![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fzind2 | GIF version |
Description: Induction on the integers from 𝑀 to 𝑁 inclusive. The first four hypotheses give us the substitution instances we need; the last two are the basis and the induction step. Version of fzind 9357 using integer range definitions. (Contributed by Mario Carneiro, 6-Feb-2016.) |
Ref | Expression |
---|---|
fzind2.1 | ⊢ (𝑥 = 𝑀 → (𝜑 ↔ 𝜓)) |
fzind2.2 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) |
fzind2.3 | ⊢ (𝑥 = (𝑦 + 1) → (𝜑 ↔ 𝜃)) |
fzind2.4 | ⊢ (𝑥 = 𝐾 → (𝜑 ↔ 𝜏)) |
fzind2.5 | ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝜓) |
fzind2.6 | ⊢ (𝑦 ∈ (𝑀..^𝑁) → (𝜒 → 𝜃)) |
Ref | Expression |
---|---|
fzind2 | ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝜏) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfz2 10002 | . . 3 ⊢ (𝐾 ∈ (𝑀...𝑁) ↔ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁))) | |
2 | anass 401 | . . . 4 ⊢ ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ∈ ℤ) ∧ (𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁)) ↔ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ (𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁)))) | |
3 | df-3an 980 | . . . . 5 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ↔ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ∈ ℤ)) | |
4 | 3 | anbi1i 458 | . . . 4 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁)) ↔ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ∈ ℤ) ∧ (𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁))) |
5 | 3anass 982 | . . . . 5 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁) ↔ (𝐾 ∈ ℤ ∧ (𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁))) | |
6 | 5 | anbi2i 457 | . . . 4 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁)) ↔ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ (𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁)))) |
7 | 2, 4, 6 | 3bitr4i 212 | . . 3 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁)) ↔ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁))) |
8 | 1, 7 | bitri 184 | . 2 ⊢ (𝐾 ∈ (𝑀...𝑁) ↔ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁))) |
9 | fzind2.1 | . . 3 ⊢ (𝑥 = 𝑀 → (𝜑 ↔ 𝜓)) | |
10 | fzind2.2 | . . 3 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) | |
11 | fzind2.3 | . . 3 ⊢ (𝑥 = (𝑦 + 1) → (𝜑 ↔ 𝜃)) | |
12 | fzind2.4 | . . 3 ⊢ (𝑥 = 𝐾 → (𝜑 ↔ 𝜏)) | |
13 | eluz2 9523 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁)) | |
14 | fzind2.5 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝜓) | |
15 | 13, 14 | sylbir 135 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁) → 𝜓) |
16 | 3anass 982 | . . . 4 ⊢ ((𝑦 ∈ ℤ ∧ 𝑀 ≤ 𝑦 ∧ 𝑦 < 𝑁) ↔ (𝑦 ∈ ℤ ∧ (𝑀 ≤ 𝑦 ∧ 𝑦 < 𝑁))) | |
17 | elfzo 10135 | . . . . . . . 8 ⊢ ((𝑦 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑦 ∈ (𝑀..^𝑁) ↔ (𝑀 ≤ 𝑦 ∧ 𝑦 < 𝑁))) | |
18 | fzind2.6 | . . . . . . . 8 ⊢ (𝑦 ∈ (𝑀..^𝑁) → (𝜒 → 𝜃)) | |
19 | 17, 18 | syl6bir 164 | . . . . . . 7 ⊢ ((𝑦 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 ≤ 𝑦 ∧ 𝑦 < 𝑁) → (𝜒 → 𝜃))) |
20 | 19 | 3coml 1210 | . . . . . 6 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑦 ∈ ℤ) → ((𝑀 ≤ 𝑦 ∧ 𝑦 < 𝑁) → (𝜒 → 𝜃))) |
21 | 20 | 3expa 1203 | . . . . 5 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑦 ∈ ℤ) → ((𝑀 ≤ 𝑦 ∧ 𝑦 < 𝑁) → (𝜒 → 𝜃))) |
22 | 21 | impr 379 | . . . 4 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑦 ∈ ℤ ∧ (𝑀 ≤ 𝑦 ∧ 𝑦 < 𝑁))) → (𝜒 → 𝜃)) |
23 | 16, 22 | sylan2b 287 | . . 3 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑦 ∈ ℤ ∧ 𝑀 ≤ 𝑦 ∧ 𝑦 < 𝑁)) → (𝜒 → 𝜃)) |
24 | 9, 10, 11, 12, 15, 23 | fzind 9357 | . 2 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁)) → 𝜏) |
25 | 8, 24 | sylbi 121 | 1 ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝜏) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 978 = wceq 1353 ∈ wcel 2148 class class class wbr 4000 ‘cfv 5212 (class class class)co 5869 1c1 7803 + caddc 7805 < clt 7982 ≤ cle 7983 ℤcz 9242 ℤ≥cuz 9517 ...cfz 9995 ..^cfzo 10128 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4118 ax-pow 4171 ax-pr 4206 ax-un 4430 ax-setind 4533 ax-cnex 7893 ax-resscn 7894 ax-1cn 7895 ax-1re 7896 ax-icn 7897 ax-addcl 7898 ax-addrcl 7899 ax-mulcl 7900 ax-addcom 7902 ax-addass 7904 ax-distr 7906 ax-i2m1 7907 ax-0lt1 7908 ax-0id 7910 ax-rnegex 7911 ax-cnre 7913 ax-pre-ltirr 7914 ax-pre-ltwlin 7915 ax-pre-lttrn 7916 ax-pre-ltadd 7918 |
This theorem depends on definitions: df-bi 117 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-reu 2462 df-rab 2464 df-v 2739 df-sbc 2963 df-csb 3058 df-dif 3131 df-un 3133 df-in 3135 df-ss 3142 df-pw 3576 df-sn 3597 df-pr 3598 df-op 3600 df-uni 3808 df-int 3843 df-iun 3886 df-br 4001 df-opab 4062 df-mpt 4063 df-id 4290 df-xp 4629 df-rel 4630 df-cnv 4631 df-co 4632 df-dm 4633 df-rn 4634 df-res 4635 df-ima 4636 df-iota 5174 df-fun 5214 df-fn 5215 df-f 5216 df-fv 5220 df-riota 5825 df-ov 5872 df-oprab 5873 df-mpo 5874 df-1st 6135 df-2nd 6136 df-pnf 7984 df-mnf 7985 df-xr 7986 df-ltxr 7987 df-le 7988 df-sub 8120 df-neg 8121 df-inn 8909 df-n0 9166 df-z 9243 df-uz 9518 df-fz 9996 df-fzo 10129 |
This theorem is referenced by: exfzdc 10226 seq3clss 10453 seq3caopr3 10467 seq3f1olemp 10488 seq3id3 10493 ser3ge0 10503 prodfap0 11537 prodfrecap 11538 eulerthlemrprm 12212 eulerthlema 12213 nninfdclemlt 12435 |
Copyright terms: Public domain | W3C validator |