ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xaddval GIF version

Theorem xaddval 9802
Description: Value of the extended real addition operation. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xaddval ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 +𝑒 𝐵) = if(𝐴 = +∞, if(𝐵 = -∞, 0, +∞), if(𝐴 = -∞, if(𝐵 = +∞, 0, -∞), if(𝐵 = +∞, +∞, if(𝐵 = -∞, -∞, (𝐴 + 𝐵))))))

Proof of Theorem xaddval
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0xr 7966 . . . . . 6 0 ∈ ℝ*
21a1i 9 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → 0 ∈ ℝ*)
3 pnfxr 7972 . . . . . 6 +∞ ∈ ℝ*
43a1i 9 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → +∞ ∈ ℝ*)
5 xrmnfdc 9800 . . . . . 6 (𝐵 ∈ ℝ*DECID 𝐵 = -∞)
65adantl 275 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → DECID 𝐵 = -∞)
72, 4, 6ifcldcd 3561 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → if(𝐵 = -∞, 0, +∞) ∈ ℝ*)
87adantr 274 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐴 = +∞) → if(𝐵 = -∞, 0, +∞) ∈ ℝ*)
9 mnfxr 7976 . . . . . . 7 -∞ ∈ ℝ*
109a1i 9 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → -∞ ∈ ℝ*)
11 xrpnfdc 9799 . . . . . . 7 (𝐵 ∈ ℝ*DECID 𝐵 = +∞)
1211adantl 275 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → DECID 𝐵 = +∞)
132, 10, 12ifcldcd 3561 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → if(𝐵 = +∞, 0, -∞) ∈ ℝ*)
1413ad2antrr 485 . . . 4 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ 𝐴 = +∞) ∧ 𝐴 = -∞) → if(𝐵 = +∞, 0, -∞) ∈ ℝ*)
153a1i 9 . . . . 5 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ 𝐴 = +∞) ∧ ¬ 𝐴 = -∞) ∧ 𝐵 = +∞) → +∞ ∈ ℝ*)
169a1i 9 . . . . . 6 ((((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ 𝐴 = +∞) ∧ ¬ 𝐴 = -∞) ∧ ¬ 𝐵 = +∞) ∧ 𝐵 = -∞) → -∞ ∈ ℝ*)
17 simp-4r 537 . . . . . . . . 9 ((((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ 𝐴 = +∞) ∧ ¬ 𝐴 = -∞) ∧ ¬ 𝐵 = +∞) ∧ ¬ 𝐵 = -∞) → ¬ 𝐴 = +∞)
18 simpl 108 . . . . . . . . . . 11 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → 𝐴 ∈ ℝ*)
1918ad4antr 491 . . . . . . . . . 10 ((((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ 𝐴 = +∞) ∧ ¬ 𝐴 = -∞) ∧ ¬ 𝐵 = +∞) ∧ ¬ 𝐵 = -∞) → 𝐴 ∈ ℝ*)
20 simpllr 529 . . . . . . . . . . 11 ((((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ 𝐴 = +∞) ∧ ¬ 𝐴 = -∞) ∧ ¬ 𝐵 = +∞) ∧ ¬ 𝐵 = -∞) → ¬ 𝐴 = -∞)
2120neqned 2347 . . . . . . . . . 10 ((((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ 𝐴 = +∞) ∧ ¬ 𝐴 = -∞) ∧ ¬ 𝐵 = +∞) ∧ ¬ 𝐵 = -∞) → 𝐴 ≠ -∞)
22 xrnemnf 9734 . . . . . . . . . . 11 ((𝐴 ∈ ℝ*𝐴 ≠ -∞) ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞))
2322biimpi 119 . . . . . . . . . 10 ((𝐴 ∈ ℝ*𝐴 ≠ -∞) → (𝐴 ∈ ℝ ∨ 𝐴 = +∞))
2419, 21, 23syl2anc 409 . . . . . . . . 9 ((((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ 𝐴 = +∞) ∧ ¬ 𝐴 = -∞) ∧ ¬ 𝐵 = +∞) ∧ ¬ 𝐵 = -∞) → (𝐴 ∈ ℝ ∨ 𝐴 = +∞))
2517, 24ecased 1344 . . . . . . . 8 ((((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ 𝐴 = +∞) ∧ ¬ 𝐴 = -∞) ∧ ¬ 𝐵 = +∞) ∧ ¬ 𝐵 = -∞) → 𝐴 ∈ ℝ)
26 simplr 525 . . . . . . . . 9 ((((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ 𝐴 = +∞) ∧ ¬ 𝐴 = -∞) ∧ ¬ 𝐵 = +∞) ∧ ¬ 𝐵 = -∞) → ¬ 𝐵 = +∞)
27 simpr 109 . . . . . . . . . . 11 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → 𝐵 ∈ ℝ*)
2827ad4antr 491 . . . . . . . . . 10 ((((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ 𝐴 = +∞) ∧ ¬ 𝐴 = -∞) ∧ ¬ 𝐵 = +∞) ∧ ¬ 𝐵 = -∞) → 𝐵 ∈ ℝ*)
29 simpr 109 . . . . . . . . . . 11 ((((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ 𝐴 = +∞) ∧ ¬ 𝐴 = -∞) ∧ ¬ 𝐵 = +∞) ∧ ¬ 𝐵 = -∞) → ¬ 𝐵 = -∞)
3029neqned 2347 . . . . . . . . . 10 ((((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ 𝐴 = +∞) ∧ ¬ 𝐴 = -∞) ∧ ¬ 𝐵 = +∞) ∧ ¬ 𝐵 = -∞) → 𝐵 ≠ -∞)
31 xrnemnf 9734 . . . . . . . . . . 11 ((𝐵 ∈ ℝ*𝐵 ≠ -∞) ↔ (𝐵 ∈ ℝ ∨ 𝐵 = +∞))
3231biimpi 119 . . . . . . . . . 10 ((𝐵 ∈ ℝ*𝐵 ≠ -∞) → (𝐵 ∈ ℝ ∨ 𝐵 = +∞))
3328, 30, 32syl2anc 409 . . . . . . . . 9 ((((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ 𝐴 = +∞) ∧ ¬ 𝐴 = -∞) ∧ ¬ 𝐵 = +∞) ∧ ¬ 𝐵 = -∞) → (𝐵 ∈ ℝ ∨ 𝐵 = +∞))
3426, 33ecased 1344 . . . . . . . 8 ((((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ 𝐴 = +∞) ∧ ¬ 𝐴 = -∞) ∧ ¬ 𝐵 = +∞) ∧ ¬ 𝐵 = -∞) → 𝐵 ∈ ℝ)
3525, 34readdcld 7949 . . . . . . 7 ((((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ 𝐴 = +∞) ∧ ¬ 𝐴 = -∞) ∧ ¬ 𝐵 = +∞) ∧ ¬ 𝐵 = -∞) → (𝐴 + 𝐵) ∈ ℝ)
3635rexrd 7969 . . . . . 6 ((((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ 𝐴 = +∞) ∧ ¬ 𝐴 = -∞) ∧ ¬ 𝐵 = +∞) ∧ ¬ 𝐵 = -∞) → (𝐴 + 𝐵) ∈ ℝ*)
376ad3antrrr 489 . . . . . 6 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ 𝐴 = +∞) ∧ ¬ 𝐴 = -∞) ∧ ¬ 𝐵 = +∞) → DECID 𝐵 = -∞)
3816, 36, 37ifcldadc 3555 . . . . 5 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ 𝐴 = +∞) ∧ ¬ 𝐴 = -∞) ∧ ¬ 𝐵 = +∞) → if(𝐵 = -∞, -∞, (𝐴 + 𝐵)) ∈ ℝ*)
3912ad2antrr 485 . . . . 5 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ 𝐴 = +∞) ∧ ¬ 𝐴 = -∞) → DECID 𝐵 = +∞)
4015, 38, 39ifcldadc 3555 . . . 4 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ 𝐴 = +∞) ∧ ¬ 𝐴 = -∞) → if(𝐵 = +∞, +∞, if(𝐵 = -∞, -∞, (𝐴 + 𝐵))) ∈ ℝ*)
41 xrmnfdc 9800 . . . . 5 (𝐴 ∈ ℝ*DECID 𝐴 = -∞)
4241ad2antrr 485 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ 𝐴 = +∞) → DECID 𝐴 = -∞)
4314, 40, 42ifcldadc 3555 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ 𝐴 = +∞) → if(𝐴 = -∞, if(𝐵 = +∞, 0, -∞), if(𝐵 = +∞, +∞, if(𝐵 = -∞, -∞, (𝐴 + 𝐵)))) ∈ ℝ*)
44 xrpnfdc 9799 . . . 4 (𝐴 ∈ ℝ*DECID 𝐴 = +∞)
4544adantr 274 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → DECID 𝐴 = +∞)
468, 43, 45ifcldadc 3555 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → if(𝐴 = +∞, if(𝐵 = -∞, 0, +∞), if(𝐴 = -∞, if(𝐵 = +∞, 0, -∞), if(𝐵 = +∞, +∞, if(𝐵 = -∞, -∞, (𝐴 + 𝐵))))) ∈ ℝ*)
47 simpl 108 . . . . 5 ((𝑥 = 𝐴𝑦 = 𝐵) → 𝑥 = 𝐴)
4847eqeq1d 2179 . . . 4 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝑥 = +∞ ↔ 𝐴 = +∞))
49 simpr 109 . . . . . 6 ((𝑥 = 𝐴𝑦 = 𝐵) → 𝑦 = 𝐵)
5049eqeq1d 2179 . . . . 5 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝑦 = -∞ ↔ 𝐵 = -∞))
5150ifbid 3547 . . . 4 ((𝑥 = 𝐴𝑦 = 𝐵) → if(𝑦 = -∞, 0, +∞) = if(𝐵 = -∞, 0, +∞))
5247eqeq1d 2179 . . . . 5 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝑥 = -∞ ↔ 𝐴 = -∞))
5349eqeq1d 2179 . . . . . 6 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝑦 = +∞ ↔ 𝐵 = +∞))
5453ifbid 3547 . . . . 5 ((𝑥 = 𝐴𝑦 = 𝐵) → if(𝑦 = +∞, 0, -∞) = if(𝐵 = +∞, 0, -∞))
55 oveq12 5862 . . . . . . 7 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝑥 + 𝑦) = (𝐴 + 𝐵))
5650, 55ifbieq2d 3550 . . . . . 6 ((𝑥 = 𝐴𝑦 = 𝐵) → if(𝑦 = -∞, -∞, (𝑥 + 𝑦)) = if(𝐵 = -∞, -∞, (𝐴 + 𝐵)))
5753, 56ifbieq2d 3550 . . . . 5 ((𝑥 = 𝐴𝑦 = 𝐵) → if(𝑦 = +∞, +∞, if(𝑦 = -∞, -∞, (𝑥 + 𝑦))) = if(𝐵 = +∞, +∞, if(𝐵 = -∞, -∞, (𝐴 + 𝐵))))
5852, 54, 57ifbieq12d 3552 . . . 4 ((𝑥 = 𝐴𝑦 = 𝐵) → if(𝑥 = -∞, if(𝑦 = +∞, 0, -∞), if(𝑦 = +∞, +∞, if(𝑦 = -∞, -∞, (𝑥 + 𝑦)))) = if(𝐴 = -∞, if(𝐵 = +∞, 0, -∞), if(𝐵 = +∞, +∞, if(𝐵 = -∞, -∞, (𝐴 + 𝐵)))))
5948, 51, 58ifbieq12d 3552 . . 3 ((𝑥 = 𝐴𝑦 = 𝐵) → if(𝑥 = +∞, if(𝑦 = -∞, 0, +∞), if(𝑥 = -∞, if(𝑦 = +∞, 0, -∞), if(𝑦 = +∞, +∞, if(𝑦 = -∞, -∞, (𝑥 + 𝑦))))) = if(𝐴 = +∞, if(𝐵 = -∞, 0, +∞), if(𝐴 = -∞, if(𝐵 = +∞, 0, -∞), if(𝐵 = +∞, +∞, if(𝐵 = -∞, -∞, (𝐴 + 𝐵))))))
60 df-xadd 9730 . . 3 +𝑒 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ if(𝑥 = +∞, if(𝑦 = -∞, 0, +∞), if(𝑥 = -∞, if(𝑦 = +∞, 0, -∞), if(𝑦 = +∞, +∞, if(𝑦 = -∞, -∞, (𝑥 + 𝑦))))))
6159, 60ovmpoga 5982 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ if(𝐴 = +∞, if(𝐵 = -∞, 0, +∞), if(𝐴 = -∞, if(𝐵 = +∞, 0, -∞), if(𝐵 = +∞, +∞, if(𝐵 = -∞, -∞, (𝐴 + 𝐵))))) ∈ ℝ*) → (𝐴 +𝑒 𝐵) = if(𝐴 = +∞, if(𝐵 = -∞, 0, +∞), if(𝐴 = -∞, if(𝐵 = +∞, 0, -∞), if(𝐵 = +∞, +∞, if(𝐵 = -∞, -∞, (𝐴 + 𝐵))))))
6246, 61mpd3an3 1333 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 +𝑒 𝐵) = if(𝐴 = +∞, if(𝐵 = -∞, 0, +∞), if(𝐴 = -∞, if(𝐵 = +∞, 0, -∞), if(𝐵 = +∞, +∞, if(𝐵 = -∞, -∞, (𝐴 + 𝐵))))))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wo 703  DECID wdc 829   = wceq 1348  wcel 2141  wne 2340  ifcif 3526  (class class class)co 5853  cr 7773  0cc0 7774   + caddc 7777  +∞cpnf 7951  -∞cmnf 7952  *cxr 7953   +𝑒 cxad 9727
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-cnex 7865  ax-resscn 7866  ax-1re 7868  ax-addrcl 7871  ax-rnegex 7883
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-rab 2457  df-v 2732  df-sbc 2956  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-iota 5160  df-fun 5200  df-fv 5206  df-ov 5856  df-oprab 5857  df-mpo 5858  df-pnf 7956  df-mnf 7957  df-xr 7958  df-xadd 9730
This theorem is referenced by:  xaddpnf1  9803  xaddpnf2  9804  xaddmnf1  9805  xaddmnf2  9806  pnfaddmnf  9807  mnfaddpnf  9808  rexadd  9809
  Copyright terms: Public domain W3C validator