ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eucalgval2 GIF version

Theorem eucalgval2 12000
Description: The value of the step function 𝐸 for Euclid's Algorithm on an ordered pair. (Contributed by Paul Chapman, 31-Mar-2011.) (Revised by Mario Carneiro, 28-May-2014.)
Hypothesis
Ref Expression
eucalgval.1 𝐸 = (𝑥 ∈ ℕ0, 𝑦 ∈ ℕ0 ↦ if(𝑦 = 0, ⟨𝑥, 𝑦⟩, ⟨𝑦, (𝑥 mod 𝑦)⟩))
Assertion
Ref Expression
eucalgval2 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀𝐸𝑁) = if(𝑁 = 0, ⟨𝑀, 𝑁⟩, ⟨𝑁, (𝑀 mod 𝑁)⟩))
Distinct variable groups:   𝑥,𝑦,𝑀   𝑥,𝑁,𝑦
Allowed substitution hints:   𝐸(𝑥,𝑦)

Proof of Theorem eucalgval2
StepHypRef Expression
1 opexg 4211 . . . 4 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ⟨𝑀, 𝑁⟩ ∈ V)
21adantr 274 . . 3 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁 = 0) → ⟨𝑀, 𝑁⟩ ∈ V)
3 simpr 109 . . . . 5 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → 𝑁 ∈ ℕ0)
43adantr 274 . . . 4 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ ¬ 𝑁 = 0) → 𝑁 ∈ ℕ0)
5 simpl 108 . . . . . . 7 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → 𝑀 ∈ ℕ0)
65nn0zd 9325 . . . . . 6 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → 𝑀 ∈ ℤ)
76adantr 274 . . . . 5 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ ¬ 𝑁 = 0) → 𝑀 ∈ ℤ)
8 simpr 109 . . . . . . 7 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ ¬ 𝑁 = 0) → ¬ 𝑁 = 0)
98neqned 2347 . . . . . 6 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ ¬ 𝑁 = 0) → 𝑁 ≠ 0)
10 elnnne0 9142 . . . . . 6 (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℕ0𝑁 ≠ 0))
114, 9, 10sylanbrc 415 . . . . 5 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ ¬ 𝑁 = 0) → 𝑁 ∈ ℕ)
127, 11zmodcld 10294 . . . 4 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ ¬ 𝑁 = 0) → (𝑀 mod 𝑁) ∈ ℕ0)
13 opexg 4211 . . . 4 ((𝑁 ∈ ℕ0 ∧ (𝑀 mod 𝑁) ∈ ℕ0) → ⟨𝑁, (𝑀 mod 𝑁)⟩ ∈ V)
144, 12, 13syl2anc 409 . . 3 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ ¬ 𝑁 = 0) → ⟨𝑁, (𝑀 mod 𝑁)⟩ ∈ V)
153nn0zd 9325 . . . 4 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → 𝑁 ∈ ℤ)
16 0zd 9217 . . . 4 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → 0 ∈ ℤ)
17 zdceq 9280 . . . 4 ((𝑁 ∈ ℤ ∧ 0 ∈ ℤ) → DECID 𝑁 = 0)
1815, 16, 17syl2anc 409 . . 3 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → DECID 𝑁 = 0)
192, 14, 18ifcldadc 3554 . 2 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → if(𝑁 = 0, ⟨𝑀, 𝑁⟩, ⟨𝑁, (𝑀 mod 𝑁)⟩) ∈ V)
20 simpr 109 . . . . 5 ((𝑥 = 𝑀𝑦 = 𝑁) → 𝑦 = 𝑁)
2120eqeq1d 2179 . . . 4 ((𝑥 = 𝑀𝑦 = 𝑁) → (𝑦 = 0 ↔ 𝑁 = 0))
22 opeq12 3765 . . . 4 ((𝑥 = 𝑀𝑦 = 𝑁) → ⟨𝑥, 𝑦⟩ = ⟨𝑀, 𝑁⟩)
23 oveq12 5860 . . . . 5 ((𝑥 = 𝑀𝑦 = 𝑁) → (𝑥 mod 𝑦) = (𝑀 mod 𝑁))
2420, 23opeq12d 3771 . . . 4 ((𝑥 = 𝑀𝑦 = 𝑁) → ⟨𝑦, (𝑥 mod 𝑦)⟩ = ⟨𝑁, (𝑀 mod 𝑁)⟩)
2521, 22, 24ifbieq12d 3551 . . 3 ((𝑥 = 𝑀𝑦 = 𝑁) → if(𝑦 = 0, ⟨𝑥, 𝑦⟩, ⟨𝑦, (𝑥 mod 𝑦)⟩) = if(𝑁 = 0, ⟨𝑀, 𝑁⟩, ⟨𝑁, (𝑀 mod 𝑁)⟩))
26 eucalgval.1 . . 3 𝐸 = (𝑥 ∈ ℕ0, 𝑦 ∈ ℕ0 ↦ if(𝑦 = 0, ⟨𝑥, 𝑦⟩, ⟨𝑦, (𝑥 mod 𝑦)⟩))
2725, 26ovmpoga 5980 . 2 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0 ∧ if(𝑁 = 0, ⟨𝑀, 𝑁⟩, ⟨𝑁, (𝑀 mod 𝑁)⟩) ∈ V) → (𝑀𝐸𝑁) = if(𝑁 = 0, ⟨𝑀, 𝑁⟩, ⟨𝑁, (𝑀 mod 𝑁)⟩))
2819, 27mpd3an3 1333 1 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀𝐸𝑁) = if(𝑁 = 0, ⟨𝑀, 𝑁⟩, ⟨𝑁, (𝑀 mod 𝑁)⟩))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  DECID wdc 829   = wceq 1348  wcel 2141  wne 2340  Vcvv 2730  ifcif 3525  cop 3584  (class class class)co 5851  cmpo 5853  0cc0 7767  cn 8871  0cn0 9128  cz 9205   mod cmo 10271
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4105  ax-pow 4158  ax-pr 4192  ax-un 4416  ax-setind 4519  ax-cnex 7858  ax-resscn 7859  ax-1cn 7860  ax-1re 7861  ax-icn 7862  ax-addcl 7863  ax-addrcl 7864  ax-mulcl 7865  ax-mulrcl 7866  ax-addcom 7867  ax-mulcom 7868  ax-addass 7869  ax-mulass 7870  ax-distr 7871  ax-i2m1 7872  ax-0lt1 7873  ax-1rid 7874  ax-0id 7875  ax-rnegex 7876  ax-precex 7877  ax-cnre 7878  ax-pre-ltirr 7879  ax-pre-ltwlin 7880  ax-pre-lttrn 7881  ax-pre-apti 7882  ax-pre-ltadd 7883  ax-pre-mulgt0 7884  ax-pre-mulext 7885  ax-arch 7886
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3526  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3795  df-int 3830  df-iun 3873  df-br 3988  df-opab 4049  df-mpt 4050  df-id 4276  df-po 4279  df-iso 4280  df-xp 4615  df-rel 4616  df-cnv 4617  df-co 4618  df-dm 4619  df-rn 4620  df-res 4621  df-ima 4622  df-iota 5158  df-fun 5198  df-fn 5199  df-f 5200  df-fv 5204  df-riota 5807  df-ov 5854  df-oprab 5855  df-mpo 5856  df-1st 6117  df-2nd 6118  df-pnf 7949  df-mnf 7950  df-xr 7951  df-ltxr 7952  df-le 7953  df-sub 8085  df-neg 8086  df-reap 8487  df-ap 8494  df-div 8583  df-inn 8872  df-n0 9129  df-z 9206  df-q 9572  df-rp 9604  df-fl 10219  df-mod 10272
This theorem is referenced by:  eucalgval  12001
  Copyright terms: Public domain W3C validator