ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fzind2 GIF version

Theorem fzind2 10253
Description: Induction on the integers from 𝑀 to 𝑁 inclusive. The first four hypotheses give us the substitution instances we need; the last two are the basis and the induction step. Version of fzind 9382 using integer range definitions. (Contributed by Mario Carneiro, 6-Feb-2016.)
Hypotheses
Ref Expression
fzind2.1 (𝑥 = 𝑀 → (𝜑𝜓))
fzind2.2 (𝑥 = 𝑦 → (𝜑𝜒))
fzind2.3 (𝑥 = (𝑦 + 1) → (𝜑𝜃))
fzind2.4 (𝑥 = 𝐾 → (𝜑𝜏))
fzind2.5 (𝑁 ∈ (ℤ𝑀) → 𝜓)
fzind2.6 (𝑦 ∈ (𝑀..^𝑁) → (𝜒𝜃))
Assertion
Ref Expression
fzind2 (𝐾 ∈ (𝑀...𝑁) → 𝜏)
Distinct variable groups:   𝑥,𝐾   𝑥,𝑀,𝑦   𝑥,𝑁,𝑦   𝜒,𝑥   𝜑,𝑦   𝜓,𝑥   𝜏,𝑥   𝜃,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)   𝜒(𝑦)   𝜃(𝑦)   𝜏(𝑦)   𝐾(𝑦)

Proof of Theorem fzind2
StepHypRef Expression
1 elfz2 10029 . . 3 (𝐾 ∈ (𝑀...𝑁) ↔ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝑀𝐾𝐾𝑁)))
2 anass 401 . . . 4 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ∈ ℤ) ∧ (𝑀𝐾𝐾𝑁)) ↔ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ (𝑀𝐾𝐾𝑁))))
3 df-3an 981 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ↔ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ∈ ℤ))
43anbi1i 458 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝑀𝐾𝐾𝑁)) ↔ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ∈ ℤ) ∧ (𝑀𝐾𝐾𝑁)))
5 3anass 983 . . . . 5 ((𝐾 ∈ ℤ ∧ 𝑀𝐾𝐾𝑁) ↔ (𝐾 ∈ ℤ ∧ (𝑀𝐾𝐾𝑁)))
65anbi2i 457 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀𝐾𝐾𝑁)) ↔ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ (𝑀𝐾𝐾𝑁))))
72, 4, 63bitr4i 212 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝑀𝐾𝐾𝑁)) ↔ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀𝐾𝐾𝑁)))
81, 7bitri 184 . 2 (𝐾 ∈ (𝑀...𝑁) ↔ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀𝐾𝐾𝑁)))
9 fzind2.1 . . 3 (𝑥 = 𝑀 → (𝜑𝜓))
10 fzind2.2 . . 3 (𝑥 = 𝑦 → (𝜑𝜒))
11 fzind2.3 . . 3 (𝑥 = (𝑦 + 1) → (𝜑𝜃))
12 fzind2.4 . . 3 (𝑥 = 𝐾 → (𝜑𝜏))
13 eluz2 9548 . . . 4 (𝑁 ∈ (ℤ𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀𝑁))
14 fzind2.5 . . . 4 (𝑁 ∈ (ℤ𝑀) → 𝜓)
1513, 14sylbir 135 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀𝑁) → 𝜓)
16 3anass 983 . . . 4 ((𝑦 ∈ ℤ ∧ 𝑀𝑦𝑦 < 𝑁) ↔ (𝑦 ∈ ℤ ∧ (𝑀𝑦𝑦 < 𝑁)))
17 elfzo 10163 . . . . . . . 8 ((𝑦 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑦 ∈ (𝑀..^𝑁) ↔ (𝑀𝑦𝑦 < 𝑁)))
18 fzind2.6 . . . . . . . 8 (𝑦 ∈ (𝑀..^𝑁) → (𝜒𝜃))
1917, 18syl6bir 164 . . . . . . 7 ((𝑦 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀𝑦𝑦 < 𝑁) → (𝜒𝜃)))
20193coml 1211 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑦 ∈ ℤ) → ((𝑀𝑦𝑦 < 𝑁) → (𝜒𝜃)))
21203expa 1204 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑦 ∈ ℤ) → ((𝑀𝑦𝑦 < 𝑁) → (𝜒𝜃)))
2221impr 379 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑦 ∈ ℤ ∧ (𝑀𝑦𝑦 < 𝑁))) → (𝜒𝜃))
2316, 22sylan2b 287 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑦 ∈ ℤ ∧ 𝑀𝑦𝑦 < 𝑁)) → (𝜒𝜃))
249, 10, 11, 12, 15, 23fzind 9382 . 2 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀𝐾𝐾𝑁)) → 𝜏)
258, 24sylbi 121 1 (𝐾 ∈ (𝑀...𝑁) → 𝜏)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 979   = wceq 1363  wcel 2158   class class class wbr 4015  cfv 5228  (class class class)co 5888  1c1 7826   + caddc 7828   < clt 8006  cle 8007  cz 9267  cuz 9542  ...cfz 10022  ..^cfzo 10156
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-sep 4133  ax-pow 4186  ax-pr 4221  ax-un 4445  ax-setind 4548  ax-cnex 7916  ax-resscn 7917  ax-1cn 7918  ax-1re 7919  ax-icn 7920  ax-addcl 7921  ax-addrcl 7922  ax-mulcl 7923  ax-addcom 7925  ax-addass 7927  ax-distr 7929  ax-i2m1 7930  ax-0lt1 7931  ax-0id 7933  ax-rnegex 7934  ax-cnre 7936  ax-pre-ltirr 7937  ax-pre-ltwlin 7938  ax-pre-lttrn 7939  ax-pre-ltadd 7941
This theorem depends on definitions:  df-bi 117  df-3or 980  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ne 2358  df-nel 2453  df-ral 2470  df-rex 2471  df-reu 2472  df-rab 2474  df-v 2751  df-sbc 2975  df-csb 3070  df-dif 3143  df-un 3145  df-in 3147  df-ss 3154  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-int 3857  df-iun 3900  df-br 4016  df-opab 4077  df-mpt 4078  df-id 4305  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-rn 4649  df-res 4650  df-ima 4651  df-iota 5190  df-fun 5230  df-fn 5231  df-f 5232  df-fv 5236  df-riota 5844  df-ov 5891  df-oprab 5892  df-mpo 5893  df-1st 6155  df-2nd 6156  df-pnf 8008  df-mnf 8009  df-xr 8010  df-ltxr 8011  df-le 8012  df-sub 8144  df-neg 8145  df-inn 8934  df-n0 9191  df-z 9268  df-uz 9543  df-fz 10023  df-fzo 10157
This theorem is referenced by:  exfzdc  10254  seq3clss  10481  seq3caopr3  10495  seq3f1olemp  10516  seq3id3  10521  ser3ge0  10531  prodfap0  11567  prodfrecap  11568  eulerthlemrprm  12243  eulerthlema  12244  nninfdclemlt  12466
  Copyright terms: Public domain W3C validator