![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eucalgval2 | GIF version |
Description: The value of the step function 𝐸 for Euclid's Algorithm on an ordered pair. (Contributed by Paul Chapman, 31-Mar-2011.) (Revised by Mario Carneiro, 28-May-2014.) |
Ref | Expression |
---|---|
eucalgval.1 | ⊢ 𝐸 = (𝑥 ∈ ℕ0, 𝑦 ∈ ℕ0 ↦ if(𝑦 = 0, ⟨𝑥, 𝑦⟩, ⟨𝑦, (𝑥 mod 𝑦)⟩)) |
Ref | Expression |
---|---|
eucalgval2 | ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → (𝑀𝐸𝑁) = if(𝑁 = 0, ⟨𝑀, 𝑁⟩, ⟨𝑁, (𝑀 mod 𝑁)⟩)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opexg 4228 | . . . 4 ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → ⟨𝑀, 𝑁⟩ ∈ V) | |
2 | 1 | adantr 276 | . . 3 ⊢ (((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) ∧ 𝑁 = 0) → ⟨𝑀, 𝑁⟩ ∈ V) |
3 | simpr 110 | . . . . 5 ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℕ0) | |
4 | 3 | adantr 276 | . . . 4 ⊢ (((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) ∧ ¬ 𝑁 = 0) → 𝑁 ∈ ℕ0) |
5 | simpl 109 | . . . . . . 7 ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → 𝑀 ∈ ℕ0) | |
6 | 5 | nn0zd 9372 | . . . . . 6 ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → 𝑀 ∈ ℤ) |
7 | 6 | adantr 276 | . . . . 5 ⊢ (((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) ∧ ¬ 𝑁 = 0) → 𝑀 ∈ ℤ) |
8 | simpr 110 | . . . . . . 7 ⊢ (((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) ∧ ¬ 𝑁 = 0) → ¬ 𝑁 = 0) | |
9 | 8 | neqned 2354 | . . . . . 6 ⊢ (((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) ∧ ¬ 𝑁 = 0) → 𝑁 ≠ 0) |
10 | elnnne0 9189 | . . . . . 6 ⊢ (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℕ0 ∧ 𝑁 ≠ 0)) | |
11 | 4, 9, 10 | sylanbrc 417 | . . . . 5 ⊢ (((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) ∧ ¬ 𝑁 = 0) → 𝑁 ∈ ℕ) |
12 | 7, 11 | zmodcld 10344 | . . . 4 ⊢ (((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) ∧ ¬ 𝑁 = 0) → (𝑀 mod 𝑁) ∈ ℕ0) |
13 | opexg 4228 | . . . 4 ⊢ ((𝑁 ∈ ℕ0 ∧ (𝑀 mod 𝑁) ∈ ℕ0) → ⟨𝑁, (𝑀 mod 𝑁)⟩ ∈ V) | |
14 | 4, 12, 13 | syl2anc 411 | . . 3 ⊢ (((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) ∧ ¬ 𝑁 = 0) → ⟨𝑁, (𝑀 mod 𝑁)⟩ ∈ V) |
15 | 3 | nn0zd 9372 | . . . 4 ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℤ) |
16 | 0zd 9264 | . . . 4 ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → 0 ∈ ℤ) | |
17 | zdceq 9327 | . . . 4 ⊢ ((𝑁 ∈ ℤ ∧ 0 ∈ ℤ) → DECID 𝑁 = 0) | |
18 | 15, 16, 17 | syl2anc 411 | . . 3 ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → DECID 𝑁 = 0) |
19 | 2, 14, 18 | ifcldadc 3563 | . 2 ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → if(𝑁 = 0, ⟨𝑀, 𝑁⟩, ⟨𝑁, (𝑀 mod 𝑁)⟩) ∈ V) |
