ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  climrecvg1n GIF version

Theorem climrecvg1n 11494
Description: A Cauchy sequence of real numbers converges, existence version. The rate of convergence is fixed: all terms after the nth term must be within 𝐶 / 𝑛 of the nth term, where 𝐶 is a constant multiplier. (Contributed by Jim Kingdon, 23-Aug-2021.)
Hypotheses
Ref Expression
climrecvg1n.f (𝜑𝐹:ℕ⟶ℝ)
climrecvg1n.c (𝜑𝐶 ∈ ℝ+)
climrecvg1n.cau (𝜑 → ∀𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)(abs‘((𝐹𝑘) − (𝐹𝑛))) < (𝐶 / 𝑛))
Assertion
Ref Expression
climrecvg1n (𝜑𝐹 ∈ dom ⇝ )
Distinct variable groups:   𝐶,𝑘,𝑛   𝑘,𝐹,𝑛   𝜑,𝑘,𝑛

Proof of Theorem climrecvg1n
Dummy variables 𝑒 𝑖 𝑗 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 climrecvg1n.f . . 3 (𝜑𝐹:ℕ⟶ℝ)
2 climrecvg1n.c . . 3 (𝜑𝐶 ∈ ℝ+)
3 climrecvg1n.cau . . . . . . . . 9 (𝜑 → ∀𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)(abs‘((𝐹𝑘) − (𝐹𝑛))) < (𝐶 / 𝑛))
43r19.21bi 2582 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → ∀𝑘 ∈ (ℤ𝑛)(abs‘((𝐹𝑘) − (𝐹𝑛))) < (𝐶 / 𝑛))
54r19.21bi 2582 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (abs‘((𝐹𝑘) − (𝐹𝑛))) < (𝐶 / 𝑛))
61ad2antrr 488 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → 𝐹:ℕ⟶ℝ)
7 eluznn 9668 . . . . . . . . . 10 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑛)) → 𝑘 ∈ ℕ)
87adantll 476 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → 𝑘 ∈ ℕ)
96, 8ffvelcdmd 5695 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (𝐹𝑘) ∈ ℝ)
10 simplr 528 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → 𝑛 ∈ ℕ)
116, 10ffvelcdmd 5695 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (𝐹𝑛) ∈ ℝ)
122ad2antrr 488 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → 𝐶 ∈ ℝ+)
1310nnrpd 9763 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → 𝑛 ∈ ℝ+)
1412, 13rpdivcld 9783 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (𝐶 / 𝑛) ∈ ℝ+)
1514rpred 9765 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (𝐶 / 𝑛) ∈ ℝ)
169, 11, 15absdifltd 11325 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → ((abs‘((𝐹𝑘) − (𝐹𝑛))) < (𝐶 / 𝑛) ↔ (((𝐹𝑛) − (𝐶 / 𝑛)) < (𝐹𝑘) ∧ (𝐹𝑘) < ((𝐹𝑛) + (𝐶 / 𝑛)))))
175, 16mpbid 147 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (((𝐹𝑛) − (𝐶 / 𝑛)) < (𝐹𝑘) ∧ (𝐹𝑘) < ((𝐹𝑛) + (𝐶 / 𝑛))))
1811, 15, 9ltsubaddd 8562 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (((𝐹𝑛) − (𝐶 / 𝑛)) < (𝐹𝑘) ↔ (𝐹𝑛) < ((𝐹𝑘) + (𝐶 / 𝑛))))
1918anbi1d 465 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → ((((𝐹𝑛) − (𝐶 / 𝑛)) < (𝐹𝑘) ∧ (𝐹𝑘) < ((𝐹𝑛) + (𝐶 / 𝑛))) ↔ ((𝐹𝑛) < ((𝐹𝑘) + (𝐶 / 𝑛)) ∧ (𝐹𝑘) < ((𝐹𝑛) + (𝐶 / 𝑛)))))
2017, 19mpbid 147 . . . . 5 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → ((𝐹𝑛) < ((𝐹𝑘) + (𝐶 / 𝑛)) ∧ (𝐹𝑘) < ((𝐹𝑛) + (𝐶 / 𝑛))))
2120ralrimiva 2567 . . . 4 ((𝜑𝑛 ∈ ℕ) → ∀𝑘 ∈ (ℤ𝑛)((𝐹𝑛) < ((𝐹𝑘) + (𝐶 / 𝑛)) ∧ (𝐹𝑘) < ((𝐹𝑛) + (𝐶 / 𝑛))))
2221ralrimiva 2567 . . 3 (𝜑 → ∀𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)((𝐹𝑛) < ((𝐹𝑘) + (𝐶 / 𝑛)) ∧ (𝐹𝑘) < ((𝐹𝑛) + (𝐶 / 𝑛))))
231, 2, 22cvg1n 11133 . 2 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑒 ∈ ℝ+𝑖 ∈ ℕ ∀𝑗 ∈ (ℤ𝑖)((𝐹𝑗) < (𝑦 + 𝑒) ∧ 𝑦 < ((𝐹𝑗) + 𝑒)))
241adantr 276 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ ℝ) → 𝐹:ℕ⟶ℝ)
2524ad3antrrr 492 . . . . . . . . . . 11 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑖 ∈ ℕ) ∧ 𝑗 ∈ (ℤ𝑖)) → 𝐹:ℕ⟶ℝ)
26 eluznn 9668 . . . . . . . . . . . 12 ((𝑖 ∈ ℕ ∧ 𝑗 ∈ (ℤ𝑖)) → 𝑗 ∈ ℕ)
2726adantll 476 . . . . . . . . . . 11 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑖 ∈ ℕ) ∧ 𝑗 ∈ (ℤ𝑖)) → 𝑗 ∈ ℕ)
2825, 27ffvelcdmd 5695 . . . . . . . . . 10 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑖 ∈ ℕ) ∧ 𝑗 ∈ (ℤ𝑖)) → (𝐹𝑗) ∈ ℝ)
29 simpr 110 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ℝ) → 𝑦 ∈ ℝ)
3029ad3antrrr 492 . . . . . . . . . 10 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑖 ∈ ℕ) ∧ 𝑗 ∈ (ℤ𝑖)) → 𝑦 ∈ ℝ)
31 simpllr 534 . . . . . . . . . . 11 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑖 ∈ ℕ) ∧ 𝑗 ∈ (ℤ𝑖)) → 𝑒 ∈ ℝ+)
3231rpred 9765 . . . . . . . . . 10 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑖 ∈ ℕ) ∧ 𝑗 ∈ (ℤ𝑖)) → 𝑒 ∈ ℝ)
3328, 30, 32absdifltd 11325 . . . . . . . . 9 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑖 ∈ ℕ) ∧ 𝑗 ∈ (ℤ𝑖)) → ((abs‘((𝐹𝑗) − 𝑦)) < 𝑒 ↔ ((𝑦𝑒) < (𝐹𝑗) ∧ (𝐹𝑗) < (𝑦 + 𝑒))))
3430, 32, 28ltsubaddd 8562 . . . . . . . . . 10 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑖 ∈ ℕ) ∧ 𝑗 ∈ (ℤ𝑖)) → ((𝑦𝑒) < (𝐹𝑗) ↔ 𝑦 < ((𝐹𝑗) + 𝑒)))
3534anbi1d 465 . . . . . . . . 9 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑖 ∈ ℕ) ∧ 𝑗 ∈ (ℤ𝑖)) → (((𝑦𝑒) < (𝐹𝑗) ∧ (𝐹𝑗) < (𝑦 + 𝑒)) ↔ (𝑦 < ((𝐹𝑗) + 𝑒) ∧ (𝐹𝑗) < (𝑦 + 𝑒))))
3633, 35bitrd 188 . . . . . . . 8 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑖 ∈ ℕ) ∧ 𝑗 ∈ (ℤ𝑖)) → ((abs‘((𝐹𝑗) − 𝑦)) < 𝑒 ↔ (𝑦 < ((𝐹𝑗) + 𝑒) ∧ (𝐹𝑗) < (𝑦 + 𝑒))))
37 ancom 266 . . . . . . . 8 ((𝑦 < ((𝐹𝑗) + 𝑒) ∧ (𝐹𝑗) < (𝑦 + 𝑒)) ↔ ((𝐹𝑗) < (𝑦 + 𝑒) ∧ 𝑦 < ((𝐹𝑗) + 𝑒)))
3836, 37bitrdi 196 . . . . . . 7 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑖 ∈ ℕ) ∧ 𝑗 ∈ (ℤ𝑖)) → ((abs‘((𝐹𝑗) − 𝑦)) < 𝑒 ↔ ((𝐹𝑗) < (𝑦 + 𝑒) ∧ 𝑦 < ((𝐹𝑗) + 𝑒))))
3938ralbidva 2490 . . . . . 6 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑖 ∈ ℕ) → (∀𝑗 ∈ (ℤ𝑖)(abs‘((𝐹𝑗) − 𝑦)) < 𝑒 ↔ ∀𝑗 ∈ (ℤ𝑖)((𝐹𝑗) < (𝑦 + 𝑒) ∧ 𝑦 < ((𝐹𝑗) + 𝑒))))
4039rexbidva 2491 . . . . 5 (((𝜑𝑦 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) → (∃𝑖 ∈ ℕ ∀𝑗 ∈ (ℤ𝑖)(abs‘((𝐹𝑗) − 𝑦)) < 𝑒 ↔ ∃𝑖 ∈ ℕ ∀𝑗 ∈ (ℤ𝑖)((𝐹𝑗) < (𝑦 + 𝑒) ∧ 𝑦 < ((𝐹𝑗) + 𝑒))))
