ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fzind2 GIF version

Theorem fzind2 10440
Description: Induction on the integers from 𝑀 to 𝑁 inclusive. The first four hypotheses give us the substitution instances we need; the last two are the basis and the induction step. Version of fzind 9558 using integer range definitions. (Contributed by Mario Carneiro, 6-Feb-2016.)
Hypotheses
Ref Expression
fzind2.1 (𝑥 = 𝑀 → (𝜑𝜓))
fzind2.2 (𝑥 = 𝑦 → (𝜑𝜒))
fzind2.3 (𝑥 = (𝑦 + 1) → (𝜑𝜃))
fzind2.4 (𝑥 = 𝐾 → (𝜑𝜏))
fzind2.5 (𝑁 ∈ (ℤ𝑀) → 𝜓)
fzind2.6 (𝑦 ∈ (𝑀..^𝑁) → (𝜒𝜃))
Assertion
Ref Expression
fzind2 (𝐾 ∈ (𝑀...𝑁) → 𝜏)
Distinct variable groups:   𝑥,𝐾   𝑥,𝑀,𝑦   𝑥,𝑁,𝑦   𝜒,𝑥   𝜑,𝑦   𝜓,𝑥   𝜏,𝑥   𝜃,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)   𝜒(𝑦)   𝜃(𝑦)   𝜏(𝑦)   𝐾(𝑦)

Proof of Theorem fzind2
StepHypRef Expression
1 elfz2 10207 . . 3 (𝐾 ∈ (𝑀...𝑁) ↔ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝑀𝐾𝐾𝑁)))
2 anass 401 . . . 4 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ∈ ℤ) ∧ (𝑀𝐾𝐾𝑁)) ↔ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ (𝑀𝐾𝐾𝑁))))
3 df-3an 1004 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ↔ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ∈ ℤ))
43anbi1i 458 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝑀𝐾𝐾𝑁)) ↔ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ∈ ℤ) ∧ (𝑀𝐾𝐾𝑁)))
5 3anass 1006 . . . . 5 ((𝐾 ∈ ℤ ∧ 𝑀𝐾𝐾𝑁) ↔ (𝐾 ∈ ℤ ∧ (𝑀𝐾𝐾𝑁)))
65anbi2i 457 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀𝐾𝐾𝑁)) ↔ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ (𝑀𝐾𝐾𝑁))))
72, 4, 63bitr4i 212 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝑀𝐾𝐾𝑁)) ↔ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀𝐾𝐾𝑁)))
81, 7bitri 184 . 2 (𝐾 ∈ (𝑀...𝑁) ↔ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀𝐾𝐾𝑁)))
9 fzind2.1 . . 3 (𝑥 = 𝑀 → (𝜑𝜓))
10 fzind2.2 . . 3 (𝑥 = 𝑦 → (𝜑𝜒))
11 fzind2.3 . . 3 (𝑥 = (𝑦 + 1) → (𝜑𝜃))
12 fzind2.4 . . 3 (𝑥 = 𝐾 → (𝜑𝜏))
13 eluz2 9724 . . . 4 (𝑁 ∈ (ℤ𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀𝑁))
14 fzind2.5 . . . 4 (𝑁 ∈ (ℤ𝑀) → 𝜓)
1513, 14sylbir 135 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀𝑁) → 𝜓)
16 3anass 1006 . . . 4 ((𝑦 ∈ ℤ ∧ 𝑀𝑦𝑦 < 𝑁) ↔ (𝑦 ∈ ℤ ∧ (𝑀𝑦𝑦 < 𝑁)))
17 elfzo 10341 . . . . . . . 8 ((𝑦 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑦 ∈ (𝑀..^𝑁) ↔ (𝑀𝑦𝑦 < 𝑁)))
18 fzind2.6 . . . . . . . 8 (𝑦 ∈ (𝑀..^𝑁) → (𝜒𝜃))
1917, 18biimtrrdi 164 . . . . . . 7 ((𝑦 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀𝑦𝑦 < 𝑁) → (𝜒𝜃)))
20193coml 1234 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑦 ∈ ℤ) → ((𝑀𝑦𝑦 < 𝑁) → (𝜒𝜃)))
21203expa 1227 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑦 ∈ ℤ) → ((𝑀𝑦𝑦 < 𝑁) → (𝜒𝜃)))
2221impr 379 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑦 ∈ ℤ ∧ (𝑀𝑦𝑦 < 𝑁))) → (𝜒𝜃))
2316, 22sylan2b 287 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑦 ∈ ℤ ∧ 𝑀𝑦𝑦 < 𝑁)) → (𝜒𝜃))
249, 10, 11, 12, 15, 23fzind 9558 . 2 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀𝐾𝐾𝑁)) → 𝜏)
258, 24sylbi 121 1 (𝐾 ∈ (𝑀...𝑁) → 𝜏)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 1002   = wceq 1395  wcel 2200   class class class wbr 4082  cfv 5317  (class class class)co 6000  1c1 7996   + caddc 7998   < clt 8177  cle 8178  cz 9442  cuz 9718  ...cfz 10200  ..^cfzo 10334
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-addcom 8095  ax-addass 8097  ax-distr 8099  ax-i2m1 8100  ax-0lt1 8101  ax-0id 8103  ax-rnegex 8104  ax-cnre 8106  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109  ax-pre-ltadd 8111
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-sub 8315  df-neg 8316  df-inn 9107  df-n0 9366  df-z 9443  df-uz 9719  df-fz 10201  df-fzo 10335
This theorem is referenced by:  exfzdc  10441  seq3clss  10688  seq3caopr3  10708  seqcaopr3g  10709  seq3f1olemp  10732  seqf1oglem2a  10735  seq3id3  10741  seqfeq4g  10748  ser3ge0  10753  prodfap0  12051  prodfrecap  12052  eulerthlemrprm  12746  eulerthlema  12747  nninfdclemlt  13017  gsumfzz  13523  gsumfzfsumlemm  14545
  Copyright terms: Public domain W3C validator