → DECID 𝐵 = -∞) | 
| 7 | 2, 4, 6 | ifcldcd 3597 | 
. . . 4
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → if(𝐵 = -∞, 0, +∞) ∈
ℝ*) | 
| 8 | 7 | adantr 276 | 
. . 3
⊢ (((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ 𝐴 = +∞) → if(𝐵 = -∞, 0, +∞) ∈
ℝ*) | 
| 9 |   | mnfxr 8083 | 
. . . . . . 7
⊢ -∞
∈ ℝ* | 
| 10 | 9 | a1i 9 | 
. . . . . 6
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → -∞ ∈
ℝ*) | 
| 11 |   | xrpnfdc 9917 | 
. . . . . . 7
⊢ (𝐵 ∈ ℝ*
→ DECID 𝐵 = +∞) | 
| 12 | 11 | adantl 277 | 
. . . . . 6
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → DECID 𝐵 = +∞) | 
| 13 | 2, 10, 12 | ifcldcd 3597 | 
. . . . 5
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → if(𝐵 = +∞, 0, -∞) ∈
ℝ*) | 
| 14 | 13 | ad2antrr 488 | 
. . . 4
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ ¬ 𝐴 = +∞) ∧ 𝐴 = -∞) → if(𝐵 = +∞, 0, -∞) ∈
ℝ*) | 
| 15 | 3 | a1i 9 | 
. . . . 5
⊢
(((((𝐴 ∈
ℝ* ∧ 𝐵
∈ ℝ*) ∧ ¬ 𝐴 = +∞) ∧ ¬ 𝐴 = -∞) ∧ 𝐵 = +∞) → +∞ ∈
ℝ*) | 
| 16 | 9 | a1i 9 | 
. . . . . 6
⊢
((((((𝐴 ∈
ℝ* ∧ 𝐵
∈ ℝ*) ∧ ¬ 𝐴 = +∞) ∧ ¬ 𝐴 = -∞) ∧ ¬ 𝐵 = +∞) ∧ 𝐵 = -∞) → -∞ ∈
ℝ*) | 
| 17 |   | simp-4r 542 | 
. . . . . . . . 9
⊢
((((((𝐴 ∈
ℝ* ∧ 𝐵
∈ ℝ*) ∧ ¬ 𝐴 = +∞) ∧ ¬ 𝐴 = -∞) ∧ ¬ 𝐵 = +∞) ∧ ¬ 𝐵 = -∞) → ¬ 𝐴 = +∞) | 
| 18 |   | simpl 109 | 
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → 𝐴 ∈
ℝ*) | 
| 19 | 18 | ad4antr 494 | 
. . . . . . . . . 10
⊢
((((((𝐴 ∈
ℝ* ∧ 𝐵
∈ ℝ*) ∧ ¬ 𝐴 = +∞) ∧ ¬ 𝐴 = -∞) ∧ ¬ 𝐵 = +∞) ∧ ¬ 𝐵 = -∞) → 𝐴 ∈
ℝ*) | 
| 20 |   | simpllr 534 | 
. . . . . . . . . . 11
⊢
((((((𝐴 ∈
ℝ* ∧ 𝐵
∈ ℝ*) ∧ ¬ 𝐴 = +∞) ∧ ¬ 𝐴 = -∞) ∧ ¬ 𝐵 = +∞) ∧ ¬ 𝐵 = -∞) → ¬ 𝐴 = -∞) | 
| 21 | 20 | neqned 2374 | 
. . . . . . . . . 10
⊢
((((((𝐴 ∈
ℝ* ∧ 𝐵
∈ ℝ*) ∧ ¬ 𝐴 = +∞) ∧ ¬ 𝐴 = -∞) ∧ ¬ 𝐵 = +∞) ∧ ¬ 𝐵 = -∞) → 𝐴 ≠ -∞) | 
| 22 |   | xrnemnf 9852 | 
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℝ*
∧ 𝐴 ≠ -∞)
↔ (𝐴 ∈ ℝ
∨ 𝐴 =
+∞)) | 
| 23 | 22 | biimpi 120 | 
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℝ*
