ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnconst GIF version

Theorem cnconst 14873
Description: A constant function is continuous. (Contributed by FL, 15-Jan-2007.) (Proof shortened by Mario Carneiro, 19-Mar-2015.)
Assertion
Ref Expression
cnconst (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝐵𝑌𝐹:𝑋⟶{𝐵})) → 𝐹 ∈ (𝐽 Cn 𝐾))

Proof of Theorem cnconst
StepHypRef Expression
1 fconst2g 5827 . . . 4 (𝐵𝑌 → (𝐹:𝑋⟶{𝐵} ↔ 𝐹 = (𝑋 × {𝐵})))
21adantl 277 . . 3 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐵𝑌) → (𝐹:𝑋⟶{𝐵} ↔ 𝐹 = (𝑋 × {𝐵})))
3 cnconst2 14872 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵𝑌) → (𝑋 × {𝐵}) ∈ (𝐽 Cn 𝐾))
433expa 1208 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐵𝑌) → (𝑋 × {𝐵}) ∈ (𝐽 Cn 𝐾))
5 eleq1 2272 . . . 4 (𝐹 = (𝑋 × {𝐵}) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝑋 × {𝐵}) ∈ (𝐽 Cn 𝐾)))
64, 5syl5ibrcom 157 . . 3 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐵𝑌) → (𝐹 = (𝑋 × {𝐵}) → 𝐹 ∈ (𝐽 Cn 𝐾)))
72, 6sylbid 150 . 2 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐵𝑌) → (𝐹:𝑋⟶{𝐵} → 𝐹 ∈ (𝐽 Cn 𝐾)))
87impr 379 1 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝐵𝑌𝐹:𝑋⟶{𝐵})) → 𝐹 ∈ (𝐽 Cn 𝐾))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1375  wcel 2180  {csn 3646   × cxp 4694  wf 5290  cfv 5294  (class class class)co 5974  TopOnctopon 14649   Cn ccn 14824
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-coll 4178  ax-sep 4181  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606
This theorem depends on definitions:  df-bi 117  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-ral 2493  df-rex 2494  df-reu 2495  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-iun 3946  df-br 4063  df-opab 4125  df-mpt 4126  df-id 4361  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-f1 5299  df-fo 5300  df-f1o 5301  df-fv 5302  df-ov 5977  df-oprab 5978  df-mpo 5979  df-1st 6256  df-2nd 6257  df-map 6767  df-topgen 13259  df-top 14637  df-topon 14650  df-cn 14827  df-cnp 14828
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator