ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  expmulzap GIF version

Theorem expmulzap 10565
Description: Product of exponents law for integer exponentiation. (Contributed by Jim Kingdon, 11-Jun-2020.)
Assertion
Ref Expression
expmulzap (((๐ด โˆˆ โ„‚ โˆง ๐ด # 0) โˆง (๐‘€ โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค)) โ†’ (๐ดโ†‘(๐‘€ ยท ๐‘)) = ((๐ดโ†‘๐‘€)โ†‘๐‘))

Proof of Theorem expmulzap
StepHypRef Expression
1 elznn0nn 9266 . . 3 (๐‘ โˆˆ โ„ค โ†” (๐‘ โˆˆ โ„•0 โˆจ (๐‘ โˆˆ โ„ โˆง -๐‘ โˆˆ โ„•)))
2 elznn0nn 9266 . . . 4 (๐‘€ โˆˆ โ„ค โ†” (๐‘€ โˆˆ โ„•0 โˆจ (๐‘€ โˆˆ โ„ โˆง -๐‘€ โˆˆ โ„•)))
3 expmul 10564 . . . . . . . 8 ((๐ด โˆˆ โ„‚ โˆง ๐‘€ โˆˆ โ„•0 โˆง ๐‘ โˆˆ โ„•0) โ†’ (๐ดโ†‘(๐‘€ ยท ๐‘)) = ((๐ดโ†‘๐‘€)โ†‘๐‘))
433expia 1205 . . . . . . 7 ((๐ด โˆˆ โ„‚ โˆง ๐‘€ โˆˆ โ„•0) โ†’ (๐‘ โˆˆ โ„•0 โ†’ (๐ดโ†‘(๐‘€ ยท ๐‘)) = ((๐ดโ†‘๐‘€)โ†‘๐‘)))
54adantlr 477 . . . . . 6 (((๐ด โˆˆ โ„‚ โˆง ๐ด # 0) โˆง ๐‘€ โˆˆ โ„•0) โ†’ (๐‘ โˆˆ โ„•0 โ†’ (๐ดโ†‘(๐‘€ ยท ๐‘)) = ((๐ดโ†‘๐‘€)โ†‘๐‘)))
6 simp2l 1023 . . . . . . . . . . . . . 14 (((๐ด โˆˆ โ„‚ โˆง ๐ด # 0) โˆง (๐‘€ โˆˆ โ„ โˆง -๐‘€ โˆˆ โ„•) โˆง ๐‘ โˆˆ โ„•0) โ†’ ๐‘€ โˆˆ โ„)
76recnd 7985 . . . . . . . . . . . . 13 (((๐ด โˆˆ โ„‚ โˆง ๐ด # 0) โˆง (๐‘€ โˆˆ โ„ โˆง -๐‘€ โˆˆ โ„•) โˆง ๐‘ โˆˆ โ„•0) โ†’ ๐‘€ โˆˆ โ„‚)
8 simp3 999 . . . . . . . . . . . . . 14 (((๐ด โˆˆ โ„‚ โˆง ๐ด # 0) โˆง (๐‘€ โˆˆ โ„ โˆง -๐‘€ โˆˆ โ„•) โˆง ๐‘ โˆˆ โ„•0) โ†’ ๐‘ โˆˆ โ„•0)
98nn0cnd 9230 . . . . . . . . . . . . 13 (((๐ด โˆˆ โ„‚ โˆง ๐ด # 0) โˆง (๐‘€ โˆˆ โ„ โˆง -๐‘€ โˆˆ โ„•) โˆง ๐‘ โˆˆ โ„•0) โ†’ ๐‘ โˆˆ โ„‚)
107, 9mulneg1d 8367 . . . . . . . . . . . 12 (((๐ด โˆˆ โ„‚ โˆง ๐ด # 0) โˆง (๐‘€ โˆˆ โ„ โˆง -๐‘€ โˆˆ โ„•) โˆง ๐‘ โˆˆ โ„•0) โ†’ (-๐‘€ ยท ๐‘) = -(๐‘€ ยท ๐‘))