∧ 𝐴 ≠ -∞)
→ (𝐴 ∈ ℝ
∨ 𝐴 =
+∞)) | 
| 24 | 19, 21, 23 | syl2anc 411 | 
. . . . . . . . 9
⊢
((((((𝐴 ∈
ℝ* ∧ 𝐵
∈ ℝ*) ∧ ¬ 𝐴 = +∞) ∧ ¬ 𝐴 = -∞) ∧ ¬ 𝐵 = +∞) ∧ ¬ 𝐵 = -∞) → (𝐴 ∈ ℝ ∨ 𝐴 = +∞)) | 
| 25 | 17, 24 | ecased 1360 | 
. . . . . . . 8
⊢
((((((𝐴 ∈
ℝ* ∧ 𝐵
∈ ℝ*) ∧ ¬ 𝐴 = +∞) ∧ ¬ 𝐴 = -∞) ∧ ¬ 𝐵 = +∞) ∧ ¬ 𝐵 = -∞) → 𝐴 ∈ ℝ) | 
| 26 |   | simplr 528 | 
. . . . . . . . 9
⊢
((((((𝐴 ∈
ℝ* ∧ 𝐵
∈ ℝ*) ∧ ¬ 𝐴 = +∞) ∧ ¬ 𝐴 = -∞) ∧ ¬ 𝐵 = +∞) ∧ ¬ 𝐵 = -∞) → ¬ 𝐵 = +∞) | 
| 27 |   | simpr 110 | 
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → 𝐵 ∈
ℝ*) | 
| 28 | 27 | ad4antr 494 | 
. . . . . . . . . 10
⊢
((((((𝐴 ∈
ℝ* ∧ 𝐵
∈ ℝ*) ∧ ¬ 𝐴 = +∞) ∧ ¬ 𝐴 = -∞) ∧ ¬ 𝐵 = +∞) ∧ ¬ 𝐵 = -∞) → 𝐵 ∈
ℝ*) | 
| 29 |   | simpr 110 | 
. . . . . . . . . . 11
⊢
((((((𝐴 ∈
ℝ* ∧ 𝐵
∈ ℝ*) ∧ ¬ 𝐴 = +∞) ∧ ¬ 𝐴 = -∞) ∧ ¬ 𝐵 = +∞) ∧ ¬ 𝐵 = -∞) → ¬ 𝐵 = -∞) | 
| 30 | 29 | neqned 2374 | 
. . . . . . . . . 10
⊢
((((((𝐴 ∈
ℝ* ∧ 𝐵
∈ ℝ*) ∧ ¬ 𝐴 = +∞) ∧ ¬ 𝐴 = -∞) ∧ ¬ 𝐵 = +∞) ∧ ¬ 𝐵 = -∞) → 𝐵 ≠ -∞) | 
| 31 |   | xrnemnf 9852 | 
. . . . . . . . . . 11
⊢ ((𝐵 ∈ ℝ*
∧ 𝐵 ≠ -∞)
↔ (𝐵 ∈ ℝ
∨ 𝐵 =
+∞)) | 
| 32 | 31 | biimpi 120 | 
. . . . . . . . . 10
⊢ ((𝐵 ∈ ℝ*
∧ 𝐵 ≠ -∞)
→ (𝐵 ∈ ℝ
∨ 𝐵 =
+∞)) | 
| 33 | 28, 30, 32 | syl2anc 411 | 
. . . . . . . . 9
⊢
((((((𝐴 ∈
ℝ* ∧ 𝐵
∈ ℝ*) ∧ ¬ 𝐴 = +∞) ∧ ¬ 𝐴 = -∞) ∧ ¬ 𝐵 = +∞) ∧ ¬ 𝐵 = -∞) → (𝐵 ∈ ℝ ∨ 𝐵 = +∞)) | 
| 34 | 26, 33 | ecased 1360 | 
. . . . . . . 8
⊢
((((((𝐴 ∈
ℝ* ∧ 𝐵
∈ ℝ*) ∧ ¬ 𝐴 = +∞) ∧ ¬ 𝐴 = -∞) ∧ ¬ 𝐵 = +∞) ∧ ¬ 𝐵 = -∞) → 𝐵 ∈ ℝ) | 
| 35 | 25, 34 | readdcld 8056 | 
. . . . . . 7
⊢
((((((𝐴 ∈
ℝ* ∧ 𝐵
∈ ℝ*) ∧ ¬ 𝐴 = +∞) ∧ ¬ 𝐴 = -∞) ∧ ¬ 𝐵 = +∞) ∧ ¬ 𝐵 = -∞) → (𝐴 + 𝐵) ∈ ℝ) | 
| 36 | 35 | rexrd 8076 | 
. . . . . 6
⊢
((((((𝐴 ∈
ℝ* ∧ 𝐵
∈ ℝ*) ∧ ¬ 𝐴 = +∞) ∧ ¬ 𝐴 = -∞) ∧ ¬ 𝐵 = +∞) ∧ ¬ 𝐵 = -∞) → (𝐴 + 𝐵) ∈
ℝ*) | 
| 37 | 6 | ad3antrrr 492 | 
. . . . . 6
⊢
(((((𝐴 ∈
ℝ* ∧ 𝐵
∈ ℝ*) ∧ ¬ 𝐴 = +∞) ∧ ¬ 𝐴 = -∞) ∧ ¬ 𝐵 = +∞) → DECID
𝐵 =
-∞) | 
| 38 | 16, 36, 37 | ifcldadc 3590 | 
. . . . 5
⊢
(((((𝐴 ∈
ℝ* ∧ 𝐵
