ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iseqf1olemqval GIF version

Theorem iseqf1olemqval 10432
Description: Lemma for seq3f1o 10449. Value of the function 𝑄. (Contributed by Jim Kingdon, 28-Aug-2022.)
Hypotheses
Ref Expression
iseqf1olemqcl.k (𝜑𝐾 ∈ (𝑀...𝑁))
iseqf1olemqcl.j (𝜑𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))
iseqf1olemqcl.a (𝜑𝐴 ∈ (𝑀...𝑁))
iseqf1olemqval.q 𝑄 = (𝑢 ∈ (𝑀...𝑁) ↦ if(𝑢 ∈ (𝐾...(𝐽𝐾)), if(𝑢 = 𝐾, 𝐾, (𝐽‘(𝑢 − 1))), (𝐽𝑢)))
Assertion
Ref Expression
iseqf1olemqval (𝜑 → (𝑄𝐴) = if(𝐴 ∈ (𝐾...(𝐽𝐾)), if(𝐴 = 𝐾, 𝐾, (𝐽‘(𝐴 − 1))), (𝐽𝐴)))
Distinct variable groups:   𝑢,𝐴   𝑢,𝐽   𝑢,𝐾   𝑢,𝑀   𝑢,𝑁
Allowed substitution hints:   𝜑(𝑢)   𝑄(𝑢)

Proof of Theorem iseqf1olemqval
StepHypRef Expression
1 iseqf1olemqcl.a . 2 (𝜑𝐴 ∈ (𝑀...𝑁))
2 iseqf1olemqcl.k . . 3 (𝜑𝐾 ∈ (𝑀...𝑁))
3 iseqf1olemqcl.j . . 3 (𝜑𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))
42, 3, 1iseqf1olemqcl 10431 . 2 (𝜑 → if(𝐴 ∈ (𝐾...(𝐽𝐾)), if(𝐴 = 𝐾, 𝐾, (𝐽‘(𝐴 − 1))), (𝐽𝐴)) ∈ (𝑀...𝑁))
5 eleq1 2233 . . . 4 (𝑢 = 𝐴 → (𝑢 ∈ (𝐾...(𝐽𝐾)) ↔ 𝐴 ∈ (𝐾...(𝐽𝐾))))
6 eqeq1 2177 . . . . 5 (𝑢 = 𝐴 → (𝑢 = 𝐾𝐴 = 𝐾))
7 oveq1 5858 . . . . . 6 (𝑢 = 𝐴 → (𝑢 − 1) = (𝐴 − 1))
87fveq2d 5498 . . . . 5 (𝑢 = 𝐴 → (𝐽‘(𝑢 − 1)) = (𝐽‘(𝐴 − 1)))
96, 8ifbieq2d 3549 . . . 4 (𝑢 = 𝐴 → if(𝑢 = 𝐾, 𝐾, (𝐽‘(𝑢 − 1))) = if(𝐴 = 𝐾, 𝐾, (𝐽‘(𝐴 − 1))))
10 fveq2 5494 . . . 4 (𝑢 = 𝐴 → (𝐽𝑢) = (𝐽𝐴))
115, 9, 10ifbieq12d 3551 . . 3 (𝑢 = 𝐴 → if(𝑢 ∈ (𝐾...(𝐽𝐾)), if(𝑢 = 𝐾, 𝐾, (𝐽‘(𝑢 − 1))), (𝐽𝑢)) = if(𝐴 ∈ (𝐾...(𝐽𝐾)), if(𝐴 = 𝐾, 𝐾, (𝐽‘(𝐴 − 1))), (𝐽𝐴)))
12 iseqf1olemqval.q . . 3 𝑄 = (𝑢 ∈ (𝑀...𝑁) ↦ if(𝑢 ∈ (𝐾...(𝐽𝐾)), if(𝑢 = 𝐾, 𝐾, (𝐽‘(𝑢 − 1))), (𝐽𝑢)))
1311, 12fvmptg 5570 . 2 ((𝐴 ∈ (𝑀...𝑁) ∧ if(𝐴 ∈ (𝐾...(𝐽𝐾)), if(𝐴 = 𝐾, 𝐾, (𝐽‘(𝐴 − 1))), (𝐽𝐴)) ∈ (𝑀...𝑁)) → (𝑄𝐴) = if(𝐴 ∈ (𝐾...(𝐽𝐾)), if(𝐴 = 𝐾, 𝐾, (𝐽‘(𝐴 − 1))), (𝐽𝐴)))
141, 4, 13syl2anc 409 1 (𝜑 → (𝑄𝐴) = if(𝐴 ∈ (𝐾...(𝐽𝐾)), if(𝐴 = 𝐾, 𝐾, (𝐽‘(𝐴 − 1))), (𝐽𝐴)))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1348  wcel 2141  ifcif 3525  cmpt 4048  ccnv 4608  1-1-ontowf1o 5195  cfv 5196  (class class class)co 5851  1c1 7764  cmin 8079  ...cfz 9954
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4105  ax-pow 4158  ax-pr 4192  ax-un 4416  ax-setind 4519  ax-cnex 7854  ax-resscn 7855  ax-1cn 7856  ax-1re 7857  ax-icn 7858  ax-addcl 7859  ax-addrcl 7860  ax-mulcl 7861  ax-addcom 7863  ax-addass 7865  ax-distr 7867  ax-i2m1 7868  ax-0lt1 7869  ax-0id 7871  ax-rnegex 7872  ax-cnre 7874  ax-pre-ltirr 7875  ax-pre-ltwlin 7876  ax-pre-lttrn 7877  ax-pre-ltadd 7879
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-if 3526  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3795  df-int 3830  df-br 3988  df-opab 4049  df-mpt 4050  df-id 4276  df-xp 4615  df-rel 4616  df-cnv 4617  df-co 4618  df-dm 4619  df-rn 4620  df-res 4621  df-ima 4622  df-iota 5158  df-fun 5198  df-fn 5199  df-f 5200  df-f1 5201  df-fo 5202  df-f1o 5203  df-fv 5204  df-riota 5807  df-ov 5854  df-oprab 5855  df-mpo 5856  df-pnf 7945  df-mnf 7946  df-xr 7947  df-ltxr 7948  df-le 7949  df-sub 8081  df-neg 8082  df-inn 8868  df-n0 9125  df-z 9202  df-uz 9477  df-fz 9955
This theorem is referenced by:  iseqf1olemnab  10433  iseqf1olemab  10434  iseqf1olemnanb  10435  iseqf1olemqk  10439  seq3f1olemqsumkj  10443  seq3f1olemqsumk  10444
  Copyright terms: Public domain W3C validator