1110oveq2d 5890 . . . . . . . . . . 11 (((๐ด โˆˆ โ„‚ โˆง ๐ด # 0) โˆง (๐‘€ โˆˆ โ„ โˆง -๐‘€ โˆˆ โ„•) โˆง ๐‘ โˆˆ โ„•0) โ†’ (๐ดโ†‘(-๐‘€ ยท ๐‘)) = (๐ดโ†‘-(๐‘€ ยท ๐‘)))
12 simp1l 1021 . . . . . . . . . . . 12 (((๐ด โˆˆ โ„‚ โˆง ๐ด # 0) โˆง (๐‘€ โˆˆ โ„ โˆง -๐‘€ โˆˆ โ„•) โˆง ๐‘ โˆˆ โ„•0) โ†’ ๐ด โˆˆ โ„‚)
13 simp2r 1024 . . . . . . . . . . . . 13 (((๐ด โˆˆ โ„‚ โˆง ๐ด # 0) โˆง (๐‘€ โˆˆ โ„ โˆง -๐‘€ โˆˆ โ„•) โˆง ๐‘ โˆˆ โ„•0) โ†’ -๐‘€ โˆˆ โ„•)
1413nnnn0d 9228 . . . . . . . . . . . 12 (((๐ด โˆˆ โ„‚ โˆง ๐ด # 0) โˆง (๐‘€ โˆˆ โ„ โˆง -๐‘€ โˆˆ โ„•) โˆง ๐‘ โˆˆ โ„•0) โ†’ -๐‘€ โˆˆ โ„•0)
15 expmul 10564 . . . . . . . . . . . 12 ((๐ด โˆˆ โ„‚ โˆง -๐‘€ โˆˆ โ„•0 โˆง ๐‘ โˆˆ โ„•0) โ†’ (๐ดโ†‘(-๐‘€ ยท ๐‘)) = ((๐ดโ†‘-๐‘€)โ†‘๐‘))
1612, 14, 8, 15syl3anc 1238 . . . . . . . . . . 11 (((๐ด โˆˆ โ„‚ โˆง ๐ด # 0) โˆง (๐‘€ โˆˆ โ„ โˆง -๐‘€ โˆˆ โ„•) โˆง ๐‘ โˆˆ โ„•0) โ†’ (๐ดโ†‘(-๐‘€ ยท ๐‘)) = ((๐ดโ†‘-๐‘€)โ†‘๐‘))
1711, 16eqtr3d 2212 . . . . . . . . . 10 (((๐ด โˆˆ โ„‚ โˆง ๐ด # 0) โˆง (๐‘€ โˆˆ โ„ โˆง -๐‘€ โˆˆ โ„•) โˆง ๐‘ โˆˆ โ„•0) โ†’ (๐ดโ†‘-(๐‘€ ยท ๐‘)) = ((๐ดโ†‘-๐‘€)โ†‘๐‘))
1817oveq2d 5890 . . . . . . . . 9 (((๐ด โˆˆ โ„‚ โˆง ๐ด # 0) โˆง (๐‘€ โˆˆ โ„ โˆง -๐‘€ โˆˆ โ„•) โˆง ๐‘ โˆˆ โ„•0) โ†’ (1 / (๐ดโ†‘-(๐‘€ ยท ๐‘))) = (1 / ((๐ดโ†‘-๐‘€)โ†‘๐‘)))
19 expcl 10537 . . . . . . . . . . 11 ((๐ด โˆˆ โ„‚ โˆง -๐‘€ โˆˆ โ„•0) โ†’ (๐ดโ†‘-๐‘€) โˆˆ โ„‚)
2012, 14, 19syl2anc 411 . . . . . . . . . 10 (((๐ด โˆˆ โ„‚ โˆง ๐ด # 0) โˆง (๐‘€ โˆˆ โ„ โˆง -๐‘€ โˆˆ โ„•) โˆง ๐‘ โˆˆ โ„•0) โ†’ (๐ดโ†‘-๐‘€) โˆˆ โ„‚)
21 simp1r 1022 . . . . . . . . . . 11 (((๐ด โˆˆ โ„‚ โˆง ๐ด # 0) โˆง (๐‘€ โˆˆ โ„ โˆง -๐‘€ โˆˆ โ„•) โˆง ๐‘ โˆˆ โ„•0) โ†’ ๐ด # 0)
2213nnzd 9373 . . . . . . . . . . 11 (((๐ด โˆˆ โ„‚ โˆง ๐ด # 0) โˆง (๐‘€ โˆˆ โ„ โˆง -๐‘€ โˆˆ โ„•) โˆง ๐‘ โˆˆ โ„•0) โ†’ -๐‘€ โˆˆ โ„ค)
