![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eucalgval2 | GIF version |
Description: The value of the step function 𝐸 for Euclid's Algorithm on an ordered pair. (Contributed by Paul Chapman, 31-Mar-2011.) (Revised by Mario Carneiro, 28-May-2014.) |
Ref | Expression |
---|---|
eucalgval.1 | ⊢ 𝐸 = (𝑥 ∈ ℕ0, 𝑦 ∈ ℕ0 ↦ if(𝑦 = 0, 〈𝑥, 𝑦〉, 〈𝑦, (𝑥 mod 𝑦)〉)) |
Ref | Expression |
---|---|
eucalgval2 | ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → (𝑀𝐸𝑁) = if(𝑁 = 0, 〈𝑀, 𝑁〉, 〈𝑁, (𝑀 mod 𝑁)〉)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opexg 4088 | . . . 4 ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → 〈𝑀, 𝑁〉 ∈ V) | |
2 | 1 | adantr 272 | . . 3 ⊢ (((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) ∧ 𝑁 = 0) → 〈𝑀, 𝑁〉 ∈ V) |
3 | simpr 109 | . . . . 5 ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℕ0) | |
4 | 3 | adantr 272 | . . . 4 ⊢ (((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) ∧ ¬ 𝑁 = 0) → 𝑁 ∈ ℕ0) |
5 | simpl 108 | . . . . . . 7 ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → 𝑀 ∈ ℕ0) | |
6 | 5 | nn0zd 9023 | . . . . . 6 ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → 𝑀 ∈ ℤ) |
7 | 6 | adantr 272 | . . . . 5 ⊢ (((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) ∧ ¬ 𝑁 = 0) → 𝑀 ∈ ℤ) |
8 | simpr 109 | . . . . . . 7 ⊢ (((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) ∧ ¬ 𝑁 = 0) → ¬ 𝑁 = 0) | |
9 | 8 | neqned 2274 | . . . . . 6 ⊢ (((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) ∧ ¬ 𝑁 = 0) → 𝑁 ≠ 0) |
10 | elnnne0 8843 | . . . . . 6 ⊢ (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℕ0 ∧ 𝑁 ≠ 0)) | |
11 | 4, 9, 10 | sylanbrc 411 | . . . . 5 ⊢ (((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) ∧ ¬ 𝑁 = 0) → 𝑁 ∈ ℕ) |
12 | 7, 11 | zmodcld 9959 | . . . 4 ⊢ (((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) ∧ ¬ 𝑁 = 0) → (𝑀 mod 𝑁) ∈ ℕ0) |
13 | opexg 4088 | . . . 4 ⊢ ((𝑁 ∈ ℕ0 ∧ (𝑀 mod 𝑁) ∈ ℕ0) → 〈𝑁, (𝑀 mod 𝑁)〉 ∈ V) | |
14 | 4, 12, 13 | syl2anc 406 | . . 3 ⊢ (((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) ∧ ¬ 𝑁 = 0) → 〈𝑁, (𝑀 mod 𝑁)〉 ∈ V) |
15 | 3 | nn0zd 9023 | . . . 4 ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℤ) |
16 | 0zd 8918 | . . . 4 ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → 0 ∈ ℤ) | |
17 | zdceq 8978 | . . . 4 ⊢ ((𝑁 ∈ ℤ ∧ 0 ∈ ℤ) → DECID 𝑁 = 0) | |
18 | 15, 16, 17 | syl2anc 406 | . . 3 ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → DECID 𝑁 = 0) |
19 | 2, 14, 18 | ifcldadc 3448 | . 2 ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → if(𝑁 = 0, 〈𝑀, 𝑁〉, 〈𝑁, (𝑀 mod 𝑁)〉) ∈ V) |
20 | simpr 109 | . . . . 5 ⊢ ((𝑥 = 𝑀 ∧ 𝑦 = 𝑁) → 𝑦 = 𝑁) | |
21 | 20 | eqeq1d 2108 | . . . 4 ⊢ ((𝑥 = 𝑀 ∧ 𝑦 = 𝑁) → (𝑦 = 0 ↔ 𝑁 = 0)) |
22 | opeq12 3654 | . . . 4 ⊢ ((𝑥 = 𝑀 ∧ 𝑦 = 𝑁) → 〈𝑥, 𝑦〉 = 〈𝑀, 𝑁〉) | |
