Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eucalgval2 | GIF version |
Description: The value of the step function 𝐸 for Euclid's Algorithm on an ordered pair. (Contributed by Paul Chapman, 31-Mar-2011.) (Revised by Mario Carneiro, 28-May-2014.) |
Ref | Expression |
---|---|
eucalgval.1 | ⊢ 𝐸 = (𝑥 ∈ ℕ0, 𝑦 ∈ ℕ0 ↦ if(𝑦 = 0, 〈𝑥, 𝑦〉, 〈𝑦, (𝑥 mod 𝑦)〉)) |
Ref | Expression |
---|---|
eucalgval2 | ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → (𝑀𝐸𝑁) = if(𝑁 = 0, 〈𝑀, 𝑁〉, 〈𝑁, (𝑀 mod 𝑁)〉)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opexg 4213 | . . . 4 ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → 〈𝑀, 𝑁〉 ∈ V) | |
2 | 1 | adantr 274 | . . 3 ⊢ (((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) ∧ 𝑁 = 0) → 〈𝑀, 𝑁〉 ∈ V) |
3 | simpr 109 | . . . . 5 ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℕ0) | |
4 | 3 | adantr 274 | . . . 4 ⊢ (((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) ∧ ¬ 𝑁 = 0) → 𝑁 ∈ ℕ0) |
5 | simpl 108 | . . . . . . 7 ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → 𝑀 ∈ ℕ0) | |
6 | 5 | nn0zd 9332 | . . . . . 6 ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → 𝑀 ∈ ℤ) |
7 | 6 | adantr 274 | . . . . 5 ⊢ (((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) ∧ ¬ 𝑁 = 0) → 𝑀 ∈ ℤ) |
8 | simpr 109 | . . . . . . 7 ⊢ (((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) ∧ ¬ 𝑁 = 0) → ¬ 𝑁 = 0) | |
9 | 8 | neqned 2347 | . . . . . 6 ⊢ (((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) ∧ ¬ 𝑁 = 0) → 𝑁 ≠ 0) |
10 | elnnne0 9149 | . . . . . 6 ⊢ (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℕ0 ∧ 𝑁 ≠ 0)) | |
11 | 4, 9, 10 | sylanbrc 415 | . . . . 5 ⊢ (((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) ∧ ¬ 𝑁 = 0) → 𝑁 ∈ ℕ) |
12 | 7, 11 | zmodcld 10301 | . . . 4 ⊢ (((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) ∧ ¬ 𝑁 = 0) → (𝑀 mod 𝑁) ∈ ℕ0) |
13 | opexg 4213 | . . . 4 ⊢ ((𝑁 ∈ ℕ0 ∧ (𝑀 mod 𝑁) ∈ ℕ0) → 〈𝑁, (𝑀 mod 𝑁)〉 ∈ V) | |
14 | 4, 12, 13 | syl2anc 409 | . . 3 ⊢ (((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) ∧ ¬ 𝑁 = 0) → 〈𝑁, (𝑀 mod 𝑁)〉 ∈ V) |
15 | 3 | nn0zd 9332 | . . . 4 ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℤ) |
16 | 0zd 9224 | . . . 4 ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → 0 ∈ ℤ) | |
17 | zdceq 9287 | . . . 4 ⊢ ((𝑁 ∈ ℤ ∧ 0 ∈ ℤ) → DECID 𝑁 = 0) | |