23 expap0i 10551 . . . . . . . . . . 11 ((๐ด โˆˆ โ„‚ โˆง ๐ด # 0 โˆง -๐‘€ โˆˆ โ„ค) โ†’ (๐ดโ†‘-๐‘€) # 0)
2412, 21, 22, 23syl3anc 1238 . . . . . . . . . 10 (((๐ด โˆˆ โ„‚ โˆง ๐ด # 0) โˆง (๐‘€ โˆˆ โ„ โˆง -๐‘€ โˆˆ โ„•) โˆง ๐‘ โˆˆ โ„•0) โ†’ (๐ดโ†‘-๐‘€) # 0)
258nn0zd 9372 . . . . . . . . . 10 (((๐ด โˆˆ โ„‚ โˆง ๐ด # 0) โˆง (๐‘€ โˆˆ โ„ โˆง -๐‘€ โˆˆ โ„•) โˆง ๐‘ โˆˆ โ„•0) โ†’ ๐‘ โˆˆ โ„ค)
26 exprecap 10560 . . . . . . . . . 10 (((๐ดโ†‘-๐‘€) โˆˆ โ„‚ โˆง (๐ดโ†‘-๐‘€) # 0 โˆง ๐‘ โˆˆ โ„ค) โ†’ ((1 / (๐ดโ†‘-๐‘€))โ†‘๐‘) = (1 / ((๐ดโ†‘-๐‘€)โ†‘๐‘)))
2720, 24, 25, 26syl3anc 1238 . . . . . . . . 9 (((๐ด โˆˆ โ„‚ โˆง ๐ด # 0) โˆง (๐‘€ โˆˆ โ„ โˆง -๐‘€ โˆˆ โ„•) โˆง ๐‘ โˆˆ โ„•0) โ†’ ((1 / (๐ดโ†‘-๐‘€))โ†‘๐‘) = (1 / ((๐ดโ†‘-๐‘€)โ†‘๐‘)))
2818, 27eqtr4d 2213 . . . . . . . 8 (((๐ด โˆˆ โ„‚ โˆง ๐ด # 0) โˆง (๐‘€ โˆˆ โ„ โˆง -๐‘€ โˆˆ โ„•) โˆง ๐‘ โˆˆ โ„•0) โ†’ (1 / (๐ดโ†‘-(๐‘€ ยท ๐‘))) = ((1 / (๐ดโ†‘-๐‘€))โ†‘๐‘))
297, 9mulcld 7977 . . . . . . . . 9 (((๐ด โˆˆ โ„‚ โˆง ๐ด # 0) โˆง (๐‘€ โˆˆ โ„ โˆง -๐‘€ โˆˆ โ„•) โˆง ๐‘ โˆˆ โ„•0) โ†’ (๐‘€ ยท ๐‘) โˆˆ โ„‚)
3014, 8nn0mulcld 9233 . . . . . . . . . 10 (((๐ด โˆˆ โ„‚ โˆง ๐ด # 0) โˆง (๐‘€ โˆˆ โ„ โˆง -๐‘€ โˆˆ โ„•) โˆง ๐‘ โˆˆ โ„•0) โ†’ (-๐‘€ ยท ๐‘) โˆˆ โ„•0)
3110, 30eqeltrrd 2255 . . . . . . . . 9 (((๐ด โˆˆ โ„‚ โˆง ๐ด # 0) โˆง (๐‘€ โˆˆ โ„ โˆง -๐‘€ โˆˆ โ„•) โˆง ๐‘ โˆˆ โ„•0) โ†’ -(๐‘€ ยท ๐‘) โˆˆ โ„•0)
32 expineg2 10528 . . . . . . . . 9 (((๐ด โˆˆ โ„‚ โˆง ๐ด # 0) โˆง ((๐‘€ ยท ๐‘) โˆˆ โ„‚ โˆง -(๐‘€ ยท ๐‘) โˆˆ โ„•0)) โ†’ (๐ดโ†‘(๐‘€ ยท ๐‘)) = (1 / (๐ดโ†‘-(๐‘€ ยท ๐‘))))
3312, 21, 29, 31, 32syl22anc 1239 . . . . . . . 8 (((๐ด โˆˆ โ„‚ โˆง ๐ด # 0) โˆง (๐‘€ โˆˆ โ„ โˆง -๐‘€ โˆˆ โ„•) โˆง ๐‘ โˆˆ โ„•0) โ†’ (๐ดโ†‘(๐‘€ ยท ๐‘)) = (1 / (๐ดโ†‘-(๐‘€ ยท ๐‘))))
34 expineg2 10528 . . . . . . . . . 10 (((๐ด โˆˆ โ„‚ โˆง ๐ด # 0) โˆง (๐‘€ โˆˆ โ„‚ โˆง -๐‘€ โˆˆ โ„•0)) โ†’ (๐ดโ†‘๐‘€) = (1 / (๐ดโ†‘-๐‘€)))
3512, 21, 7, 14, 34syl22anc 1239 . . . . . . . . 9 (((๐ด โˆˆ โ„‚ โˆง ๐ด # 0) โˆง (๐‘€ โˆˆ โ„ โˆง -๐‘€ โˆˆ โ„•) โˆง ๐‘ โˆˆ โ„•0) โ†’ (๐ดโ†‘๐‘€) = (1 / (๐ดโ†‘-๐‘€)))
3635oveq1d 5889 . . . . . . . 8 (((๐ด โˆˆ โ„‚ โˆง ๐ด # 0) โˆง (๐‘€ โˆˆ โ„ โˆง -๐‘€ โˆˆ โ„•) โˆง ๐‘ โˆˆ โ„•0) โ†’ ((๐ดโ†‘๐‘€)โ†‘๐‘) = ((1 / (๐ดโ†‘-๐‘€))โ†‘๐‘))
3728, 33, 363eqtr4d 2220 . . . . . . 7 (((๐ด โˆˆ โ„‚ โˆง ๐ด # 0) โˆง (๐‘€ โˆˆ โ„ โˆง -๐‘€ โˆˆ โ„•) โˆง ๐‘ โˆˆ โ„•0) โ†’ (๐ดโ†‘(๐‘€ ยท ๐‘)) = ((๐ดโ†‘๐‘€)โ†‘๐‘))
38373expia 1205 . . . . . 6 (((๐ด โˆˆ โ„‚ โˆง ๐ด # 0) โˆง (๐‘€ โˆˆ โ„ โˆง -๐‘€ โˆˆ โ„•)) โ†’ (๐‘ โˆˆ โ„•0 โ†’ (๐ดโ†‘(๐‘€ ยท ๐‘)) = ((๐ดโ†‘๐‘€)โ†‘๐‘)))
395, 38jaodan 797 . . . . 5 (((๐ด โˆˆ โ„‚ โˆง ๐ด # 0) โˆง (๐‘€ โˆˆ โ„•0 โˆจ (๐‘€ โˆˆ โ„ โˆง -๐‘€ โˆˆ โ„•))) โ†’ (๐‘ โˆˆ โ„•0 โ†’ (๐ดโ†‘(๐‘€ ยท ๐‘)) = ((๐ดโ†‘๐‘€)โ†‘๐‘)))
40 simp2 998 . . . . . . . . . . . . 13 (((๐ด โˆˆ โ„‚ โˆง ๐ด # 0) โˆง ๐‘€ โˆˆ โ„•0 โˆง (๐‘ โˆˆ โ„ โˆง -๐‘ โˆˆ โ„•)) โ†’ ๐‘€ โˆˆ โ„•0)
4140nn0cnd 9230 . . . . . . . . . . . 12 (((๐ด โˆˆ โ„‚ โˆง ๐ด # 0) โˆง ๐‘€ โˆˆ โ„•0 โˆง (๐‘ โˆˆ โ„ โˆง -๐‘ โˆˆ โ„•)) โ†’ ๐‘€ โˆˆ โ„‚)
42 simp3l 1025 . . . . . . . . . . . . 13 (((๐ด โˆˆ โ„‚ โˆง ๐ด # 0) โˆง ๐‘€ โˆˆ โ„•0 โˆง (๐‘ โˆˆ โ„ โˆง -๐‘ โˆˆ โ„•)) โ†’ ๐‘ โˆˆ โ„)
4342recnd 7985 . . . . . . . . . . . 12 (((๐ด โˆˆ โ„‚ โˆง ๐ด # 0) โˆง ๐‘€ โˆˆ โ„•0 โˆง (๐‘ โˆˆ โ„ โˆง -๐‘ โˆˆ โ„•)) โ†’ ๐‘ โˆˆ โ„‚)
4441, 43mulneg2d 8368 . . . . . . . . . . 11 (((๐ด โˆˆ โ„‚ โˆง ๐ด # 0) โˆง ๐‘€ โˆˆ โ„•0 โˆง (๐‘ โˆˆ โ„ โˆง -๐‘ โˆˆ โ„•)) โ†’ (๐‘€ ยท -๐‘) = -(๐‘€ ยท ๐‘))
4544oveq2d 5890 . . . . . . . . . 10 (((๐ด โˆˆ โ„‚ โˆง ๐ด # 0) โˆง ๐‘€ โˆˆ โ„•0 โˆง (๐‘ โˆˆ โ„ โˆง -๐‘ โˆˆ โ„•)) โ†’ (๐ดโ†‘(๐‘€ ยท -๐‘)) = (๐ดโ†‘-(๐‘€ ยท ๐‘)))
46 simp1l 1021 . . . . . . . . . . 11 (((๐ด โˆˆ โ„‚ โˆง ๐ด # 0) โˆง ๐‘€ โˆˆ โ„•0 โˆง (๐‘ โˆˆ โ„ โˆง -๐‘ โˆˆ โ„•)) โ†’ ๐ด โˆˆ โ„‚)
47 simp3r 1026 . . . . . . . . . . . 12 (((๐ด โˆˆ โ„‚ โˆง ๐ด # 0) โˆง ๐‘€ โˆˆ โ„•0 โˆง (๐‘ โˆˆ โ„ โˆง -๐‘ โˆˆ โ„•)) โ†’ -๐‘ โˆˆ โ„•)
4847nnnn0d 9228 . . . . . . . . . . 11 (((๐ด โˆˆ โ„‚ โˆง ๐ด # 0) โˆง ๐‘€ โˆˆ โ„•0 โˆง (๐‘ โˆˆ โ„ โˆง -๐‘ โˆˆ โ„•)) โ†’ -๐‘ โˆˆ โ„•0)
49 expmul 10564 . . . . . . . . . . 11 ((๐ด โˆˆ โ„‚ โˆง ๐‘€ โˆˆ โ„•0 โˆง -๐‘ โˆˆ โ„•0) โ†’ (๐ดโ†‘(๐‘€ ยท -๐‘)) = ((๐ดโ†‘๐‘€)โ†‘-๐‘))
5046, 40, 48, 49syl3anc 1238 . . . . . . . . . 10 (((๐ด โˆˆ โ„‚ โˆง ๐ด # 0) โˆง ๐‘€ โˆˆ โ„•0 โˆง (๐‘ โˆˆ โ„ โˆง -๐‘ โˆˆ โ„•)) โ†’ (๐ดโ†‘(๐‘€ ยท -๐‘)) = ((๐ดโ†‘๐‘€)โ†‘-๐‘))
5145, 50eqtr3d 2212 . . . . . . . . 9 (((๐ด โˆˆ โ„‚ โˆง ๐ด # 0) โˆง ๐‘€ โˆˆ โ„•0 โˆง (๐‘ โˆˆ โ„ โˆง -๐‘ โˆˆ โ„•)) โ†’ (๐ดโ†‘-(๐‘€ ยท ๐‘)) = ((๐ดโ†‘๐‘€)โ†‘-๐‘))
5251oveq2d 5890 . . . . . . . 8 (((๐ด โˆˆ โ„‚ โˆง ๐ด # 0) โˆง ๐‘€ โˆˆ โ„•0 โˆง (๐‘ โˆˆ โ„ โˆง -๐‘ โˆˆ โ„•)) โ†’ (1 / (๐ดโ†‘-(๐‘€ ยท ๐‘))) = (1 / ((๐ดโ†‘๐‘€)โ†‘-๐‘)))
53 simp1r 1022 . . . . . . . . 9 (((๐ด โˆˆ โ„‚ โˆง ๐ด # 0) โˆง ๐‘€ โˆˆ โ„•0 โˆง (๐‘ โˆˆ โ„ โˆง -๐‘ โˆˆ โ„•)) โ†’ ๐ด # 0)
5441, 43mulcld 7977 . . . . . . . . 9 (((๐ด โˆˆ โ„‚ โˆง ๐ด # 0) โˆง ๐‘€ โˆˆ โ„•0 โˆง (๐‘ โˆˆ โ„ โˆง -๐‘ โˆˆ โ„•)) โ†’ (๐‘€ ยท ๐‘) โˆˆ โ„‚)
5540, 48nn0mulcld 9233 . . . . . . . . . 10 (((๐ด โˆˆ โ„‚ โˆง ๐ด # 0) โˆง ๐‘€ โˆˆ โ„•0 โˆง (๐‘ โˆˆ โ„ โˆง -๐‘ โˆˆ โ„•)) โ†’ (๐‘€ ยท -๐‘) โˆˆ โ„•0)
5644, 55eqeltrrd 2255 . . . . . . . . 9 (((๐ด โˆˆ โ„‚ โˆง ๐ด # 0) โˆง ๐‘€ โˆˆ โ„•0 โˆง (๐‘ โˆˆ โ„ โˆง -๐‘ โˆˆ โ„•)) โ†’ -(๐‘€ ยท ๐‘) โˆˆ โ„•0)
