Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > iseqf1olemqval | GIF version |
Description: Lemma for seq3f1o 10460. Value of the function 𝑄. (Contributed by Jim Kingdon, 28-Aug-2022.) |
Ref | Expression |
---|---|
iseqf1olemqcl.k | ⊢ (𝜑 → 𝐾 ∈ (𝑀...𝑁)) |
iseqf1olemqcl.j | ⊢ (𝜑 → 𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁)) |
iseqf1olemqcl.a | ⊢ (𝜑 → 𝐴 ∈ (𝑀...𝑁)) |
iseqf1olemqval.q | ⊢ 𝑄 = (𝑢 ∈ (𝑀...𝑁) ↦ if(𝑢 ∈ (𝐾...(◡𝐽‘𝐾)), if(𝑢 = 𝐾, 𝐾, (𝐽‘(𝑢 − 1))), (𝐽‘𝑢))) |
Ref | Expression |
---|---|
iseqf1olemqval | ⊢ (𝜑 → (𝑄‘𝐴) = if(𝐴 ∈ (𝐾...(◡𝐽‘𝐾)), if(𝐴 = 𝐾, 𝐾, (𝐽‘(𝐴 − 1))), (𝐽‘𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iseqf1olemqcl.a | . 2 ⊢ (𝜑 → 𝐴 ∈ (𝑀...𝑁)) | |
2 | iseqf1olemqcl.k | . . 3 ⊢ (𝜑 → 𝐾 ∈ (𝑀...𝑁)) | |
3 | iseqf1olemqcl.j | . . 3 ⊢ (𝜑 → 𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁)) | |
4 | 2, 3, 1 | iseqf1olemqcl 10442 | . 2 ⊢ (𝜑 → if(𝐴 ∈ (𝐾...(◡𝐽‘𝐾)), if(𝐴 = 𝐾, 𝐾, (𝐽‘(𝐴 − 1))), (𝐽‘𝐴)) ∈ (𝑀...𝑁)) |
5 | eleq1 2233 | . . . 4 ⊢ (𝑢 = 𝐴 → (𝑢 ∈ (𝐾...(◡𝐽‘𝐾)) ↔ 𝐴 ∈ (𝐾...(◡𝐽‘𝐾)))) | |
6 | eqeq1 2177 | . . . . 5 ⊢ (𝑢 = 𝐴 → (𝑢 = 𝐾 ↔ 𝐴 = 𝐾)) | |
7 | oveq1 5860 | . . . . . 6 ⊢ (𝑢 = 𝐴 → (𝑢 − 1) = (𝐴 − 1)) | |
8 | 7 | fveq2d 5500 | . . . . 5 ⊢ (𝑢 = 𝐴 → (𝐽‘(𝑢 − 1)) = (𝐽‘(𝐴 − 1))) |
9 | 6, 8 | ifbieq2d 3550 | . . . 4 ⊢ (𝑢 = 𝐴 → if(𝑢 = 𝐾, 𝐾, (𝐽‘(𝑢 − 1))) = if(𝐴 = 𝐾, 𝐾, (𝐽‘(𝐴 − 1)))) |
10 | fveq2 5496 | . . . 4 ⊢ (𝑢 = 𝐴 → (𝐽‘𝑢) = (𝐽‘𝐴)) | |
11 | 5, 9, 10 | ifbieq12d 3552 | . . 3 ⊢ (𝑢 = 𝐴 → if(𝑢 ∈ (𝐾...(◡𝐽‘𝐾)), if(𝑢 = 𝐾, 𝐾, (𝐽‘(𝑢 − 1))), (𝐽‘𝑢)) = if(𝐴 ∈ (𝐾...(◡𝐽‘𝐾)), if(𝐴 = 𝐾, 𝐾, (𝐽‘(𝐴 − 1))), (𝐽‘𝐴))) |
12 | iseqf1olemqval.q | . . 3 ⊢ 𝑄 = (𝑢 ∈ (𝑀...𝑁) ↦ if(𝑢 ∈ (𝐾...(◡𝐽‘𝐾)), if(𝑢 = 𝐾, 𝐾, (𝐽‘(𝑢 − 1))), (𝐽‘𝑢))) | |
13 | 11, 12 | fvmptg 5572 | . 2 ⊢ ((𝐴 ∈ (𝑀...𝑁) ∧ if(𝐴 ∈ (𝐾...(◡𝐽‘𝐾)), if(𝐴 = 𝐾, 𝐾, (𝐽‘(𝐴 − 1))), (𝐽‘𝐴)) ∈ (𝑀...𝑁)) → (𝑄‘𝐴) = if(𝐴 ∈ (𝐾...(◡𝐽‘𝐾)), if(𝐴 = 𝐾, 𝐾, (𝐽‘(𝐴 − 1))), (𝐽‘𝐴))) |
14 | 1, 4, 13 | syl2anc 409 | 1 ⊢ (𝜑 → (𝑄‘𝐴) = if(𝐴 ∈ (𝐾...(◡𝐽‘𝐾)), if(𝐴 = 𝐾, 𝐾, (𝐽‘(𝐴 − 1))), (𝐽‘𝐴))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1348 ∈ wcel 2141 ifcif 3526 ↦ cmpt 4050 ◡ccnv 4610 –1-1-onto→wf1o 5197 ‘cfv 5198 (class class class)co 5853 1c1 7775 − cmin 8090 ...cfz 9965 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-addcom 7874 ax-addass 7876 ax-distr 7878 ax-i2m1 7879 ax-0lt1 7880 ax-0id 7882 ax-rnegex 7883 ax-cnre 7885 ax-pre-ltirr 7886 ax-pre-ltwlin 7887 ax-pre-lttrn 7888 ax-pre-ltadd 7890 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-if 3527 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-pnf 7956 df-mnf 7957 df-xr 7958 df-ltxr 7959 df-le 7960 df-sub 8092 df-neg 8093 df-inn 8879 df-n0 9136 df-z 9213 df-uz 9488 df-fz 9966 |
This theorem is referenced by: iseqf1olemnab 10444 iseqf1olemab 10445 iseqf1olemnanb 10446 iseqf1olemqk 10450 seq3f1olemqsumkj 10454 seq3f1olemqsumk 10455 |
Copyright terms: Public domain | W3C validator |