18 | 15, 16, 17 | syl2anc 409 | . . 3 ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → DECID 𝑁 = 0) |
19 | 2, 14, 18 | ifcldadc 3555 | . 2 ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → if(𝑁 = 0, 〈𝑀, 𝑁〉, 〈𝑁, (𝑀 mod 𝑁)〉) ∈ V) |
20 | simpr 109 | . . . . 5 ⊢ ((𝑥 = 𝑀 ∧ 𝑦 = 𝑁) → 𝑦 = 𝑁) | |
21 | 20 | eqeq1d 2179 | . . . 4 ⊢ ((𝑥 = 𝑀 ∧ 𝑦 = 𝑁) → (𝑦 = 0 ↔ 𝑁 = 0)) |
22 | opeq12 3767 | . . . 4 ⊢ ((𝑥 = 𝑀 ∧ 𝑦 = 𝑁) → 〈𝑥, 𝑦〉 = 〈𝑀, 𝑁〉) | |
23 | oveq12 5862 | . . . . 5 ⊢ ((𝑥 = 𝑀 ∧ 𝑦 = 𝑁) → (𝑥 mod 𝑦) = (𝑀 mod 𝑁)) | |
24 | 20, 23 | opeq12d 3773 | . . . 4 ⊢ ((𝑥 = 𝑀 ∧ 𝑦 = 𝑁) → 〈𝑦, (𝑥 mod 𝑦)〉 = 〈𝑁, (𝑀 mod 𝑁)〉) |
25 | 21, 22, 24 | ifbieq12d 3552 | . . 3 ⊢ ((𝑥 = 𝑀 ∧ 𝑦 = 𝑁) → if(𝑦 = 0, 〈𝑥, 𝑦〉, 〈𝑦, (𝑥 mod 𝑦)〉) = if(𝑁 = 0, 〈𝑀, 𝑁〉, 〈𝑁, (𝑀 mod 𝑁)〉)) |
26 | eucalgval.1 | . . 3 ⊢ 𝐸 = (𝑥 ∈ ℕ0, 𝑦 ∈ ℕ0 ↦ if(𝑦 = 0, 〈𝑥, 𝑦〉, 〈𝑦, (𝑥 mod 𝑦)〉)) | |
27 | 25, 26 | ovmpoga 5982 | . 2 ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ if(𝑁 = 0, 〈𝑀, 𝑁〉, 〈𝑁, (𝑀 mod 𝑁)〉) ∈ V) → (𝑀𝐸𝑁) = if(𝑁 = 0, 〈𝑀, 𝑁〉, 〈𝑁, (𝑀 mod 𝑁)〉)) |
28 | 19, 27 | mpd3an3 1333 | 1 ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → (𝑀𝐸𝑁) = if(𝑁 = 0, 〈𝑀, 𝑁〉, 〈𝑁, (𝑀 mod 𝑁)〉)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 DECID wdc 829 = wceq 1348 ∈ wcel 2141 ≠ wne 2340 Vcvv 2730 ifcif 3526 〈cop 3586 (class class class)co 5853 ∈ cmpo 5855 0cc0 7774 ℕcn 8878 ℕ0cn0 9135 ℤcz 9212 mod cmo 10278 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-mulrcl 7873 ax-addcom 7874 ax-mulcom 7875 ax-addass 7876 ax-mulass 7877 ax-distr 7878 ax-i2m1 7879 ax-0lt1 7880 ax-1rid 7881 ax-0id 7882 ax-rnegex 7883 ax-precex 7884 ax-cnre 7885 ax-pre-ltirr 7886 ax-pre-ltwlin 7887 ax-pre-lttrn 7888 ax-pre-apti 7889 ax-pre-ltadd 7890 ax-pre-mulgt0 7891 ax-pre-mulext 7892 ax-arch 7893 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rmo 2456 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-if 3527 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-po 4281 df-iso 4282 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-fv 5206 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-1st 6119 df-2nd 6120 df-pnf 7956 df-mnf 7957 df-xr 7958 df-ltxr 7959 df-le 7960 df-sub 8092 df-neg 8093 df-reap 8494 df-ap 8501 df-div 8590 df-inn 8879 df-n0 9136 df-z 9213 df-q 9579 df-rp 9611 df-fl 10226 df-mod 10279 |
This theorem is referenced by: eucalgval 12008 |
Copyright terms: Public domain | W3C validator |