5746, 53, 54, 56, 32syl22anc 1239 . . . . . . . 8 (((๐ด โˆˆ โ„‚ โˆง ๐ด # 0) โˆง ๐‘€ โˆˆ โ„•0 โˆง (๐‘ โˆˆ โ„ โˆง -๐‘ โˆˆ โ„•)) โ†’ (๐ดโ†‘(๐‘€ ยท ๐‘)) = (1 / (๐ดโ†‘-(๐‘€ ยท ๐‘))))
58 expcl 10537 . . . . . . . . . 10 ((๐ด โˆˆ โ„‚ โˆง ๐‘€ โˆˆ โ„•0) โ†’ (๐ดโ†‘๐‘€) โˆˆ โ„‚)
5946, 40, 58syl2anc 411 . . . . . . . . 9 (((๐ด โˆˆ โ„‚ โˆง ๐ด # 0) โˆง ๐‘€ โˆˆ โ„•0 โˆง (๐‘ โˆˆ โ„ โˆง -๐‘ โˆˆ โ„•)) โ†’ (๐ดโ†‘๐‘€) โˆˆ โ„‚)
6040nn0zd 9372 . . . . . . . . . 10 (((๐ด โˆˆ โ„‚ โˆง ๐ด # 0) โˆง ๐‘€ โˆˆ โ„•0 โˆง (๐‘ โˆˆ โ„ โˆง -๐‘ โˆˆ โ„•)) โ†’ ๐‘€ โˆˆ โ„ค)
61 expap0i 10551 . . . . . . . . . 10 ((๐ด โˆˆ โ„‚ โˆง ๐ด # 0 โˆง ๐‘€ โˆˆ โ„ค) โ†’ (๐ดโ†‘๐‘€) # 0)
6246, 53, 60, 61syl3anc 1238 . . . . . . . . 9 (((๐ด โˆˆ โ„‚ โˆง ๐ด # 0) โˆง ๐‘€ โˆˆ โ„•0 โˆง (๐‘ โˆˆ โ„ โˆง -๐‘ โˆˆ โ„•)) โ†’ (๐ดโ†‘๐‘€) # 0)
63 expineg2 10528 . . . . . . . . 9 ((((๐ดโ†‘๐‘€) โˆˆ โ„‚ โˆง (๐ดโ†‘๐‘€) # 0) โˆง (๐‘ โˆˆ โ„‚ โˆง -๐‘ โˆˆ โ„•0)) โ†’ ((๐ดโ†‘๐‘€)โ†‘๐‘) = (1 / ((๐ดโ†‘๐‘€)โ†‘-๐‘)))
6459, 62, 43, 48, 63syl22anc 1239 . . . . . . . 8 (((๐ด โˆˆ โ„‚ โˆง ๐ด # 0) โˆง ๐‘€ โˆˆ โ„•0 โˆง (๐‘ โˆˆ โ„ โˆง -๐‘ โˆˆ โ„•)) โ†’ ((๐ดโ†‘๐‘€)โ†‘๐‘) = (1 / ((๐ดโ†‘๐‘€)โ†‘-๐‘)))
6552, 57, 643eqtr4d 2220 . . . . . . 7 (((๐ด โˆˆ โ„‚ โˆง ๐ด # 0) โˆง ๐‘€ โˆˆ โ„•0 โˆง (๐‘ โˆˆ โ„ โˆง -๐‘ โˆˆ โ„•)) โ†’ (๐ดโ†‘(๐‘€ ยท ๐‘)) = ((๐ดโ†‘๐‘€)โ†‘๐‘))
66653expia 1205 . . . . . 6 (((๐ด โˆˆ โ„‚ โˆง ๐ด # 0) โˆง ๐‘€ โˆˆ โ„•0) โ†’ ((๐‘ โˆˆ โ„ โˆง -๐‘ โˆˆ โ„•) โ†’ (๐ดโ†‘(๐‘€ ยท ๐‘)) = ((๐ดโ†‘๐‘€)โ†‘๐‘)))
67 simp1l 1021 . . . . . . . . . 10 (((๐ด โˆˆ โ„‚ โˆง ๐ด # 0) โˆง (๐‘€ โˆˆ โ„ โˆง -๐‘€ โˆˆ โ„•) โˆง (๐‘ โˆˆ โ„ โˆง -๐‘ โˆˆ โ„•)) โ†’ ๐ด โˆˆ โ„‚)