4140ralbidva 2490 . . . 4 ((𝜑𝑦 ∈ ℝ) → (∀𝑒 ∈ ℝ+𝑖 ∈ ℕ ∀𝑗 ∈ (ℤ𝑖)(abs‘((𝐹𝑗) − 𝑦)) < 𝑒 ↔ ∀𝑒 ∈ ℝ+𝑖 ∈ ℕ ∀𝑗 ∈ (ℤ𝑖)((𝐹𝑗) < (𝑦 + 𝑒) ∧ 𝑦 < ((𝐹𝑗) + 𝑒))))
42 nnuz 9631 . . . . . 6 ℕ = (ℤ‘1)
43 1zzd 9347 . . . . . 6 ((𝜑𝑦 ∈ ℝ) → 1 ∈ ℤ)
44 nnex 8990 . . . . . . . 8 ℕ ∈ V
4544a1i 9 . . . . . . 7 ((𝜑𝑦 ∈ ℝ) → ℕ ∈ V)
46 reex 8008 . . . . . . . 8 ℝ ∈ V
4746a1i 9 . . . . . . 7 ((𝜑𝑦 ∈ ℝ) → ℝ ∈ V)
48 fex2 5423 . . . . . . 7 ((𝐹:ℕ⟶ℝ ∧ ℕ ∈ V ∧ ℝ ∈ V) → 𝐹 ∈ V)
4924, 45, 47, 48syl3anc 1249 . . . . . 6 ((𝜑𝑦 ∈ ℝ) → 𝐹 ∈ V)
50 eqidd 2194 . . . . . 6 (((𝜑𝑦 ∈ ℝ) ∧ 𝑗 ∈ ℕ) → (𝐹𝑗) = (𝐹𝑗))
5129recnd 8050 . . . . . 6 ((𝜑𝑦 ∈ ℝ) → 𝑦 ∈ ℂ)
5224ffvelcdmda 5694 . . . . . . 7 (((𝜑𝑦 ∈ ℝ) ∧ 𝑗 ∈ ℕ) → (𝐹𝑗) ∈ ℝ)
5352recnd 8050 . . . . . 6 (((𝜑𝑦 ∈ ℝ) ∧ 𝑗 ∈ ℕ) → (𝐹𝑗) ∈ ℂ)
5442, 43, 49, 50, 51, 53clim2c 11430 . . . . 5 ((𝜑𝑦 ∈ ℝ) → (𝐹𝑦 ↔ ∀𝑒 ∈ ℝ+𝑖 ∈ ℕ ∀𝑗 ∈ (ℤ𝑖)(abs‘((𝐹𝑗) − 𝑦)) < 𝑒))
55 climrel 11426 . . . . . 6 Rel ⇝
5655releldmi 4902 . . . . 5 (𝐹𝑦𝐹 ∈ dom ⇝ )
5754, 56biimtrrdi 164 . . . 4 ((𝜑𝑦 ∈ ℝ) → (∀𝑒 ∈ ℝ+𝑖 ∈ ℕ ∀𝑗 ∈ (ℤ𝑖)(abs‘((𝐹𝑗) − 𝑦)) < 𝑒𝐹 ∈ dom ⇝ ))
5841, 57sylbird 170 . . 3 ((𝜑𝑦 ∈ ℝ) → (∀𝑒 ∈ ℝ+𝑖 ∈ ℕ ∀𝑗 ∈ (ℤ𝑖)((𝐹𝑗) < (𝑦 + 𝑒) ∧ 𝑦 < ((𝐹𝑗) + 𝑒)) → 𝐹 ∈ dom ⇝ ))
5958impr 379 . 2 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑒 ∈ ℝ+𝑖 ∈ ℕ ∀𝑗 ∈ (ℤ𝑖)((𝐹𝑗) < (𝑦 + 𝑒) ∧ 𝑦 < ((𝐹𝑗) + 𝑒)))) → 𝐹 ∈ dom ⇝ )
6023, 59rexlimddv 2616 1 (𝜑𝐹 ∈ dom ⇝ )
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wcel 2164  wral 2472  wrex 2473  Vcvv 2760   class class class wbr 4030  dom cdm 4660  wf 5251  cfv 5255  (class class class)co 5919  cr 7873  1c1 7875   + caddc 7877   < clt 8056  cmin 8192   / cdiv 8693  cn 8984  cuz 9595  +crp 9722  abscabs 11144  cli 11424
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-mulrcl 7973  ax-addcom 7974  ax-mulcom 7975  ax-addass 7976  ax-mulass 7977  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-1rid 7981  ax-0id 7982  ax-rnegex 7983  ax-precex 7984  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-apti 7989  ax-pre-ltadd 7990  ax-pre-mulgt0 7991  ax-pre-mulext 7992  ax-arch 7993  ax-caucvg 7994
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-if 3559  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-id 4325  df-po 4328  df-iso 4329  df-iord 4398  df-on 4400  df-ilim 4401  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-recs 6360  df-frec 6446  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-reap 8596  df-ap 8603  df-div 8694  df-inn 8985  df-2 9043  df-3 9044  df-4 9045  df-n0 9244  df-z 9321  df-uz 9596  df-rp 9723  df-seqfrec 10522  df-exp 10613  df-cj 10989  df-re 10990  df-im 10991  df-rsqrt 11145  df-abs 11146  df-clim 11425
This theorem is referenced by:  climcvg1nlem  11495
  Copyright terms: Public domain W3C validator