| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > prodge0 | GIF version | ||
| Description: Infer that a multiplicand is nonnegative from a positive multiplier and nonnegative product. (Contributed by NM, 2-Jul-2005.) (Revised by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| prodge0 | ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 < 𝐴 ∧ 0 ≤ (𝐴 · 𝐵))) → 0 ≤ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpll 527 | . . . . . . . 8 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 < 𝐴 ∧ 0 < -𝐵)) → 𝐴 ∈ ℝ) | |
| 2 | simplr 528 | . . . . . . . . 9 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 < 𝐴 ∧ 0 < -𝐵)) → 𝐵 ∈ ℝ) | |
| 3 | 2 | renegcld 8459 | . . . . . . . 8 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 < 𝐴 ∧ 0 < -𝐵)) → -𝐵 ∈ ℝ) |
| 4 | simprl 529 | . . . . . . . 8 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 < 𝐴 ∧ 0 < -𝐵)) → 0 < 𝐴) | |
| 5 | simprr 531 | . . . . . . . 8 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 < 𝐴 ∧ 0 < -𝐵)) → 0 < -𝐵) | |
| 6 | 1, 3, 4, 5 | mulgt0d 8202 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 < 𝐴 ∧ 0 < -𝐵)) → 0 < (𝐴 · -𝐵)) |
| 7 | 1 | recnd 8108 | . . . . . . . 8 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 < 𝐴 ∧ 0 < -𝐵)) → 𝐴 ∈ ℂ) |
| 8 | 2 | recnd 8108 | . . . . . . . 8 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 < 𝐴 ∧ 0 < -𝐵)) → 𝐵 ∈ ℂ) |
| 9 | 7, 8 | mulneg2d 8491 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 < 𝐴 ∧ 0 < -𝐵)) → (𝐴 · -𝐵) = -(𝐴 · 𝐵)) |
| 10 | 6, 9 | breqtrd 4073 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 < 𝐴 ∧ 0 < -𝐵)) → 0 < -(𝐴 · 𝐵)) |
| 11 | 10 | expr 375 | . . . . 5 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < 𝐴) → (0 < -𝐵 → 0 < -(𝐴 · 𝐵))) |
| 12 | simplr 528 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < 𝐴) → 𝐵 ∈ ℝ) | |
| 13 | 12 | lt0neg1d 8595 | . . . . 5 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < 𝐴) → (𝐵 < 0 ↔ 0 < -𝐵)) |
| 14 | simpll 527 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < 𝐴) → 𝐴 ∈ ℝ) | |
| 15 | 14, 12 | remulcld 8110 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < 𝐴) → (𝐴 · 𝐵) ∈ ℝ) |
| 16 | 15 | lt0neg1d 8595 | . . . . 5 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < 𝐴) → ((𝐴 · 𝐵) < 0 ↔ 0 < -(𝐴 · 𝐵))) |
| 17 | 11, 13, 16 | 3imtr4d 203 | . . . 4 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < 𝐴) → (𝐵 < 0 → (𝐴 · 𝐵) < 0)) |
| 18 | 17 | con3d 632 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < 𝐴) → (¬ (𝐴 · 𝐵) < 0 → ¬ 𝐵 < 0)) |
| 19 | 0red 8080 | . . . 4 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < 𝐴) → 0 ∈ ℝ) | |
| 20 | 19, 15 | lenltd 8197 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < 𝐴) → (0 ≤ (𝐴 · 𝐵) ↔ ¬ (𝐴 · 𝐵) < 0)) |
| 21 | 19, 12 | lenltd 8197 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < 𝐴) → (0 ≤ 𝐵 ↔ ¬ 𝐵 < 0)) |
| 22 | 18, 20, 21 | 3imtr4d 203 | . 2 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < 𝐴) → (0 ≤ (𝐴 · 𝐵) → 0 ≤ 𝐵)) |
| 23 | 22 | impr 379 | 1 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 < 𝐴 ∧ 0 ≤ (𝐴 · 𝐵))) → 0 ≤ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ∈ wcel 2177 class class class wbr 4047 (class class class)co 5951 ℝcr 7931 0cc0 7932 · cmul 7937 < clt 8114 ≤ cle 8115 -cneg 8251 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4166 ax-pow 4222 ax-pr 4257 ax-un 4484 ax-setind 4589 ax-cnex 8023 ax-resscn 8024 ax-1cn 8025 ax-1re 8026 ax-icn 8027 ax-addcl 8028 ax-addrcl 8029 ax-mulcl 8030 ax-mulrcl 8031 ax-addcom 8032 ax-mulcom 8033 ax-addass 8034 ax-distr 8036 ax-i2m1 8037 ax-0id 8040 ax-rnegex 8041 ax-cnre 8043 ax-pre-ltadd 8048 ax-pre-mulgt0 8049 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3000 df-dif 3169 df-un 3171 df-in 3173 df-ss 3180 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-br 4048 df-opab 4110 df-id 4344 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-iota 5237 df-fun 5278 df-fv 5284 df-riota 5906 df-ov 5954 df-oprab 5955 df-mpo 5956 df-pnf 8116 df-mnf 8117 df-xr 8118 df-ltxr 8119 df-le 8120 df-sub 8252 df-neg 8253 |
| This theorem is referenced by: prodge02 8935 prodge0i 8989 oexpneg 12232 evennn02n 12237 |
| Copyright terms: Public domain | W3C validator |