68 simp1r 1022 . . . . . . . . . 10 (((๐ด โˆˆ โ„‚ โˆง ๐ด # 0) โˆง (๐‘€ โˆˆ โ„ โˆง -๐‘€ โˆˆ โ„•) โˆง (๐‘ โˆˆ โ„ โˆง -๐‘ โˆˆ โ„•)) โ†’ ๐ด # 0)
69 simp2l 1023 . . . . . . . . . . 11 (((๐ด โˆˆ โ„‚ โˆง ๐ด # 0) โˆง (๐‘€ โˆˆ โ„ โˆง -๐‘€ โˆˆ โ„•) โˆง (๐‘ โˆˆ โ„ โˆง -๐‘ โˆˆ โ„•)) โ†’ ๐‘€ โˆˆ โ„)
7069recnd 7985 . . . . . . . . . 10 (((๐ด โˆˆ โ„‚ โˆง ๐ด # 0) โˆง (๐‘€ โˆˆ โ„ โˆง -๐‘€ โˆˆ โ„•) โˆง (๐‘ โˆˆ โ„ โˆง -๐‘ โˆˆ โ„•)) โ†’ ๐‘€ โˆˆ โ„‚)
71 simp2r 1024 . . . . . . . . . . 11 (((๐ด โˆˆ โ„‚ โˆง ๐ด # 0) โˆง (๐‘€ โˆˆ โ„ โˆง -๐‘€ โˆˆ โ„•) โˆง (๐‘ โˆˆ โ„ โˆง -๐‘ โˆˆ โ„•)) โ†’ -๐‘€ โˆˆ โ„•)
7271nnnn0d 9228 . . . . . . . . . 10 (((๐ด โˆˆ โ„‚ โˆง ๐ด # 0) โˆง (๐‘€ โˆˆ โ„ โˆง -๐‘€ โˆˆ โ„•) โˆง (๐‘ โˆˆ โ„ โˆง -๐‘ โˆˆ โ„•)) โ†’ -๐‘€ โˆˆ โ„•0)
7367, 68, 70, 72, 34syl22anc 1239 . . . . . . . . 9 (((๐ด โˆˆ โ„‚ โˆง ๐ด # 0) โˆง (๐‘€ โˆˆ โ„ โˆง -๐‘€ โˆˆ โ„•) โˆง (๐‘ โˆˆ โ„ โˆง -๐‘ โˆˆ โ„•)) โ†’ (๐ดโ†‘๐‘€) = (1 / (๐ดโ†‘-๐‘€)))
7473oveq1d 5889 . . . . . . . 8 (((๐ด โˆˆ โ„‚ โˆง ๐ด # 0) โˆง (๐‘€ โˆˆ โ„ โˆง -๐‘€ โˆˆ โ„•) โˆง (๐‘ โˆˆ โ„ โˆง -๐‘ โˆˆ โ„•)) โ†’ ((๐ดโ†‘๐‘€)โ†‘๐‘) = ((1 / (๐ดโ†‘-๐‘€))โ†‘๐‘))
7567, 72, 19syl2anc 411 . . . . . . . . . 10 (((๐ด โˆˆ โ„‚ โˆง ๐ด # 0) โˆง (๐‘€ โˆˆ โ„ โˆง -๐‘€ โˆˆ โ„•) โˆง (๐‘ โˆˆ โ„ โˆง -๐‘ โˆˆ โ„•)) โ†’ (๐ดโ†‘-๐‘€) โˆˆ โ„‚)
7671nnzd 9373 . . . . . . . . . . 11 (((๐ด โˆˆ โ„‚ โˆง ๐ด # 0) โˆง (๐‘€ โˆˆ โ„ โˆง -๐‘€ โˆˆ โ„•) โˆง (๐‘ โˆˆ โ„ โˆง -๐‘ โˆˆ โ„•)) โ†’ -๐‘€ โˆˆ โ„ค)
7767, 68, 76, 23syl3anc 1238 . . . . . . . . . 10 (((๐ด โˆˆ โ„‚ โˆง ๐ด # 0) โˆง (๐‘€ โˆˆ โ„ โˆง -๐‘€ โˆˆ โ„•) โˆง (๐‘ โˆˆ โ„ โˆง -๐‘ โˆˆ โ„•)) โ†’ (๐ดโ†‘-๐‘€) # 0)
7875, 77recclapd 8737 . . . . . . . . 9 (((๐ด โˆˆ โ„‚ โˆง ๐ด # 0) โˆง (๐‘€ โˆˆ โ„ โˆง -๐‘€ โˆˆ โ„•) โˆง (๐‘ โˆˆ โ„ โˆง -๐‘ โˆˆ โ„•)) โ†’ (1 / (๐ดโ†‘-๐‘€)) โˆˆ โ„‚)
