ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eucalgval2 GIF version

Theorem eucalgval2 11734
Description: The value of the step function 𝐸 for Euclid's Algorithm on an ordered pair. (Contributed by Paul Chapman, 31-Mar-2011.) (Revised by Mario Carneiro, 28-May-2014.)
Hypothesis
Ref Expression
eucalgval.1 𝐸 = (𝑥 ∈ ℕ0, 𝑦 ∈ ℕ0 ↦ if(𝑦 = 0, ⟨𝑥, 𝑦⟩, ⟨𝑦, (𝑥 mod 𝑦)⟩))
Assertion
Ref Expression
eucalgval2 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀𝐸𝑁) = if(𝑁 = 0, ⟨𝑀, 𝑁⟩, ⟨𝑁, (𝑀 mod 𝑁)⟩))
Distinct variable groups:   𝑥,𝑦,𝑀   𝑥,𝑁,𝑦
Allowed substitution hints:   𝐸(𝑥,𝑦)

Proof of Theorem eucalgval2
StepHypRef Expression
1 opexg 4150 . . . 4 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ⟨𝑀, 𝑁⟩ ∈ V)
21adantr 274 . . 3 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁 = 0) → ⟨𝑀, 𝑁⟩ ∈ V)
3 simpr 109 . . . . 5 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → 𝑁 ∈ ℕ0)
43adantr 274 . . . 4 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ ¬ 𝑁 = 0) → 𝑁 ∈ ℕ0)
5 simpl 108 . . . . . . 7 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → 𝑀 ∈ ℕ0)
65nn0zd 9171 . . . . . 6 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → 𝑀 ∈ ℤ)
76adantr 274 . . . . 5 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ ¬ 𝑁 = 0) → 𝑀 ∈ ℤ)
8 simpr 109 . . . . . . 7 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ ¬ 𝑁 = 0) → ¬ 𝑁 = 0)
98neqned 2315 . . . . . 6 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ ¬ 𝑁 = 0) → 𝑁 ≠ 0)
10 elnnne0 8991 . . . . . 6 (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℕ0𝑁 ≠ 0))
114, 9, 10sylanbrc 413 . . . . 5 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ ¬ 𝑁 = 0) → 𝑁 ∈ ℕ)
127, 11zmodcld 10118 . . . 4 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ ¬ 𝑁 = 0) → (𝑀 mod 𝑁) ∈ ℕ0)
13 opexg 4150 . . . 4 ((𝑁 ∈ ℕ0 ∧ (𝑀 mod 𝑁) ∈ ℕ0) → ⟨𝑁, (𝑀 mod 𝑁)⟩ ∈ V)
144, 12, 13syl2anc 408 . . 3 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ ¬ 𝑁 = 0) → ⟨𝑁, (𝑀 mod 𝑁)⟩ ∈ V)
153nn0zd 9171 . . . 4 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → 𝑁 ∈ ℤ)
16 0zd 9066 . . . 4 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → 0 ∈ ℤ)
17 zdceq 9126 . . . 4 ((𝑁 ∈ ℤ ∧ 0 ∈ ℤ) → DECID 𝑁 = 0)
1815, 16, 17syl2anc 408 . . 3 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → DECID 𝑁 = 0)
192, 14, 18ifcldadc 3501 . 2 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → if(𝑁 = 0, ⟨𝑀, 𝑁⟩, ⟨𝑁, (𝑀 mod 𝑁)⟩) ∈ V)
20 simpr 109 . . . . 5 ((𝑥 = 𝑀𝑦 = 𝑁) → 𝑦 = 𝑁)
2120eqeq1d 2148 . . . 4 ((𝑥 = 𝑀𝑦 = 𝑁) → (𝑦 = 0 ↔ 𝑁 = 0))
22 opeq12 3707 . . . 4 ((𝑥 = 𝑀𝑦 = 𝑁) → ⟨𝑥, 𝑦⟩ = ⟨𝑀, 𝑁⟩)
23 oveq12 5783 . . . . 5 ((𝑥 = 𝑀𝑦 = 𝑁) → (𝑥 mod 𝑦) = (𝑀 mod 𝑁))
2420, 23opeq12d 3713 . . . 4 ((𝑥 = 𝑀𝑦 = 𝑁) → ⟨𝑦, (𝑥 mod 𝑦)⟩ = ⟨𝑁, (𝑀 mod 𝑁)⟩)
2521, 22, 24ifbieq12d 3498 . . 3 ((𝑥 = 𝑀𝑦 = 𝑁) → if(𝑦 = 0, ⟨𝑥, 𝑦⟩, ⟨𝑦, (𝑥 mod 𝑦)⟩) = if(𝑁 = 0, ⟨𝑀, 𝑁⟩, ⟨𝑁, (𝑀 mod 𝑁)⟩))
26 eucalgval.1 . . 3 𝐸 = (𝑥 ∈ ℕ0, 𝑦 ∈ ℕ0 ↦ if(𝑦 = 0, ⟨𝑥, 𝑦⟩, ⟨𝑦, (𝑥 mod 𝑦)⟩))
2725, 26ovmpoga 5900 . 2 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0 ∧ if(𝑁 = 0, ⟨𝑀, 𝑁⟩, ⟨𝑁, (𝑀 mod 𝑁)⟩) ∈ V) → (𝑀𝐸𝑁) = if(𝑁 = 0, ⟨𝑀, 𝑁⟩, ⟨𝑁, (𝑀 mod 𝑁)⟩))
2819, 27mpd3an3 1316 1 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀𝐸𝑁) = if(𝑁 = 0, ⟨𝑀, 𝑁⟩, ⟨𝑁, (𝑀 mod 𝑁)⟩))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  DECID wdc 819   = wceq 1331  wcel 1480  wne 2308  Vcvv 2686  ifcif 3474  cop 3530  (class class class)co 5774  cmpo 5776  0cc0 7620  cn 8720  0cn0 8977  cz 9054   mod cmo 10095
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-mulrcl 7719  ax-addcom 7720  ax-mulcom 7721  ax-addass 7722  ax-mulass 7723  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-1rid 7727  ax-0id 7728  ax-rnegex 7729  ax-precex 7730  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-apti 7735  ax-pre-ltadd 7736  ax-pre-mulgt0 7737  ax-pre-mulext 7738  ax-arch 7739
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-po 4218  df-iso 4219  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-reap 8337  df-ap 8344  df-div 8433  df-inn 8721  df-n0 8978  df-z 9055  df-q 9412  df-rp 9442  df-fl 10043  df-mod 10096
This theorem is referenced by:  eucalgval  11735
  Copyright terms: Public domain W3C validator