![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > iseqf1olemqval | GIF version |
Description: Lemma for seq3f1o 10588. Value of the function 𝑄. (Contributed by Jim Kingdon, 28-Aug-2022.) |
Ref | Expression |
---|---|
iseqf1olemqcl.k | ⊢ (𝜑 → 𝐾 ∈ (𝑀...𝑁)) |
iseqf1olemqcl.j | ⊢ (𝜑 → 𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁)) |
iseqf1olemqcl.a | ⊢ (𝜑 → 𝐴 ∈ (𝑀...𝑁)) |
iseqf1olemqval.q | ⊢ 𝑄 = (𝑢 ∈ (𝑀...𝑁) ↦ if(𝑢 ∈ (𝐾...(◡𝐽‘𝐾)), if(𝑢 = 𝐾, 𝐾, (𝐽‘(𝑢 − 1))), (𝐽‘𝑢))) |
Ref | Expression |
---|---|
iseqf1olemqval | ⊢ (𝜑 → (𝑄‘𝐴) = if(𝐴 ∈ (𝐾...(◡𝐽‘𝐾)), if(𝐴 = 𝐾, 𝐾, (𝐽‘(𝐴 − 1))), (𝐽‘𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iseqf1olemqcl.a | . 2 ⊢ (𝜑 → 𝐴 ∈ (𝑀...𝑁)) | |
2 | iseqf1olemqcl.k | . . 3 ⊢ (𝜑 → 𝐾 ∈ (𝑀...𝑁)) | |
3 | iseqf1olemqcl.j | . . 3 ⊢ (𝜑 → 𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁)) | |
4 | 2, 3, 1 | iseqf1olemqcl 10570 | . 2 ⊢ (𝜑 → if(𝐴 ∈ (𝐾...(◡𝐽‘𝐾)), if(𝐴 = 𝐾, 𝐾, (𝐽‘(𝐴 − 1))), (𝐽‘𝐴)) ∈ (𝑀...𝑁)) |
5 | eleq1 2256 | . . . 4 ⊢ (𝑢 = 𝐴 → (𝑢 ∈ (𝐾...(◡𝐽‘𝐾)) ↔ 𝐴 ∈ (𝐾...(◡𝐽‘𝐾)))) | |
6 | eqeq1 2200 | . . . . 5 ⊢ (𝑢 = 𝐴 → (𝑢 = 𝐾 ↔ 𝐴 = 𝐾)) | |
7 | oveq1 5925 | . . . . . 6 ⊢ (𝑢 = 𝐴 → (𝑢 − 1) = (𝐴 − 1)) | |
8 | 7 | fveq2d 5558 | . . . . 5 ⊢ (𝑢 = 𝐴 → (𝐽‘(𝑢 − 1)) = (𝐽‘(𝐴 − 1))) |
9 | 6, 8 | ifbieq2d 3581 | . . . 4 ⊢ (𝑢 = 𝐴 → if(𝑢 = 𝐾, 𝐾, (𝐽‘(𝑢 − 1))) = if(𝐴 = 𝐾, 𝐾, (𝐽‘(𝐴 − 1)))) |
10 | fveq2 5554 | . . . 4 ⊢ (𝑢 = 𝐴 → (𝐽‘𝑢) = (𝐽‘𝐴)) | |
11 | 5, 9, 10 | ifbieq12d 3583 | . . 3 ⊢ (𝑢 = 𝐴 → if(𝑢 ∈ (𝐾...(◡𝐽‘𝐾)), if(𝑢 = 𝐾, 𝐾, (𝐽‘(𝑢 − 1))), (𝐽‘𝑢)) = if(𝐴 ∈ (𝐾...(◡𝐽‘𝐾)), if(𝐴 = 𝐾, 𝐾, (𝐽‘(𝐴 − 1))), (𝐽‘𝐴))) |
12 | iseqf1olemqval.q | . . 3 ⊢ 𝑄 = (𝑢 ∈ (𝑀...𝑁) ↦ if(𝑢 ∈ (𝐾...(◡𝐽‘𝐾)), if(𝑢 = 𝐾, 𝐾, (𝐽‘(𝑢 − 1))), (𝐽‘𝑢))) | |
13 | 11, 12 | fvmptg 5633 | . 2 ⊢ ((𝐴 ∈ (𝑀...𝑁) ∧ if(𝐴 ∈ (𝐾...(◡𝐽‘𝐾)), if(𝐴 = 𝐾, 𝐾, (𝐽‘(𝐴 − 1))), (𝐽‘𝐴)) ∈ (𝑀...𝑁)) → (𝑄‘𝐴) = if(𝐴 ∈ (𝐾...(◡𝐽‘𝐾)), if(𝐴 = 𝐾, 𝐾, (𝐽‘(𝐴 − 1))), (𝐽‘𝐴))) |
14 | 1, 4, 13 | syl2anc 411 | 1 ⊢ (𝜑 → (𝑄‘𝐴) = if(𝐴 ∈ (𝐾...(◡𝐽‘𝐾)), if(𝐴 = 𝐾, 𝐾, (𝐽‘(𝐴 − 1))), (𝐽‘𝐴))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2164 ifcif 3557 ↦ cmpt 4090 ◡ccnv 4658 –1-1-onto→wf1o 5253 ‘cfv 5254 (class class class)co 5918 1c1 7873 − cmin 8190 ...cfz 10074 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-cnex 7963 ax-resscn 7964 ax-1cn 7965 ax-1re 7966 ax-icn 7967 ax-addcl 7968 ax-addrcl 7969 ax-mulcl 7970 ax-addcom 7972 ax-addass 7974 ax-distr 7976 ax-i2m1 7977 ax-0lt1 7978 ax-0id 7980 ax-rnegex 7981 ax-cnre 7983 ax-pre-ltirr 7984 ax-pre-ltwlin 7985 ax-pre-lttrn 7986 ax-pre-ltadd 7988 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2986 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-if 3558 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-br 4030 df-opab 4091 df-mpt 4092 df-id 4324 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-ima 4672 df-iota 5215 df-fun 5256 df-fn 5257 df-f 5258 df-f1 5259 df-fo 5260 df-f1o 5261 df-fv 5262 df-riota 5873 df-ov 5921 df-oprab 5922 df-mpo 5923 df-pnf 8056 df-mnf 8057 df-xr 8058 df-ltxr 8059 df-le 8060 df-sub 8192 df-neg 8193 df-inn 8983 df-n0 9241 df-z 9318 df-uz 9593 df-fz 10075 |
This theorem is referenced by: iseqf1olemnab 10572 iseqf1olemab 10573 iseqf1olemnanb 10574 iseqf1olemqk 10578 seq3f1olemqsumkj 10582 seq3f1olemqsumk 10583 |
Copyright terms: Public domain | W3C validator |