ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  climrecvg1n GIF version

Theorem climrecvg1n 11659
Description: A Cauchy sequence of real numbers converges, existence version. The rate of convergence is fixed: all terms after the nth term must be within 𝐶 / 𝑛 of the nth term, where 𝐶 is a constant multiplier. (Contributed by Jim Kingdon, 23-Aug-2021.)
Hypotheses
Ref Expression
climrecvg1n.f (𝜑𝐹:ℕ⟶ℝ)
climrecvg1n.c (𝜑𝐶 ∈ ℝ+)
climrecvg1n.cau (𝜑 → ∀𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)(abs‘((𝐹𝑘) − (𝐹𝑛))) < (𝐶 / 𝑛))
Assertion
Ref Expression
climrecvg1n (𝜑𝐹 ∈ dom ⇝ )
Distinct variable groups:   𝐶,𝑘,𝑛   𝑘,𝐹,𝑛   𝜑,𝑘,𝑛

Proof of Theorem climrecvg1n
Dummy variables 𝑒 𝑖 𝑗 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 climrecvg1n.f . . 3 (𝜑𝐹:ℕ⟶ℝ)
2 climrecvg1n.c . . 3 (𝜑𝐶 ∈ ℝ+)
3 climrecvg1n.cau . . . . . . . . 9 (𝜑 → ∀𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)(abs‘((𝐹𝑘) − (𝐹𝑛))) < (𝐶 / 𝑛))
43r19.21bi 2594 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → ∀𝑘 ∈ (ℤ𝑛)(abs‘((𝐹𝑘) − (𝐹𝑛))) < (𝐶 / 𝑛))
54r19.21bi 2594 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (abs‘((𝐹𝑘) − (𝐹𝑛))) < (𝐶 / 𝑛))
61ad2antrr 488 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → 𝐹:ℕ⟶ℝ)
7 eluznn 9721 . . . . . . . . . 10 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑛)) → 𝑘 ∈ ℕ)
87adantll 476 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → 𝑘 ∈ ℕ)
96, 8ffvelcdmd 5716 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (𝐹𝑘) ∈ ℝ)
10 simplr 528 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → 𝑛 ∈ ℕ)
116, 10ffvelcdmd 5716 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (𝐹𝑛) ∈ ℝ)
122ad2antrr 488 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → 𝐶 ∈ ℝ+)
1310nnrpd 9816 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → 𝑛 ∈ ℝ+)
1412, 13rpdivcld 9836 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (𝐶 / 𝑛) ∈ ℝ+)
1514rpred 9818 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (𝐶 / 𝑛) ∈ ℝ)
