| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > iseqf1olemqval | GIF version | ||
| Description: Lemma for seq3f1o 10609. Value of the function 𝑄. (Contributed by Jim Kingdon, 28-Aug-2022.) |
| Ref | Expression |
|---|---|
| iseqf1olemqcl.k | ⊢ (𝜑 → 𝐾 ∈ (𝑀...𝑁)) |
| iseqf1olemqcl.j | ⊢ (𝜑 → 𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁)) |
| iseqf1olemqcl.a | ⊢ (𝜑 → 𝐴 ∈ (𝑀...𝑁)) |
| iseqf1olemqval.q | ⊢ 𝑄 = (𝑢 ∈ (𝑀...𝑁) ↦ if(𝑢 ∈ (𝐾...(◡𝐽‘𝐾)), if(𝑢 = 𝐾, 𝐾, (𝐽‘(𝑢 − 1))), (𝐽‘𝑢))) |
| Ref | Expression |
|---|---|
| iseqf1olemqval | ⊢ (𝜑 → (𝑄‘𝐴) = if(𝐴 ∈ (𝐾...(◡𝐽‘𝐾)), if(𝐴 = 𝐾, 𝐾, (𝐽‘(𝐴 − 1))), (𝐽‘𝐴))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iseqf1olemqcl.a | . 2 ⊢ (𝜑 → 𝐴 ∈ (𝑀...𝑁)) | |
| 2 | iseqf1olemqcl.k | . . 3 ⊢ (𝜑 → 𝐾 ∈ (𝑀...𝑁)) | |
| 3 | iseqf1olemqcl.j | . . 3 ⊢ (𝜑 → 𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁)) | |
| 4 | 2, 3, 1 | iseqf1olemqcl 10591 | . 2 ⊢ (𝜑 → if(𝐴 ∈ (𝐾...(◡𝐽‘𝐾)), if(𝐴 = 𝐾, 𝐾, (𝐽‘(𝐴 − 1))), (𝐽‘𝐴)) ∈ (𝑀...𝑁)) |
| 5 | eleq1 2259 | . . . 4 ⊢ (𝑢 = 𝐴 → (𝑢 ∈ (𝐾...(◡𝐽‘𝐾)) ↔ 𝐴 ∈ (𝐾...(◡𝐽‘𝐾)))) | |
| 6 | eqeq1 2203 | . . . . 5 ⊢ (𝑢 = 𝐴 → (𝑢 = 𝐾 ↔ 𝐴 = 𝐾)) | |
| 7 | oveq1 5929 | . . . . . 6 ⊢ (𝑢 = 𝐴 → (𝑢 − 1) = (𝐴 − 1)) | |
| 8 | 7 | fveq2d 5562 | . . . . 5 ⊢ (𝑢 = 𝐴 → (𝐽‘(𝑢 − 1)) = (𝐽‘(𝐴 − 1))) |
| 9 | 6, 8 | ifbieq2d 3585 | . . . 4 ⊢ (𝑢 = 𝐴 → if(𝑢 = 𝐾, 𝐾, (𝐽‘(𝑢 − 1))) = if(𝐴 = 𝐾, 𝐾, (𝐽‘(𝐴 − 1)))) |
| 10 | fveq2 5558 | . . . 4 ⊢ (𝑢 = 𝐴 → (𝐽‘𝑢) = (𝐽‘𝐴)) | |
| 11 | 5, 9, 10 | ifbieq12d 3587 | . . 3 ⊢ (𝑢 = 𝐴 → if(𝑢 ∈ (𝐾...(◡𝐽‘𝐾)), if(𝑢 = 𝐾, 𝐾, (𝐽‘(𝑢 − 1))), (𝐽‘𝑢)) = if(𝐴 ∈ (𝐾...(◡𝐽‘𝐾)), if(𝐴 = 𝐾, 𝐾, (𝐽‘(𝐴 − 1))), (𝐽‘𝐴))) |
| 12 | iseqf1olemqval.q | . . 3 ⊢ 𝑄 = (𝑢 ∈ (𝑀...𝑁) ↦ if(𝑢 ∈ (𝐾...(◡𝐽‘𝐾)), if(𝑢 = 𝐾, 𝐾, (𝐽‘(𝑢 − 1))), (𝐽‘𝑢))) | |
| 13 | 11, 12 | fvmptg 5637 | . 2 ⊢ ((𝐴 ∈ (𝑀...𝑁) ∧ if(𝐴 ∈ (𝐾...(◡𝐽‘𝐾)), if(𝐴 = 𝐾, 𝐾, (𝐽‘(𝐴 − 1))), (𝐽‘𝐴)) ∈ (𝑀...𝑁)) → (𝑄‘𝐴) = if(𝐴 ∈ (𝐾...(◡𝐽‘𝐾)), if(𝐴 = 𝐾, 𝐾, (𝐽‘(𝐴 − 1))), (𝐽‘𝐴))) |
| 14 | 1, 4, 13 | syl2anc 411 | 1 ⊢ (𝜑 → (𝑄‘𝐴) = if(𝐴 ∈ (𝐾...(◡𝐽‘𝐾)), if(𝐴 = 𝐾, 𝐾, (𝐽‘(𝐴 − 1))), (𝐽‘𝐴))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2167 ifcif 3561 ↦ cmpt 4094 ◡ccnv 4662 –1-1-onto→wf1o 5257 ‘cfv 5258 (class class class)co 5922 1c1 7880 − cmin 8197 ...cfz 10083 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-addcom 7979 ax-addass 7981 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-0id 7987 ax-rnegex 7988 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-ltadd 7995 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-if 3562 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 df-inn 8991 df-n0 9250 df-z 9327 df-uz 9602 df-fz 10084 |
| This theorem is referenced by: iseqf1olemnab 10593 iseqf1olemab 10594 iseqf1olemnanb 10595 iseqf1olemqk 10599 seq3f1olemqsumkj 10603 seq3f1olemqsumk 10604 |
| Copyright terms: Public domain | W3C validator |