Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  eucalgval2 GIF version

Theorem eucalgval2 11770
 Description: The value of the step function 𝐸 for Euclid's Algorithm on an ordered pair. (Contributed by Paul Chapman, 31-Mar-2011.) (Revised by Mario Carneiro, 28-May-2014.)
Hypothesis
Ref Expression
eucalgval.1 𝐸 = (𝑥 ∈ ℕ0, 𝑦 ∈ ℕ0 ↦ if(𝑦 = 0, ⟨𝑥, 𝑦⟩, ⟨𝑦, (𝑥 mod 𝑦)⟩))
Assertion
Ref Expression
eucalgval2 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀𝐸𝑁) = if(𝑁 = 0, ⟨𝑀, 𝑁⟩, ⟨𝑁, (𝑀 mod 𝑁)⟩))
Distinct variable groups:   𝑥,𝑦,𝑀   𝑥,𝑁,𝑦
Allowed substitution hints:   𝐸(𝑥,𝑦)

Proof of Theorem eucalgval2
StepHypRef Expression
1 opexg 4158 . . . 4 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ⟨𝑀, 𝑁⟩ ∈ V)
21adantr 274 . . 3 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁 = 0) → ⟨𝑀, 𝑁⟩ ∈ V)
3 simpr 109 . . . . 5 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → 𝑁 ∈ ℕ0)
43adantr 274 . . . 4 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ ¬ 𝑁 = 0) → 𝑁 ∈ ℕ0)
5 simpl 108 . . . . . . 7 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → 𝑀 ∈ ℕ0)
65nn0zd 9195 . . . . . 6 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → 𝑀 ∈ ℤ)
76adantr 274 . . . . 5 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ ¬ 𝑁 = 0) → 𝑀 ∈ ℤ)
8 simpr 109 . . . . . . 7 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ ¬ 𝑁 = 0) → ¬ 𝑁 = 0)
98neqned 2316 . . . . . 6 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ ¬ 𝑁 = 0) → 𝑁 ≠ 0)
10 elnnne0 9015 . . . . . 6 (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℕ0𝑁 ≠ 0))
114, 9, 10sylanbrc 414 . . . . 5 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ ¬ 𝑁 = 0) → 𝑁 ∈ ℕ)
127, 11zmodcld 10149 . . . 4 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ ¬ 𝑁 = 0) → (𝑀 mod 𝑁) ∈ ℕ0)
13 opexg 4158 . . . 4 ((𝑁 ∈ ℕ0 ∧ (𝑀 mod 𝑁) ∈ ℕ0) → ⟨𝑁, (𝑀 mod 𝑁)⟩ ∈ V)
144, 12, 13syl2anc 409 . . 3 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ ¬ 𝑁 = 0) → ⟨𝑁, (𝑀 mod 𝑁)⟩ ∈ V)
153nn0zd 9195 . . . 4 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → 𝑁 ∈ ℤ)
16 0zd 9090 . . . 4 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → 0 ∈ ℤ)
17 zdceq 9150 . . . 4 ((𝑁 ∈ ℤ ∧ 0 ∈ ℤ) → DECID 𝑁 = 0)
1815, 16, 17syl2anc 409 . . 3 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → DECID 𝑁 = 0)
192, 14, 18ifcldadc 3506 . 2 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → if(𝑁 = 0, ⟨𝑀, 𝑁⟩, ⟨𝑁, (𝑀 mod 𝑁)⟩) ∈ V)
20 simpr 109 . . . . 5 ((𝑥 = 𝑀𝑦 = 𝑁) → 𝑦 = 𝑁)
2120eqeq1d 2149 . . . 4 ((𝑥 = 𝑀𝑦 = 𝑁) → (𝑦 = 0 ↔ 𝑁 = 0))
22 opeq12 3715 . . . 4 ((𝑥 = 𝑀𝑦 = 𝑁) → ⟨𝑥, 𝑦⟩ = ⟨𝑀, 𝑁⟩)
23 oveq12 5791 . . . . 5 ((𝑥 = 𝑀𝑦 = 𝑁) → (𝑥 mod 𝑦) = (𝑀 mod 𝑁))
2420, 23opeq12d 3721 . . . 4 ((𝑥 = 𝑀𝑦 = 𝑁) → ⟨𝑦, (𝑥 mod 𝑦)⟩ = ⟨𝑁, (𝑀 mod 𝑁)⟩)
2521, 22, 24ifbieq12d 3503 . . 3 ((𝑥 = 𝑀𝑦 = 𝑁) → if(𝑦 = 0, ⟨𝑥, 𝑦⟩, ⟨𝑦, (𝑥 mod 𝑦)⟩) = if(𝑁 = 0, ⟨𝑀, 𝑁⟩, ⟨𝑁, (𝑀 mod 𝑁)⟩))
26 eucalgval.1 . . 3 𝐸 = (𝑥 ∈ ℕ0, 𝑦 ∈ ℕ0 ↦ if(𝑦 = 0, ⟨𝑥, 𝑦⟩, ⟨𝑦, (𝑥 mod 𝑦)⟩))
2725, 26ovmpoga 5908 . 2 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0 ∧ if(𝑁 = 0, ⟨𝑀, 𝑁⟩, ⟨𝑁, (𝑀 mod 𝑁)⟩) ∈ V) → (𝑀𝐸𝑁) = if(𝑁 = 0, ⟨𝑀, 𝑁⟩, ⟨𝑁, (𝑀 mod 𝑁)⟩))
2819, 27mpd3an3 1317 1 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀𝐸𝑁) = if(𝑁 = 0, ⟨𝑀, 𝑁⟩, ⟨𝑁, (𝑀 mod 𝑁)⟩))
 Colors of variables: wff set class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 103  DECID wdc 820   = wceq 1332   ∈ wcel 1481   ≠ wne 2309  Vcvv 2689  ifcif 3479  ⟨cop 3535  (class class class)co 5782   ∈ cmpo 5784  0cc0 7644  ℕcn 8744  ℕ0cn0 9001  ℤcz 9078   mod cmo 10126 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-mulrcl 7743  ax-addcom 7744  ax-mulcom 7745  ax-addass 7746  ax-mulass 7747  ax-distr 7748  ax-i2m1 7749  ax-0lt1 7750  ax-1rid 7751  ax-0id 7752  ax-rnegex 7753  ax-precex 7754  ax-cnre 7755  ax-pre-ltirr 7756  ax-pre-ltwlin 7757  ax-pre-lttrn 7758  ax-pre-apti 7759  ax-pre-ltadd 7760  ax-pre-mulgt0 7761  ax-pre-mulext 7762  ax-arch 7763 This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rmo 2425  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-if 3480  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-id 4223  df-po 4226  df-iso 4227  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-fv 5139  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830  df-sub 7959  df-neg 7960  df-reap 8361  df-ap 8368  df-div 8457  df-inn 8745  df-n0 9002  df-z 9079  df-q 9439  df-rp 9471  df-fl 10074  df-mod 10127 This theorem is referenced by:  eucalgval  11771
 Copyright terms: Public domain W3C validator