169, 11, 15absdifltd 11489 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → ((abs‘((𝐹𝑘) − (𝐹𝑛))) < (𝐶 / 𝑛) ↔ (((𝐹𝑛) − (𝐶 / 𝑛)) < (𝐹𝑘) ∧ (𝐹𝑘) < ((𝐹𝑛) + (𝐶 / 𝑛)))))
175, 16mpbid 147 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (((𝐹𝑛) − (𝐶 / 𝑛)) < (𝐹𝑘) ∧ (𝐹𝑘) < ((𝐹𝑛) + (𝐶 / 𝑛))))
1811, 15, 9ltsubaddd 8614 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (((𝐹𝑛) − (𝐶 / 𝑛)) < (𝐹𝑘) ↔ (𝐹𝑛) < ((𝐹𝑘) + (𝐶 / 𝑛))))
1918anbi1d 465 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → ((((𝐹𝑛) − (𝐶 / 𝑛)) < (𝐹𝑘) ∧ (𝐹𝑘) < ((𝐹𝑛) + (𝐶 / 𝑛))) ↔ ((𝐹𝑛) < ((𝐹𝑘) + (𝐶 / 𝑛)) ∧ (𝐹𝑘) < ((𝐹𝑛) + (𝐶 / 𝑛)))))
2017, 19mpbid 147 . . . . 5 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → ((𝐹𝑛) < ((𝐹𝑘) + (𝐶 / 𝑛)) ∧ (𝐹𝑘) < ((𝐹𝑛) + (𝐶 / 𝑛))))
2120ralrimiva 2579 . . . 4 ((𝜑𝑛 ∈ ℕ) → ∀𝑘 ∈ (ℤ𝑛)((𝐹𝑛) < ((𝐹𝑘) + (𝐶 / 𝑛)) ∧ (𝐹𝑘) < ((𝐹𝑛) + (𝐶 / 𝑛))))
2221ralrimiva 2579 . . 3 (𝜑 → ∀𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)((𝐹𝑛) < ((𝐹𝑘) + (𝐶 / 𝑛)) ∧ (𝐹𝑘) < ((𝐹𝑛) + (𝐶 / 𝑛))))
231, 2, 22cvg1n 11297 . 2 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑒 ∈ ℝ+𝑖 ∈ ℕ ∀𝑗 ∈ (ℤ𝑖)((𝐹𝑗) < (𝑦 + 𝑒) ∧ 𝑦 < ((𝐹𝑗) + 𝑒)))
241adantr 276 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ ℝ) → 𝐹:ℕ⟶ℝ)
2524ad3antrrr 492 . . . . . . . . . . 11 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑖 ∈ ℕ) ∧ 𝑗 ∈ (ℤ𝑖)) → 𝐹:ℕ⟶ℝ)
26 eluznn 9721 . . . . . . . . . . . 12 ((𝑖 ∈ ℕ ∧ 𝑗 ∈ (ℤ𝑖)) → 𝑗 ∈ ℕ)
2726adantll 476 . . . . . . . . . . 11 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑖 ∈ ℕ) ∧ 𝑗 ∈ (ℤ𝑖)) → 𝑗 ∈ ℕ)
2825, 27ffvelcdmd 5716 . . . . . . . . . 10 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑖 ∈ ℕ) ∧ 𝑗 ∈ (ℤ𝑖)) → (𝐹𝑗) ∈ ℝ)
29 simpr 110 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ℝ) → 𝑦 ∈ ℝ)
3029ad3antrrr 492 . . . . . . . . . 10 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑖 ∈ ℕ) ∧ 𝑗 ∈ (ℤ𝑖)) → 𝑦 ∈ ℝ)
31 simpllr 534 . . . . . . . . . . 11 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑖 ∈ ℕ) ∧ 𝑗 ∈ (ℤ𝑖)) → 𝑒 ∈ ℝ+)
3231rpred 9818 . . . . . . . . . 10 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑖 ∈ ℕ) ∧ 𝑗 ∈ (ℤ𝑖)) → 𝑒 ∈ ℝ)