20 | simpr 110 | . . . . 5 ⊢ ((𝑥 = 𝑀 ∧ 𝑦 = 𝑁) → 𝑦 = 𝑁) | |
21 | 20 | eqeq1d 2186 | . . . 4 ⊢ ((𝑥 = 𝑀 ∧ 𝑦 = 𝑁) → (𝑦 = 0 ↔ 𝑁 = 0)) |
22 | opeq12 3780 | . . . 4 ⊢ ((𝑥 = 𝑀 ∧ 𝑦 = 𝑁) → ⟨𝑥, 𝑦⟩ = ⟨𝑀, 𝑁⟩) | |
23 | oveq12 5883 | . . . . 5 ⊢ ((𝑥 = 𝑀 ∧ 𝑦 = 𝑁) → (𝑥 mod 𝑦) = (𝑀 mod 𝑁)) | |
24 | 20, 23 | opeq12d 3786 | . . . 4 ⊢ ((𝑥 = 𝑀 ∧ 𝑦 = 𝑁) → ⟨𝑦, (𝑥 mod 𝑦)⟩ = ⟨𝑁, (𝑀 mod 𝑁)⟩) |
25 | 21, 22, 24 | ifbieq12d 3560 | . . 3 ⊢ ((𝑥 = 𝑀 ∧ 𝑦 = 𝑁) → if(𝑦 = 0, ⟨𝑥, 𝑦⟩, ⟨𝑦, (𝑥 mod 𝑦)⟩) = if(𝑁 = 0, ⟨𝑀, 𝑁⟩, ⟨𝑁, (𝑀 mod 𝑁)⟩)) |
26 | eucalgval.1 | . . 3 ⊢ 𝐸 = (𝑥 ∈ ℕ0, 𝑦 ∈ ℕ0 ↦ if(𝑦 = 0, ⟨𝑥, 𝑦⟩, ⟨𝑦, (𝑥 mod 𝑦)⟩)) | |
27 | 25, 26 | ovmpoga 6003 | . 2 ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ if(𝑁 = 0, ⟨𝑀, 𝑁⟩, ⟨𝑁, (𝑀 mod 𝑁)⟩) ∈ V) → (𝑀𝐸𝑁) = if(𝑁 = 0, ⟨𝑀, 𝑁⟩, ⟨𝑁, (𝑀 mod 𝑁)⟩)) |
28 | 19, 27 | mpd3an3 1338 | 1 ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → (𝑀𝐸𝑁) = if(𝑁 = 0, ⟨𝑀, 𝑁⟩, ⟨𝑁, (𝑀 mod 𝑁)⟩)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 DECID wdc 834 = wceq 1353 ∈ wcel 2148 ≠ wne 2347 Vcvv 2737 ifcif 3534 ⟨cop 3595 (class class class)co 5874 ∈ cmpo 5876 0cc0 7810 ℕcn 8918 ℕ0cn0 9175 ℤcz 9252 mod cmo 10321 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4121 ax-pow 4174 ax-pr 4209 ax-un 4433 ax-setind 4536 ax-cnex 7901 ax-resscn 7902 ax-1cn 7903 ax-1re 7904 ax-icn 7905 ax-addcl 7906 ax-addrcl 7907 ax-mulcl 7908 ax-mulrcl 7909 ax-addcom 7910 ax-mulcom 7911 ax-addass 7912 ax-mulass 7913 ax-distr 7914 ax-i2m1 7915 ax-0lt1 7916 ax-1rid 7917 ax-0id 7918 ax-rnegex 7919 ax-precex 7920 ax-cnre 7921 ax-pre-ltirr 7922 ax-pre-ltwlin 7923 ax-pre-lttrn 7924 ax-pre-apti 7925 ax-pre-ltadd 7926 ax-pre-mulgt0 7927 ax-pre-mulext 7928 ax-arch 7929 |
This theorem depends on definitions: df-bi 117 df-dc 835 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-reu 2462 df-rmo 2463 df-rab 2464 df-v 2739 df-sbc 2963 df-csb 3058 df-dif 3131 df-un 3133 df-in 3135 df-ss 3142 df-nul 3423 df-if 3535 df-pw 3577 df-sn 3598 df-pr 3599 df-op 3601 df-uni 3810 df-int 3845 df-iun 3888 df-br 4004 df-opab 4065 df-mpt 4066 df-id 4293 df-po 4296 df-iso 4297 df-xp 4632 df-rel 4633 df-cnv 4634 df-co 4635 df-dm 4636 df-rn 4637 df-res 4638 df-ima 4639 df-iota 5178 df-fun 5218 df-fn 5219 df-f 5220 df-fv 5224 df-riota 5830 df-ov 5877 df-oprab 5878 df-mpo 5879 df-1st 6140 df-2nd 6141 df-pnf 7993 df-mnf 7994 df-xr 7995 df-ltxr 7996 df-le 7997 df-sub 8129 df-neg 8130 df-reap 8531 df-ap 8538 df-div 8629 df-inn 8919 df-n0 9176 df-z 9253 df-q 9619 df-rp 9653 df-fl 10269 df-mod 10322 |
This theorem is referenced by: eucalgval 12053 |
Copyright terms: Public domain | W3C validator |