Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fzind2 | GIF version |
Description: Induction on the integers from 𝑀 to 𝑁 inclusive. The first four hypotheses give us the substitution instances we need; the last two are the basis and the induction step. Version of fzind 9302 using integer range definitions. (Contributed by Mario Carneiro, 6-Feb-2016.) |
Ref | Expression |
---|---|
fzind2.1 | ⊢ (𝑥 = 𝑀 → (𝜑 ↔ 𝜓)) |
fzind2.2 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) |
fzind2.3 | ⊢ (𝑥 = (𝑦 + 1) → (𝜑 ↔ 𝜃)) |
fzind2.4 | ⊢ (𝑥 = 𝐾 → (𝜑 ↔ 𝜏)) |
fzind2.5 | ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝜓) |
fzind2.6 | ⊢ (𝑦 ∈ (𝑀..^𝑁) → (𝜒 → 𝜃)) |
Ref | Expression |
---|---|
fzind2 | ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝜏) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfz2 9947 | . . 3 ⊢ (𝐾 ∈ (𝑀...𝑁) ↔ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁))) | |
2 | anass 399 | . . . 4 ⊢ ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ∈ ℤ) ∧ (𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁)) ↔ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ (𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁)))) | |
3 | df-3an 970 | . . . . 5 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ↔ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ∈ ℤ)) | |
4 | 3 | anbi1i 454 | . . . 4 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁)) ↔ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ∈ ℤ) ∧ (𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁))) |
5 | 3anass 972 | . . . . 5 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁) ↔ (𝐾 ∈ ℤ ∧ (𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁))) | |
6 | 5 | anbi2i 453 | . . . 4 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁)) ↔ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ (𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁)))) |
7 | 2, 4, 6 | 3bitr4i 211 | . . 3 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁)) ↔ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁))) |
8 | 1, 7 | bitri 183 | . 2 ⊢ (𝐾 ∈ (𝑀...𝑁) ↔ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁))) |
9 | fzind2.1 | . . 3 ⊢ (𝑥 = 𝑀 → (𝜑 ↔ 𝜓)) | |
10 | fzind2.2 | . . 3 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) | |
11 | fzind2.3 | . . 3 ⊢ (𝑥 = (𝑦 + 1) → (𝜑 ↔ 𝜃)) | |
12 | fzind2.4 | . . 3 ⊢ (𝑥 = 𝐾 → (𝜑 ↔ 𝜏)) | |
13 | eluz2 9468 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁)) | |
14 | fzind2.5 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝜓) | |
15 | 13, 14 | sylbir 134 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁) → 𝜓) |
16 | 3anass 972 | . . . 4 ⊢ ((𝑦 ∈ ℤ ∧ 𝑀 ≤ 𝑦 ∧ 𝑦 < 𝑁) ↔ (𝑦 ∈ ℤ ∧ (𝑀 ≤ 𝑦 ∧ 𝑦 < 𝑁))) | |
17 | elfzo 10080 | . . . . . . . 8 ⊢ ((𝑦 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑦 ∈ (𝑀..^𝑁) ↔ (𝑀 ≤ 𝑦 ∧ 𝑦 < 𝑁))) | |
18 | fzind2.6 | . . . . . . . 8 ⊢ (𝑦 ∈ (𝑀..^𝑁) → (𝜒 → 𝜃)) | |
19 | 17, 18 | syl6bir 163 | . . . . . . 7 ⊢ ((𝑦 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 ≤ 𝑦 ∧ 𝑦 < 𝑁) → (𝜒 → 𝜃))) |
20 | 19 | 3coml 1200 | . . . . . 6 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑦 ∈ ℤ) → ((𝑀 ≤ 𝑦 ∧ 𝑦 < 𝑁) → (𝜒 → 𝜃))) |
21 | 20 | 3expa 1193 | . . . . 5 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑦 ∈ ℤ) → ((𝑀 ≤ 𝑦 ∧ 𝑦 < 𝑁) → (𝜒 → 𝜃))) |
22 | 21 | impr 377 | . . . 4 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑦 ∈ ℤ ∧ (𝑀 ≤ 𝑦 ∧ 𝑦 < 𝑁))) → (𝜒 → 𝜃)) |
23 | 16, 22 | sylan2b 285 | . . 3 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑦 ∈ ℤ ∧ 𝑀 ≤ 𝑦 ∧ 𝑦 < 𝑁)) → (𝜒 → 𝜃)) |
24 | 9, 10, 11, 12, 15, 23 | fzind 9302 | . 2 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁)) → 𝜏) |
25 | 8, 24 | sylbi 120 | 1 ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝜏) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 ∧ w3a 968 = wceq 1343 ∈ wcel 2136 class class class wbr 3981 ‘cfv 5187 (class class class)co 5841 1c1 7750 + caddc 7752 < clt 7929 ≤ cle 7930 ℤcz 9187 ℤ≥cuz 9462 ...cfz 9940 ..^cfzo 10073 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4099 ax-pow 4152 ax-pr 4186 ax-un 4410 ax-setind 4513 ax-cnex 7840 ax-resscn 7841 ax-1cn 7842 ax-1re 7843 ax-icn 7844 ax-addcl 7845 ax-addrcl 7846 ax-mulcl 7847 ax-addcom 7849 ax-addass 7851 ax-distr 7853 ax-i2m1 7854 ax-0lt1 7855 ax-0id 7857 ax-rnegex 7858 ax-cnre 7860 ax-pre-ltirr 7861 ax-pre-ltwlin 7862 ax-pre-lttrn 7863 ax-pre-ltadd 7865 |
This theorem depends on definitions: df-bi 116 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2296 df-ne 2336 df-nel 2431 df-ral 2448 df-rex 2449 df-reu 2450 df-rab 2452 df-v 2727 df-sbc 2951 df-csb 3045 df-dif 3117 df-un 3119 df-in 3121 df-ss 3128 df-pw 3560 df-sn 3581 df-pr 3582 df-op 3584 df-uni 3789 df-int 3824 df-iun 3867 df-br 3982 df-opab 4043 df-mpt 4044 df-id 4270 df-xp 4609 df-rel 4610 df-cnv 4611 df-co 4612 df-dm 4613 df-rn 4614 df-res 4615 df-ima 4616 df-iota 5152 df-fun 5189 df-fn 5190 df-f 5191 df-fv 5195 df-riota 5797 df-ov 5844 df-oprab 5845 df-mpo 5846 df-1st 6105 df-2nd 6106 df-pnf 7931 df-mnf 7932 df-xr 7933 df-ltxr 7934 df-le 7935 df-sub 8067 df-neg 8068 df-inn 8854 df-n0 9111 df-z 9188 df-uz 9463 df-fz 9941 df-fzo 10074 |
This theorem is referenced by: exfzdc 10171 seq3clss 10398 seq3caopr3 10412 seq3f1olemp 10433 seq3id3 10438 ser3ge0 10448 prodfap0 11482 prodfrecap 11483 eulerthlemrprm 12157 eulerthlema 12158 nninfdclemlt 12380 |
Copyright terms: Public domain | W3C validator |