3328, 30, 32absdifltd 11489 . . . . . . . . 9 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑖 ∈ ℕ) ∧ 𝑗 ∈ (ℤ𝑖)) → ((abs‘((𝐹𝑗) − 𝑦)) < 𝑒 ↔ ((𝑦𝑒) < (𝐹𝑗) ∧ (𝐹𝑗) < (𝑦 + 𝑒))))
3430, 32, 28ltsubaddd 8614 . . . . . . . . . 10 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑖 ∈ ℕ) ∧ 𝑗 ∈ (ℤ𝑖)) → ((𝑦𝑒) < (𝐹𝑗) ↔ 𝑦 < ((𝐹𝑗) + 𝑒)))
3534anbi1d 465 . . . . . . . . 9 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑖 ∈ ℕ) ∧ 𝑗 ∈ (ℤ𝑖)) → (((𝑦𝑒) < (𝐹𝑗) ∧ (𝐹𝑗) < (𝑦 + 𝑒)) ↔ (𝑦 < ((𝐹𝑗) + 𝑒) ∧ (𝐹𝑗) < (𝑦 + 𝑒))))
3633, 35bitrd 188 . . . . . . . 8 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑖 ∈ ℕ) ∧ 𝑗 ∈ (ℤ𝑖)) → ((abs‘((𝐹𝑗) − 𝑦)) < 𝑒 ↔ (𝑦 < ((𝐹𝑗) + 𝑒) ∧ (𝐹𝑗) < (𝑦 + 𝑒))))
37 ancom 266 . . . . . . . 8 ((𝑦 < ((𝐹𝑗) + 𝑒) ∧ (𝐹𝑗) < (𝑦 + 𝑒)) ↔ ((𝐹𝑗) < (𝑦 + 𝑒) ∧ 𝑦 < ((𝐹𝑗) + 𝑒)))
3836, 37bitrdi 196 . . . . . . 7 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑖 ∈ ℕ) ∧ 𝑗 ∈ (ℤ𝑖)) → ((abs‘((𝐹𝑗) − 𝑦)) < 𝑒 ↔ ((𝐹𝑗) < (𝑦 + 𝑒) ∧ 𝑦 < ((𝐹𝑗) + 𝑒))))
3938ralbidva 2502 . . . . . 6 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑖 ∈ ℕ) → (∀𝑗 ∈ (ℤ𝑖)(abs‘((𝐹𝑗) − 𝑦)) < 𝑒 ↔ ∀𝑗 ∈ (ℤ𝑖)((𝐹𝑗) < (𝑦 + 𝑒) ∧ 𝑦 < ((𝐹𝑗) + 𝑒))))
4039rexbidva 2503 . . . . 5 (((𝜑𝑦 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) → (∃𝑖 ∈ ℕ ∀𝑗 ∈ (ℤ𝑖)(abs‘((𝐹𝑗) − 𝑦)) < 𝑒 ↔ ∃𝑖 ∈ ℕ ∀𝑗 ∈ (ℤ𝑖)((𝐹𝑗) < (𝑦 + 𝑒) ∧ 𝑦 < ((𝐹𝑗) + 𝑒))))
4140ralbidva 2502 . . . 4 ((𝜑𝑦 ∈ ℝ) → (∀𝑒 ∈ ℝ+𝑖 ∈ ℕ ∀𝑗 ∈ (ℤ𝑖)(abs‘((𝐹𝑗) − 𝑦)) < 𝑒 ↔ ∀𝑒 ∈ ℝ+𝑖 ∈ ℕ ∀𝑗 ∈ (ℤ𝑖)((𝐹𝑗) < (𝑦 + 𝑒) ∧ 𝑦 < ((𝐹𝑗) + 𝑒))))
42 nnuz 9684 . . . . . 6 ℕ = (ℤ‘1)
43 1zzd 9399 . . . . . 6 ((𝜑𝑦 ∈ ℝ) → 1 ∈ ℤ)
44 nnex 9042 . . . . . . . 8 ℕ ∈ V
4544a1i 9 . . . . . . 7 ((𝜑𝑦 ∈ ℝ) → ℕ ∈ V)
46 reex 8059 . . . . . . . 8 ℝ ∈ V
4746a1i 9 . . . . . . 7 ((𝜑𝑦 ∈ ℝ) → ℝ ∈ V)
48 fex2 5444 . . . . . . 7 ((𝐹:ℕ⟶ℝ ∧ ℕ ∈ V ∧ ℝ ∈ V) → 𝐹 ∈ V)
4924, 45, 47, 48syl3anc 1250 . . . . . 6 ((𝜑𝑦 ∈ ℝ) → 𝐹 ∈ V)
50 eqidd 2206 . . . . . 6 (((𝜑𝑦 ∈ ℝ) ∧ 𝑗 ∈ ℕ) → (𝐹𝑗) = (𝐹𝑗))
5129recnd 8101 . . . . . 6 ((𝜑𝑦 ∈ ℝ) → 𝑦 ∈ ℂ)
5224ffvelcdmda 5715 . . . . . . 7 (((𝜑𝑦 ∈ ℝ) ∧ 𝑗 ∈ ℕ) → (𝐹𝑗) ∈ ℝ)
5352recnd 8101 . . . . . 6 (((𝜑𝑦 ∈ ℝ) ∧ 𝑗 ∈ ℕ) → (𝐹𝑗) ∈ ℂ)
