![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > cnconst | GIF version |
Description: A constant function is continuous. (Contributed by FL, 15-Jan-2007.) (Proof shortened by Mario Carneiro, 19-Mar-2015.) |
Ref | Expression |
---|---|
cnconst | β’ (((π½ β (TopOnβπ) β§ πΎ β (TopOnβπ)) β§ (π΅ β π β§ πΉ:πβΆ{π΅})) β πΉ β (π½ Cn πΎ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fconst2g 5733 | . . . 4 β’ (π΅ β π β (πΉ:πβΆ{π΅} β πΉ = (π Γ {π΅}))) | |
2 | 1 | adantl 277 | . . 3 β’ (((π½ β (TopOnβπ) β§ πΎ β (TopOnβπ)) β§ π΅ β π) β (πΉ:πβΆ{π΅} β πΉ = (π Γ {π΅}))) |
3 | cnconst2 13772 | . . . . 5 β’ ((π½ β (TopOnβπ) β§ πΎ β (TopOnβπ) β§ π΅ β π) β (π Γ {π΅}) β (π½ Cn πΎ)) | |
4 | 3 | 3expa 1203 | . . . 4 β’ (((π½ β (TopOnβπ) β§ πΎ β (TopOnβπ)) β§ π΅ β π) β (π Γ {π΅}) β (π½ Cn πΎ)) |
5 | eleq1 2240 | . . . 4 β’ (πΉ = (π Γ {π΅}) β (πΉ β (π½ Cn πΎ) β (π Γ {π΅}) β (π½ Cn πΎ))) | |
6 | 4, 5 | syl5ibrcom 157 | . . 3 β’ (((π½ β (TopOnβπ) β§ πΎ β (TopOnβπ)) β§ π΅ β π) β (πΉ = (π Γ {π΅}) β πΉ β (π½ Cn πΎ))) |
7 | 2, 6 | sylbid 150 | . 2 β’ (((π½ β (TopOnβπ) β§ πΎ β (TopOnβπ)) β§ π΅ β π) β (πΉ:πβΆ{π΅} β πΉ β (π½ Cn πΎ))) |
8 | 7 | impr 379 | 1 β’ (((π½ β (TopOnβπ) β§ πΎ β (TopOnβπ)) β§ (π΅ β π β§ πΉ:πβΆ{π΅})) β πΉ β (π½ Cn πΎ)) |
Colors of variables: wff set class |
Syntax hints: β wi 4 β§ wa 104 β wb 105 = wceq 1353 β wcel 2148 {csn 3594 Γ cxp 4626 βΆwf 5214 βcfv 5218 (class class class)co 5877 TopOnctopon 13549 Cn ccn 13724 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-coll 4120 ax-sep 4123 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-setind 4538 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-ral 2460 df-rex 2461 df-reu 2462 df-rab 2464 df-v 2741 df-sbc 2965 df-csb 3060 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-iun 3890 df-br 4006 df-opab 4067 df-mpt 4068 df-id 4295 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-ima 4641 df-iota 5180 df-fun 5220 df-fn 5221 df-f 5222 df-f1 5223 df-fo 5224 df-f1o 5225 df-fv 5226 df-ov 5880 df-oprab 5881 df-mpo 5882 df-1st 6143 df-2nd 6144 df-map 6652 df-topgen 12714 df-top 13537 df-topon 13550 df-cn 13727 df-cnp 13728 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |