| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > iseqf1olemqval | GIF version | ||
| Description: Lemma for seq3f1o 10662. Value of the function 𝑄. (Contributed by Jim Kingdon, 28-Aug-2022.) |
| Ref | Expression |
|---|---|
| iseqf1olemqcl.k | ⊢ (𝜑 → 𝐾 ∈ (𝑀...𝑁)) |
| iseqf1olemqcl.j | ⊢ (𝜑 → 𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁)) |
| iseqf1olemqcl.a | ⊢ (𝜑 → 𝐴 ∈ (𝑀...𝑁)) |
| iseqf1olemqval.q | ⊢ 𝑄 = (𝑢 ∈ (𝑀...𝑁) ↦ if(𝑢 ∈ (𝐾...(◡𝐽‘𝐾)), if(𝑢 = 𝐾, 𝐾, (𝐽‘(𝑢 − 1))), (𝐽‘𝑢))) |
| Ref | Expression |
|---|---|
| iseqf1olemqval | ⊢ (𝜑 → (𝑄‘𝐴) = if(𝐴 ∈ (𝐾...(◡𝐽‘𝐾)), if(𝐴 = 𝐾, 𝐾, (𝐽‘(𝐴 − 1))), (𝐽‘𝐴))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iseqf1olemqcl.a | . 2 ⊢ (𝜑 → 𝐴 ∈ (𝑀...𝑁)) | |
| 2 | iseqf1olemqcl.k | . . 3 ⊢ (𝜑 → 𝐾 ∈ (𝑀...𝑁)) | |
| 3 | iseqf1olemqcl.j | . . 3 ⊢ (𝜑 → 𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁)) | |
| 4 | 2, 3, 1 | iseqf1olemqcl 10644 | . 2 ⊢ (𝜑 → if(𝐴 ∈ (𝐾...(◡𝐽‘𝐾)), if(𝐴 = 𝐾, 𝐾, (𝐽‘(𝐴 − 1))), (𝐽‘𝐴)) ∈ (𝑀...𝑁)) |
| 5 | eleq1 2268 | . . . 4 ⊢ (𝑢 = 𝐴 → (𝑢 ∈ (𝐾...(◡𝐽‘𝐾)) ↔ 𝐴 ∈ (𝐾...(◡𝐽‘𝐾)))) | |
| 6 | eqeq1 2212 | . . . . 5 ⊢ (𝑢 = 𝐴 → (𝑢 = 𝐾 ↔ 𝐴 = 𝐾)) | |
| 7 | oveq1 5951 | . . . . . 6 ⊢ (𝑢 = 𝐴 → (𝑢 − 1) = (𝐴 − 1)) | |
| 8 | 7 | fveq2d 5580 | . . . . 5 ⊢ (𝑢 = 𝐴 → (𝐽‘(𝑢 − 1)) = (𝐽‘(𝐴 − 1))) |
| 9 | 6, 8 | ifbieq2d 3595 | . . . 4 ⊢ (𝑢 = 𝐴 → if(𝑢 = 𝐾, 𝐾, (𝐽‘(𝑢 − 1))) = if(𝐴 = 𝐾, 𝐾, (𝐽‘(𝐴 − 1)))) |
| 10 | fveq2 5576 | . . . 4 ⊢ (𝑢 = 𝐴 → (𝐽‘𝑢) = (𝐽‘𝐴)) | |
| 11 | 5, 9, 10 | ifbieq12d 3597 | . . 3 ⊢ (𝑢 = 𝐴 → if(𝑢 ∈ (𝐾...(◡𝐽‘𝐾)), if(𝑢 = 𝐾, 𝐾, (𝐽‘(𝑢 − 1))), (𝐽‘𝑢)) = if(𝐴 ∈ (𝐾...(◡𝐽‘𝐾)), if(𝐴 = 𝐾, 𝐾, (𝐽‘(𝐴 − 1))), (𝐽‘𝐴))) |
| 12 | iseqf1olemqval.q | . . 3 ⊢ 𝑄 = (𝑢 ∈ (𝑀...𝑁) ↦ if(𝑢 ∈ (𝐾...(◡𝐽‘𝐾)), if(𝑢 = 𝐾, 𝐾, (𝐽‘(𝑢 − 1))), (𝐽‘𝑢))) | |
| 13 | 11, 12 | fvmptg 5655 | . 2 ⊢ ((𝐴 ∈ (𝑀...𝑁) ∧ if(𝐴 ∈ (𝐾...(◡𝐽‘𝐾)), if(𝐴 = 𝐾, 𝐾, (𝐽‘(𝐴 − 1))), (𝐽‘𝐴)) ∈ (𝑀...𝑁)) → (𝑄‘𝐴) = if(𝐴 ∈ (𝐾...(◡𝐽‘𝐾)), if(𝐴 = 𝐾, 𝐾, (𝐽‘(𝐴 − 1))), (𝐽‘𝐴))) |
| 14 | 1, 4, 13 | syl2anc 411 | 1 ⊢ (𝜑 → (𝑄‘𝐴) = if(𝐴 ∈ (𝐾...(◡𝐽‘𝐾)), if(𝐴 = 𝐾, 𝐾, (𝐽‘(𝐴 − 1))), (𝐽‘𝐴))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ∈ wcel 2176 ifcif 3571 ↦ cmpt 4105 ◡ccnv 4674 –1-1-onto→wf1o 5270 ‘cfv 5271 (class class class)co 5944 1c1 7926 − cmin 8243 ...cfz 10130 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-cnex 8016 ax-resscn 8017 ax-1cn 8018 ax-1re 8019 ax-icn 8020 ax-addcl 8021 ax-addrcl 8022 ax-mulcl 8023 ax-addcom 8025 ax-addass 8027 ax-distr 8029 ax-i2m1 8030 ax-0lt1 8031 ax-0id 8033 ax-rnegex 8034 ax-cnre 8036 ax-pre-ltirr 8037 ax-pre-ltwlin 8038 ax-pre-lttrn 8039 ax-pre-ltadd 8041 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-reu 2491 df-rab 2493 df-v 2774 df-sbc 2999 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-if 3572 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-br 4045 df-opab 4106 df-mpt 4107 df-id 4340 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-f1 5276 df-fo 5277 df-f1o 5278 df-fv 5279 df-riota 5899 df-ov 5947 df-oprab 5948 df-mpo 5949 df-pnf 8109 df-mnf 8110 df-xr 8111 df-ltxr 8112 df-le 8113 df-sub 8245 df-neg 8246 df-inn 9037 df-n0 9296 df-z 9373 df-uz 9649 df-fz 10131 |
| This theorem is referenced by: iseqf1olemnab 10646 iseqf1olemab 10647 iseqf1olemnanb 10648 iseqf1olemqk 10652 seq3f1olemqsumkj 10656 seq3f1olemqsumk 10657 |
| Copyright terms: Public domain | W3C validator |