Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eucalgval2 | GIF version |
Description: The value of the step function 𝐸 for Euclid's Algorithm on an ordered pair. (Contributed by Paul Chapman, 31-Mar-2011.) (Revised by Mario Carneiro, 28-May-2014.) |
Ref | Expression |
---|---|
eucalgval.1 | ⊢ 𝐸 = (𝑥 ∈ ℕ0, 𝑦 ∈ ℕ0 ↦ if(𝑦 = 0, 〈𝑥, 𝑦〉, 〈𝑦, (𝑥 mod 𝑦)〉)) |
Ref | Expression |
---|---|
eucalgval2 | ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → (𝑀𝐸𝑁) = if(𝑁 = 0, 〈𝑀, 𝑁〉, 〈𝑁, (𝑀 mod 𝑁)〉)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opexg 4206 | . . . 4 ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → 〈𝑀, 𝑁〉 ∈ V) | |
2 | 1 | adantr 274 | . . 3 ⊢ (((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) ∧ 𝑁 = 0) → 〈𝑀, 𝑁〉 ∈ V) |
3 | simpr 109 | . . . . 5 ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℕ0) | |
4 | 3 | adantr 274 | . . . 4 ⊢ (((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) ∧ ¬ 𝑁 = 0) → 𝑁 ∈ ℕ0) |
5 | simpl 108 | . . . . . . 7 ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → 𝑀 ∈ ℕ0) | |
6 | 5 | nn0zd 9311 | . . . . . 6 ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → 𝑀 ∈ ℤ) |
7 | 6 | adantr 274 | . . . . 5 ⊢ (((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) ∧ ¬ 𝑁 = 0) → 𝑀 ∈ ℤ) |
8 | simpr 109 | . . . . . . 7 ⊢ (((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) ∧ ¬ 𝑁 = 0) → ¬ 𝑁 = 0) | |
9 | 8 | neqned 2343 | . . . . . 6 ⊢ (((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) ∧ ¬ 𝑁 = 0) → 𝑁 ≠ 0) |
10 | elnnne0 9128 | . . . . . 6 ⊢ (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℕ0 ∧ 𝑁 ≠ 0)) | |
11 | 4, 9, 10 | sylanbrc 414 | . . . . 5 ⊢ (((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) ∧ ¬ 𝑁 = 0) → 𝑁 ∈ ℕ) |
12 | 7, 11 | zmodcld 10280 | . . . 4 ⊢ (((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) ∧ ¬ 𝑁 = 0) → (𝑀 mod 𝑁) ∈ ℕ0) |
13 | opexg 4206 | . . . 4 ⊢ ((𝑁 ∈ ℕ0 ∧ (𝑀 mod 𝑁) ∈ ℕ0) → 〈𝑁, (𝑀 mod 𝑁)〉 ∈ V) | |
14 | 4, 12, 13 | syl2anc 409 | . . 3 ⊢ (((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) ∧ ¬ 𝑁 = 0) → 〈𝑁, (𝑀 mod 𝑁)〉 ∈ V) |
15 | 3 | nn0zd 9311 | . . . 4 ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℤ) |
16 | 0zd 9203 | . . . 4 ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → 0 ∈ ℤ) | |
17 | zdceq 9266 | . . . 4 ⊢ ((𝑁 ∈ ℤ ∧ 0 ∈ ℤ) → DECID 𝑁 = 0) | |
18 | 15, 16, 17 | syl2anc 409 | . . 3 ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → DECID 𝑁 = 0) |
19 | 2, 14, 18 | ifcldadc 3549 | . 2 ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → if(𝑁 = 0, 〈𝑀, 𝑁〉, 〈𝑁, (𝑀 mod 𝑁)〉) ∈ V) |
20 | simpr 109 | . . . . 5 ⊢ ((𝑥 = 𝑀 ∧ 𝑦 = 𝑁) → 𝑦 = 𝑁) | |
21 | 20 | eqeq1d 2174 | . . . 4 ⊢ ((𝑥 = 𝑀 ∧ 𝑦 = 𝑁) → (𝑦 = 0 ↔ 𝑁 = 0)) |
22 | opeq12 3760 | . . . 4 ⊢ ((𝑥 = 𝑀 ∧ 𝑦 = 𝑁) → 〈𝑥, 𝑦〉 = 〈𝑀, 𝑁〉) | |
23 | oveq12 5851 | . . . . 5 ⊢ ((𝑥 = 𝑀 ∧ 𝑦 = 𝑁) → (𝑥 mod 𝑦) = (𝑀 mod 𝑁)) | |
24 | 20, 23 | opeq12d 3766 | . . . 4 ⊢ ((𝑥 = 𝑀 ∧ 𝑦 = 𝑁) → 〈𝑦, (𝑥 mod 𝑦)〉 = 〈𝑁, (𝑀 mod 𝑁)〉) |
25 | 21, 22, 24 | ifbieq12d 3546 | . . 3 ⊢ ((𝑥 = 𝑀 ∧ 𝑦 = 𝑁) → if(𝑦 = 0, 〈𝑥, 𝑦〉, 〈𝑦, (𝑥 mod 𝑦)〉) = if(𝑁 = 0, 〈𝑀, 𝑁〉, 〈𝑁, (𝑀 mod 𝑁)〉)) |
26 | eucalgval.1 | . . 3 ⊢ 𝐸 = (𝑥 ∈ ℕ0, 𝑦 ∈ ℕ0 ↦ if(𝑦 = 0, 〈𝑥, 𝑦〉, 〈𝑦, (𝑥 mod 𝑦)〉)) | |
27 | 25, 26 | ovmpoga 5971 | . 2 ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ if(𝑁 = 0, 〈𝑀, 𝑁〉, 〈𝑁, (𝑀 mod 𝑁)〉) ∈ V) → (𝑀𝐸𝑁) = if(𝑁 = 0, 〈𝑀, 𝑁〉, 〈𝑁, (𝑀 mod 𝑁)〉)) |
28 | 19, 27 | mpd3an3 1328 | 1 ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → (𝑀𝐸𝑁) = if(𝑁 = 0, 〈𝑀, 𝑁〉, 〈𝑁, (𝑀 mod 𝑁)〉)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 DECID wdc 824 = wceq 1343 ∈ wcel 2136 ≠ wne 2336 Vcvv 2726 ifcif 3520 〈cop 3579 (class class class)co 5842 ∈ cmpo 5844 0cc0 7753 ℕcn 8857 ℕ0cn0 9114 ℤcz 9191 mod cmo 10257 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-mulrcl 7852 ax-addcom 7853 ax-mulcom 7854 ax-addass 7855 ax-mulass 7856 ax-distr 7857 ax-i2m1 7858 ax-0lt1 7859 ax-1rid 7860 ax-0id 7861 ax-rnegex 7862 ax-precex 7863 ax-cnre 7864 ax-pre-ltirr 7865 ax-pre-ltwlin 7866 ax-pre-lttrn 7867 ax-pre-apti 7868 ax-pre-ltadd 7869 ax-pre-mulgt0 7870 ax-pre-mulext 7871 ax-arch 7872 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-reu 2451 df-rmo 2452 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-if 3521 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-po 4274 df-iso 4275 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-fv 5196 df-riota 5798 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 df-sub 8071 df-neg 8072 df-reap 8473 df-ap 8480 df-div 8569 df-inn 8858 df-n0 9115 df-z 9192 df-q 9558 df-rp 9590 df-fl 10205 df-mod 10258 |
This theorem is referenced by: eucalgval 11986 |
Copyright terms: Public domain | W3C validator |