5442, 43, 49, 50, 51, 53clim2c 11595 . . . . 5 ((𝜑𝑦 ∈ ℝ) → (𝐹𝑦 ↔ ∀𝑒 ∈ ℝ+𝑖 ∈ ℕ ∀𝑗 ∈ (ℤ𝑖)(abs‘((𝐹𝑗) − 𝑦)) < 𝑒))
55 climrel 11591 . . . . . 6 Rel ⇝
5655releldmi 4917 . . . . 5 (𝐹𝑦𝐹 ∈ dom ⇝ )
5754, 56biimtrrdi 164 . . . 4 ((𝜑𝑦 ∈ ℝ) → (∀𝑒 ∈ ℝ+𝑖 ∈ ℕ ∀𝑗 ∈ (ℤ𝑖)(abs‘((𝐹𝑗) − 𝑦)) < 𝑒𝐹 ∈ dom ⇝ ))
5841, 57sylbird 170 . . 3 ((𝜑𝑦 ∈ ℝ) → (∀𝑒 ∈ ℝ+𝑖 ∈ ℕ ∀𝑗 ∈ (ℤ𝑖)((𝐹𝑗) < (𝑦 + 𝑒) ∧ 𝑦 < ((𝐹𝑗) + 𝑒)) → 𝐹 ∈ dom ⇝ ))
5958impr 379 . 2 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑒 ∈ ℝ+𝑖 ∈ ℕ ∀𝑗 ∈ (ℤ𝑖)((𝐹𝑗) < (𝑦 + 𝑒) ∧ 𝑦 < ((𝐹𝑗) + 𝑒)))) → 𝐹 ∈ dom ⇝ )
6023, 59rexlimddv 2628 1 (𝜑𝐹 ∈ dom ⇝ )
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wcel 2176  wral 2484  wrex 2485  Vcvv 2772   class class class wbr 4044  dom cdm 4675  wf 5267  cfv 5271  (class class class)co 5944  cr 7924  1c1 7926   + caddc 7928   < clt 8107  cmin 8243   / cdiv 8745  cn 9036  cuz 9648  +crp 9775  abscabs 11308  cli 11589
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-iinf 4636  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-mulrcl 8024  ax-addcom 8025  ax-mulcom 8026  ax-addass 8027  ax-mulass 8028  ax-distr 8029  ax-i2m1 8030  ax-0lt1 8031  ax-1rid 8032  ax-0id 8033  ax-rnegex 8034  ax-precex 8035  ax-cnre 8036  ax-pre-ltirr 8037  ax-pre-ltwlin 8038  ax-pre-lttrn 8039  ax-pre-apti 8040  ax-pre-ltadd 8041  ax-pre-mulgt0 8042  ax-pre-mulext 8043  ax-arch 8044  ax-caucvg 8045
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-tr 4143  df-id 4340  df-po 4343  df-iso 4344  df-iord 4413  df-on 4415  df-ilim 4416  df-suc 4418  df-iom 4639  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-recs 6391  df-frec 6477  df-pnf 8109  df-mnf 8110  df-xr 8111  df-ltxr 8112  df-le 8113  df-sub 8245  df-neg 8246  df-reap 8648  df-ap 8655  df-div 8746  df-inn 9037  df-2 9095  df-3 9096  df-4 9097  df-n0 9296  df-z 9373  df-uz 9649  df-rp 9776  df-seqfrec 10593  df-exp 10684  df-cj 11153  df-re 11154  df-im 11155  df-rsqrt 11309  df-abs 11310  df-clim 11590
This theorem is referenced by:  climcvg1nlem  11660
  Copyright terms: Public domain W3C validator