23 | oveq12 5715 | . . . . 5 ⊢ ((𝑥 = 𝑀 ∧ 𝑦 = 𝑁) → (𝑥 mod 𝑦) = (𝑀 mod 𝑁)) | |
24 | 20, 23 | opeq12d 3660 | . . . 4 ⊢ ((𝑥 = 𝑀 ∧ 𝑦 = 𝑁) → 〈𝑦, (𝑥 mod 𝑦)〉 = 〈𝑁, (𝑀 mod 𝑁)〉) |
25 | 21, 22, 24 | ifbieq12d 3445 | . . 3 ⊢ ((𝑥 = 𝑀 ∧ 𝑦 = 𝑁) → if(𝑦 = 0, 〈𝑥, 𝑦〉, 〈𝑦, (𝑥 mod 𝑦)〉) = if(𝑁 = 0, 〈𝑀, 𝑁〉, 〈𝑁, (𝑀 mod 𝑁)〉)) |
26 | eucalgval.1 | . . 3 ⊢ 𝐸 = (𝑥 ∈ ℕ0, 𝑦 ∈ ℕ0 ↦ if(𝑦 = 0, 〈𝑥, 𝑦〉, 〈𝑦, (𝑥 mod 𝑦)〉)) | |
27 | 25, 26 | ovmpoga 5832 | . 2 ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ if(𝑁 = 0, 〈𝑀, 𝑁〉, 〈𝑁, (𝑀 mod 𝑁)〉) ∈ V) → (𝑀𝐸𝑁) = if(𝑁 = 0, 〈𝑀, 𝑁〉, 〈𝑁, (𝑀 mod 𝑁)〉)) |
28 | 19, 27 | mpd3an3 1284 | 1 ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → (𝑀𝐸𝑁) = if(𝑁 = 0, 〈𝑀, 𝑁〉, 〈𝑁, (𝑀 mod 𝑁)〉)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 DECID wdc 786 = wceq 1299 ∈ wcel 1448 ≠ wne 2267 Vcvv 2641 ifcif 3421 〈cop 3477 (class class class)co 5706 ∈ cmpo 5708 0cc0 7500 ℕcn 8578 ℕ0cn0 8829 ℤcz 8906 mod cmo 9936 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 584 ax-in2 585 ax-io 671 ax-5 1391 ax-7 1392 ax-gen 1393 ax-ie1 1437 ax-ie2 1438 ax-8 1450 ax-10 1451 ax-11 1452 ax-i12 1453 ax-bndl 1454 ax-4 1455 ax-13 1459 ax-14 1460 ax-17 1474 ax-i9 1478 ax-ial 1482 ax-i5r 1483 ax-ext 2082 ax-sep 3986 ax-pow 4038 ax-pr 4069 ax-un 4293 ax-setind 4390 ax-cnex 7586 ax-resscn 7587 ax-1cn 7588 ax-1re 7589 ax-icn 7590 ax-addcl 7591 ax-addrcl 7592 ax-mulcl 7593 ax-mulrcl 7594 ax-addcom 7595 ax-mulcom 7596 ax-addass 7597 ax-mulass 7598 ax-distr 7599 ax-i2m1 7600 ax-0lt1 7601 ax-1rid 7602 ax-0id 7603 ax-rnegex 7604 ax-precex 7605 ax-cnre 7606 ax-pre-ltirr 7607 ax-pre-ltwlin 7608 ax-pre-lttrn 7609 ax-pre-apti 7610 ax-pre-ltadd 7611 ax-pre-mulgt0 7612 ax-pre-mulext 7613 ax-arch 7614 |
This theorem depends on definitions: df-bi 116 df-dc 787 df-3or 931 df-3an 932 df-tru 1302 df-fal 1305 df-nf 1405 df-sb 1704 df-eu 1963 df-mo 1964 df-clab 2087 df-cleq 2093 df-clel 2096 df-nfc 2229 df-ne 2268 df-nel 2363 df-ral 2380 df-rex 2381 df-reu 2382 df-rmo 2383 df-rab 2384 df-v 2643 df-sbc 2863 df-csb 2956 df-dif 3023 df-un 3025 df-in 3027 df-ss 3034 df-nul 3311 df-if 3422 df-pw 3459 df-sn 3480 df-pr 3481 df-op 3483 df-uni 3684 df-int 3719 df-iun 3762 df-br 3876 df-opab 3930 df-mpt 3931 df-id 4153 df-po 4156 df-iso 4157 df-xp 4483 df-rel 4484 df-cnv 4485 df-co 4486 df-dm 4487 df-rn 4488 df-res 4489 df-ima 4490 df-iota 5024 df-fun 5061 df-fn 5062 df-f 5063 df-fv 5067 df-riota 5662 df-ov 5709 df-oprab 5710 df-mpo 5711 df-1st 5969 df-2nd 5970 df-pnf 7674 df-mnf 7675 df-xr 7676 df-ltxr 7677 df-le 7678 df-sub 7806 df-neg 7807 df-reap 8203 df-ap 8210 df-div 8294 df-inn 8579 df-n0 8830 df-z 8907 df-q 9262 df-rp 9292 df-fl 9884 df-mod 9937 |
This theorem is referenced by: eucalgval 11528 |
Copyright terms: Public domain | W3C validator |