ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prodge0 GIF version

Theorem prodge0 8749
Description: Infer that a multiplicand is nonnegative from a positive multiplier and nonnegative product. (Contributed by NM, 2-Jul-2005.) (Revised by Mario Carneiro, 27-May-2016.)
Assertion
Ref Expression
prodge0 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 < 𝐴 ∧ 0 ≤ (𝐴 · 𝐵))) → 0 ≤ 𝐵)

Proof of Theorem prodge0
StepHypRef Expression
1 simpll 519 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 < 𝐴 ∧ 0 < -𝐵)) → 𝐴 ∈ ℝ)
2 simplr 520 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 < 𝐴 ∧ 0 < -𝐵)) → 𝐵 ∈ ℝ)
32renegcld 8278 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 < 𝐴 ∧ 0 < -𝐵)) → -𝐵 ∈ ℝ)
4 simprl 521 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 < 𝐴 ∧ 0 < -𝐵)) → 0 < 𝐴)
5 simprr 522 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 < 𝐴 ∧ 0 < -𝐵)) → 0 < -𝐵)
61, 3, 4, 5mulgt0d 8021 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 < 𝐴 ∧ 0 < -𝐵)) → 0 < (𝐴 · -𝐵))
71recnd 7927 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 < 𝐴 ∧ 0 < -𝐵)) → 𝐴 ∈ ℂ)
82recnd 7927 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 < 𝐴 ∧ 0 < -𝐵)) → 𝐵 ∈ ℂ)
97, 8mulneg2d 8310 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 < 𝐴 ∧ 0 < -𝐵)) → (𝐴 · -𝐵) = -(𝐴 · 𝐵))
106, 9breqtrd 4008 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 < 𝐴 ∧ 0 < -𝐵)) → 0 < -(𝐴 · 𝐵))
1110expr 373 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < 𝐴) → (0 < -𝐵 → 0 < -(𝐴 · 𝐵)))
12 simplr 520 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < 𝐴) → 𝐵 ∈ ℝ)
1312lt0neg1d 8413 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < 𝐴) → (𝐵 < 0 ↔ 0 < -𝐵))
14 simpll 519 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < 𝐴) → 𝐴 ∈ ℝ)
1514, 12remulcld 7929 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < 𝐴) → (𝐴 · 𝐵) ∈ ℝ)
1615lt0neg1d 8413 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < 𝐴) → ((𝐴 · 𝐵) < 0 ↔ 0 < -(𝐴 · 𝐵)))
1711, 13, 163imtr4d 202 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < 𝐴) → (𝐵 < 0 → (𝐴 · 𝐵) < 0))
1817con3d 621 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < 𝐴) → (¬ (𝐴 · 𝐵) < 0 → ¬ 𝐵 < 0))
19 0red 7900 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < 𝐴) → 0 ∈ ℝ)
2019, 15lenltd 8016 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < 𝐴) → (0 ≤ (𝐴 · 𝐵) ↔ ¬ (𝐴 · 𝐵) < 0))
2119, 12lenltd 8016 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < 𝐴) → (0 ≤ 𝐵 ↔ ¬ 𝐵 < 0))
2218, 20, 213imtr4d 202 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < 𝐴) → (0 ≤ (𝐴 · 𝐵) → 0 ≤ 𝐵))
2322impr 377 1 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 < 𝐴 ∧ 0 ≤ (𝐴 · 𝐵))) → 0 ≤ 𝐵)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wcel 2136   class class class wbr 3982  (class class class)co 5842  cr 7752  0cc0 7753   · cmul 7758   < clt 7933  cle 7934  -cneg 8070
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-distr 7857  ax-i2m1 7858  ax-0id 7861  ax-rnegex 7862  ax-cnre 7864  ax-pre-ltadd 7869  ax-pre-mulgt0 7870
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-iota 5153  df-fun 5190  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072
This theorem is referenced by:  prodge02  8750  prodge0i  8804  oexpneg  11814  evennn02n  11819
  Copyright terms: Public domain W3C validator