![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fzind2 | GIF version |
Description: Induction on the integers from 𝑀 to 𝑁 inclusive. The first four hypotheses give us the substitution instances we need; the last two are the basis and the induction step. Version of fzind 9382 using integer range definitions. (Contributed by Mario Carneiro, 6-Feb-2016.) |
Ref | Expression |
---|---|
fzind2.1 | ⊢ (𝑥 = 𝑀 → (𝜑 ↔ 𝜓)) |
fzind2.2 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) |
fzind2.3 | ⊢ (𝑥 = (𝑦 + 1) → (𝜑 ↔ 𝜃)) |
fzind2.4 | ⊢ (𝑥 = 𝐾 → (𝜑 ↔ 𝜏)) |
fzind2.5 | ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝜓) |
fzind2.6 | ⊢ (𝑦 ∈ (𝑀..^𝑁) → (𝜒 → 𝜃)) |
Ref | Expression |
---|---|
fzind2 | ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝜏) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfz2 10029 | . . 3 ⊢ (𝐾 ∈ (𝑀...𝑁) ↔ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁))) | |
2 | anass 401 | . . . 4 ⊢ ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ∈ ℤ) ∧ (𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁)) ↔ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ (𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁)))) | |
3 | df-3an 981 | . . . . 5 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ↔ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ∈ ℤ)) | |
4 | 3 | anbi1i 458 | . . . 4 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁)) ↔ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ∈ ℤ) ∧ (𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁))) |
5 | 3anass 983 | . . . . 5 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁) ↔ (𝐾 ∈ ℤ ∧ (𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁))) | |
6 | 5 | anbi2i 457 | . . . 4 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁)) ↔ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ (𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁)))) |
7 | 2, 4, 6 | 3bitr4i 212 | . . 3 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁)) ↔ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁))) |
8 | 1, 7 | bitri 184 | . 2 ⊢ (𝐾 ∈ (𝑀...𝑁) ↔ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁))) |
9 | fzind2.1 | . . 3 ⊢ (𝑥 = 𝑀 → (𝜑 ↔ 𝜓)) | |
10 | fzind2.2 | . . 3 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) | |
11 | fzind2.3 | . . 3 ⊢ (𝑥 = (𝑦 + 1) → (𝜑 ↔ 𝜃)) | |
12 | fzind2.4 | . . 3 ⊢ (𝑥 = 𝐾 → (𝜑 ↔ 𝜏)) | |
13 | eluz2 9548 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁)) | |
14 | fzind2.5 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝜓) | |
15 | 13, 14 | sylbir 135 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁) → 𝜓) |
16 | 3anass 983 | . . . 4 ⊢ ((𝑦 ∈ ℤ ∧ 𝑀 ≤ 𝑦 ∧ 𝑦 < 𝑁) ↔ (𝑦 ∈ ℤ ∧ (𝑀 ≤ 𝑦 ∧ 𝑦 < 𝑁))) | |
17 | elfzo 10163 | . . . . . . . 8 ⊢ ((𝑦 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑦 ∈ (𝑀..^𝑁) ↔ (𝑀 ≤ 𝑦 ∧ 𝑦 < 𝑁))) | |
18 | fzind2.6 | . . . . . . . 8 ⊢ (𝑦 ∈ (𝑀..^𝑁) → (𝜒 → 𝜃)) | |
19 | 17, 18 | syl6bir 164 | . . . . . . 7 ⊢ ((𝑦 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 ≤ 𝑦 ∧ 𝑦 < 𝑁) → (𝜒 → 𝜃))) |
20 | 19 | 3coml 1211 | . . . . . 6 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑦 ∈ ℤ) → ((𝑀 ≤ 𝑦 ∧ 𝑦 < 𝑁) → (𝜒 → 𝜃))) |
21 | 20 | 3expa 1204 | . . . . 5 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑦 ∈ ℤ) → ((𝑀 ≤ 𝑦 ∧ 𝑦 < 𝑁) → (𝜒 → 𝜃))) |
22 | 21 | impr 379 | . . . 4 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑦 ∈ ℤ ∧ (𝑀 ≤ 𝑦 ∧ 𝑦 < 𝑁))) → (𝜒 → 𝜃)) |
23 | 16, 22 | sylan2b 287 | . . 3 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑦 ∈ ℤ ∧ 𝑀 ≤ 𝑦 ∧ 𝑦 < 𝑁)) → (𝜒 → 𝜃)) |
24 | 9, 10, 11, 12, 15, 23 | fzind 9382 | . 2 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁)) → 𝜏) |
25 | 8, 24 | sylbi 121 | 1 ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝜏) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 979 = wceq 1363 ∈ wcel 2158 class class class wbr 4015 ‘cfv 5228 (class class class)co 5888 1c1 7826 + caddc 7828 < clt 8006 ≤ cle 8007 ℤcz 9267 ℤ≥cuz 9542 ...cfz 10022 ..^cfzo 10156 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-13 2160 ax-14 2161 ax-ext 2169 ax-sep 4133 ax-pow 4186 ax-pr 4221 ax-un 4445 ax-setind 4548 ax-cnex 7916 ax-resscn 7917 ax-1cn 7918 ax-1re 7919 ax-icn 7920 ax-addcl 7921 ax-addrcl 7922 ax-mulcl 7923 ax-addcom 7925 ax-addass 7927 ax-distr 7929 ax-i2m1 7930 ax-0lt1 7931 ax-0id 7933 ax-rnegex 7934 ax-cnre 7936 ax-pre-ltirr 7937 ax-pre-ltwlin 7938 ax-pre-lttrn 7939 ax-pre-ltadd 7941 |
This theorem depends on definitions: df-bi 117 df-3or 980 df-3an 981 df-tru 1366 df-fal 1369 df-nf 1471 df-sb 1773 df-eu 2039 df-mo 2040 df-clab 2174 df-cleq 2180 df-clel 2183 df-nfc 2318 df-ne 2358 df-nel 2453 df-ral 2470 df-rex 2471 df-reu 2472 df-rab 2474 df-v 2751 df-sbc 2975 df-csb 3070 df-dif 3143 df-un 3145 df-in 3147 df-ss 3154 df-pw 3589 df-sn 3610 df-pr 3611 df-op 3613 df-uni 3822 df-int 3857 df-iun 3900 df-br 4016 df-opab 4077 df-mpt 4078 df-id 4305 df-xp 4644 df-rel 4645 df-cnv 4646 df-co 4647 df-dm 4648 df-rn 4649 df-res 4650 df-ima 4651 df-iota 5190 df-fun 5230 df-fn 5231 df-f 5232 df-fv 5236 df-riota 5844 df-ov 5891 df-oprab 5892 df-mpo 5893 df-1st 6155 df-2nd 6156 df-pnf 8008 df-mnf 8009 df-xr 8010 df-ltxr 8011 df-le 8012 df-sub 8144 df-neg 8145 df-inn 8934 df-n0 9191 df-z 9268 df-uz 9543 df-fz 10023 df-fzo 10157 |
This theorem is referenced by: exfzdc 10254 seq3clss 10481 seq3caopr3 10495 seq3f1olemp 10516 seq3id3 10521 ser3ge0 10531 prodfap0 11567 prodfrecap 11568 eulerthlemrprm 12243 eulerthlema 12244 nninfdclemlt 12466 |
Copyright terms: Public domain | W3C validator |