∈ ℝ*) ∧ ¬ 𝐴 = +∞) ∧ ¬ 𝐴 = -∞) ∧ ¬ 𝐵 = +∞) → if(𝐵 = -∞, -∞, (𝐴 + 𝐵)) ∈
ℝ*) | 
| 39 | 12 | ad2antrr 488 | 
. . . . 5
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ ¬ 𝐴 = +∞) ∧ ¬ 𝐴 = -∞) → DECID
𝐵 =
+∞) | 
| 40 | 15, 38, 39 | ifcldadc 3590 | 
. . . 4
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ ¬ 𝐴 = +∞) ∧ ¬ 𝐴 = -∞) → if(𝐵 = +∞, +∞, if(𝐵 = -∞, -∞, (𝐴 + 𝐵))) ∈
ℝ*) | 
| 41 |   | xrmnfdc 9918 | 
. . . . 5
⊢ (𝐴 ∈ ℝ*
→ DECID 𝐴 = -∞) | 
| 42 | 41 | ad2antrr 488 | 
. . . 4
⊢ (((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ ¬ 𝐴 = +∞) → DECID
𝐴 =
-∞) | 
| 43 | 14, 40, 42 | ifcldadc 3590 | 
. . 3
⊢ (((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ ¬ 𝐴 = +∞) → if(𝐴 = -∞, if(𝐵 = +∞, 0, -∞), if(𝐵 = +∞, +∞, if(𝐵 = -∞, -∞, (𝐴 + 𝐵)))) ∈
ℝ*) | 
| 44 |   | xrpnfdc 9917 | 
. . . 4
⊢ (𝐴 ∈ ℝ*
→ DECID 𝐴 = +∞) | 
| 45 | 44 | adantr 276 | 
. . 3
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → DECID 𝐴 = +∞) | 
| 46 | 8, 43, 45 | ifcldadc 3590 | 
. 2
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → if(𝐴 = +∞, if(𝐵 = -∞, 0, +∞), if(𝐴 = -∞, if(𝐵 = +∞, 0, -∞),
if(𝐵 = +∞, +∞,
if(𝐵 = -∞, -∞,
(𝐴 + 𝐵))))) ∈
ℝ*) | 
| 47 |   | simpl 109 | 
. . . . 5
⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → 𝑥 = 𝐴) | 
| 48 | 47 | eqeq1d 2205 | 
. . . 4
⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝑥 = +∞ ↔ 𝐴 = +∞)) | 
| 49 |   | simpr 110 | 
. . . . . 6
⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → 𝑦 = 𝐵) | 
| 50 | 49 | eqeq1d 2205 | 
. . . . 5
⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝑦 = -∞ ↔ 𝐵 = -∞)) | 
| 51 | 50 | ifbid 3582 | 
. . . 4
⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → if(𝑦 = -∞, 0, +∞) = if(𝐵 = -∞, 0,
+∞)) | 
| 52 | 47 | eqeq1d 2205 | 
. . . . 5
⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝑥 = -∞ ↔ 𝐴 = -∞)) | 
| 53 | 49 | eqeq1d 2205 | 
. . . . . 6
⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝑦 = +∞ ↔ 𝐵 = +∞)) | 
| 54 | 53 | ifbid 3582 | 
. . . . 5
⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → if(𝑦 = +∞, 0, -∞) = if(𝐵 = +∞, 0,
-∞)) | 
| 55 |   | oveq12 5931 | 
. . . . . . 7
⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝑥 + 𝑦) = (𝐴 + 𝐵)) | 
| 56 | 50, 55 | ifbieq2d 3585 | 
. . . . . 6
⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → if(𝑦 = -∞, -∞, (𝑥 + 𝑦)) = if(𝐵 = -∞, -∞, (𝐴 + 𝐵))) | 
| 57 | 53, 56 | ifbieq2d 3585 | 
. . . . 5
⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → if(𝑦 = +∞, +∞, if(𝑦 = -∞, -∞, (𝑥 + 𝑦))) = if(𝐵 = +∞, +∞, if(𝐵 = -∞, -∞, (𝐴 + 𝐵)))) | 
| 58 | 52, 54, 57 | ifbieq12d 3587 | 
. . . 4
⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → if(𝑥 = -∞, if(𝑦 = +∞, 0, -∞), if(𝑦 = +∞, +∞, if(𝑦 = -∞, -∞, (𝑥 + 𝑦)))) = if(𝐴 = -∞, if(𝐵 = +∞, 0, -∞), if(𝐵 = +∞, +∞, if(𝐵 = -∞, -∞, (𝐴 + 𝐵))))) | 
| 59 | 48, 51, 58 | ifbieq12d 3587 | 
. . 3
⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → if(𝑥 = +∞, if(𝑦 = -∞, 0, +∞), if(𝑥 = -∞, if(𝑦 = +∞, 0, -∞),
if(𝑦 = +∞, +∞,
if(𝑦 = -∞, -∞,
(𝑥 + 𝑦))))) = if(𝐴 = +∞, if(𝐵 = -∞, 0, +∞), if(𝐴 = -∞, if(𝐵 = +∞, 0, -∞),
if(𝐵 = +∞, +∞,
if(𝐵 = -∞, -∞,
(𝐴 + 𝐵)))))) | 
| 60 |   | df-xadd 9848 | 
. . 3
⊢ 
+𝑒 = (𝑥
∈ ℝ*, 𝑦 ∈ ℝ* ↦ if(𝑥 = +∞, if(𝑦 = -∞, 0, +∞),
if(𝑥 = -∞, if(𝑦 = +∞, 0, -∞),
if(𝑦 = +∞, +∞,
if(𝑦 = -∞, -∞,
(𝑥 + 𝑦)))))) | 
| 61 | 59, 60 | ovmpoga 6052 | 
. 2
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ if(𝐴 = +∞, if(𝐵 = -∞, 0, +∞), if(𝐴 = -∞, if(𝐵 = +∞, 0, -∞),
if(𝐵 = +∞, +∞,
if(𝐵 = -∞, -∞,
(𝐴 + 𝐵))))) ∈ ℝ*) →
(𝐴 +𝑒
𝐵) = if(𝐴 = +∞, if(𝐵 = -∞, 0, +∞), if(𝐴 = -∞, if(𝐵 = +∞, 0, -∞),
if(𝐵 = +∞, +∞,
if(𝐵 = -∞, -∞,
(𝐴 + 𝐵)))))) | 
| 62 | 46, 61 | mpd3an3 1349 | 
1
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → (𝐴 +𝑒 𝐵) = if(𝐴 = +∞, if(𝐵 = -∞, 0, +∞), if(𝐴 = -∞, if(𝐵 = +∞, 0, -∞),
if(𝐵 = +∞, +∞,
if(𝐵 = -∞, -∞,
(𝐴 + 𝐵)))))) |