7975, 77recap0d 8738 . . . . . . . . 9 (((๐ด โˆˆ โ„‚ โˆง ๐ด # 0) โˆง (๐‘€ โˆˆ โ„ โˆง -๐‘€ โˆˆ โ„•) โˆง (๐‘ โˆˆ โ„ โˆง -๐‘ โˆˆ โ„•)) โ†’ (1 / (๐ดโ†‘-๐‘€)) # 0)
80 simp3l 1025 . . . . . . . . . 10 (((๐ด โˆˆ โ„‚ โˆง ๐ด # 0) โˆง (๐‘€ โˆˆ โ„ โˆง -๐‘€ โˆˆ โ„•) โˆง (๐‘ โˆˆ โ„ โˆง -๐‘ โˆˆ โ„•)) โ†’ ๐‘ โˆˆ โ„)
8180recnd 7985 . . . . . . . . 9 (((๐ด โˆˆ โ„‚ โˆง ๐ด # 0) โˆง (๐‘€ โˆˆ โ„ โˆง -๐‘€ โˆˆ โ„•) โˆง (๐‘ โˆˆ โ„ โˆง -๐‘ โˆˆ โ„•)) โ†’ ๐‘ โˆˆ โ„‚)
82 simp3r 1026 . . . . . . . . . 10 (((๐ด โˆˆ โ„‚ โˆง ๐ด # 0) โˆง (๐‘€ โˆˆ โ„ โˆง -๐‘€ โˆˆ โ„•) โˆง (๐‘ โˆˆ โ„ โˆง -๐‘ โˆˆ โ„•)) โ†’ -๐‘ โˆˆ โ„•)
8382nnnn0d 9228 . . . . . . . . 9 (((๐ด โˆˆ โ„‚ โˆง ๐ด # 0) โˆง (๐‘€ โˆˆ โ„ โˆง -๐‘€ โˆˆ โ„•) โˆง (๐‘ โˆˆ โ„ โˆง -๐‘ โˆˆ โ„•)) โ†’ -๐‘ โˆˆ โ„•0)
84 expineg2 10528 . . . . . . . . 9 ((((1 / (๐ดโ†‘-๐‘€)) โˆˆ โ„‚ โˆง (1 / (๐ดโ†‘-๐‘€)) # 0) โˆง (๐‘ โˆˆ โ„‚ โˆง -๐‘ โˆˆ โ„•0)) โ†’ ((1 / (๐ดโ†‘-๐‘€))โ†‘๐‘) = (1 / ((1 / (๐ดโ†‘-๐‘€))โ†‘-๐‘)))
8578, 79, 81, 83, 84syl22anc 1239 . . . . . . . 8 (((๐ด โˆˆ โ„‚ โˆง ๐ด # 0) โˆง (๐‘€ โˆˆ โ„ โˆง -๐‘€ โˆˆ โ„•) โˆง (๐‘ โˆˆ โ„ โˆง -๐‘ โˆˆ โ„•)) โ†’ ((1 / (๐ดโ†‘-๐‘€))โ†‘๐‘) = (1 / ((1 / (๐ดโ†‘-๐‘€))โ†‘-๐‘)))
8682nnzd 9373 . . . . . . . . . . 11 (((๐ด โˆˆ โ„‚ โˆง ๐ด # 0) โˆง (๐‘€ โˆˆ โ„ โˆง -๐‘€ โˆˆ โ„•) โˆง (๐‘ โˆˆ โ„ โˆง -๐‘ โˆˆ โ„•)) โ†’ -๐‘ โˆˆ โ„ค)
87 exprecap 10560 . . . . . . . . . . 11 (((๐ดโ†‘-๐‘€) โˆˆ โ„‚ โˆง (๐ดโ†‘-๐‘€) # 0 โˆง -๐‘ โˆˆ โ„ค) โ†’ ((1 / (๐ดโ†‘-๐‘€))โ†‘-๐‘) = (1 / ((๐ดโ†‘-๐‘€)โ†‘-๐‘)))
8875, 77, 86, 87syl3anc 1238 . . . . . . . . . 10 (((๐ด โˆˆ โ„‚ โˆง ๐ด # 0) โˆง (๐‘€ โˆˆ โ„ โˆง -๐‘€ โˆˆ โ„•) โˆง (๐‘ โˆˆ โ„ โˆง -๐‘ โˆˆ โ„•)) โ†’ ((1 / (๐ดโ†‘-๐‘€))โ†‘-๐‘) = (1 / ((๐ดโ†‘-๐‘€)โ†‘-๐‘)))
8988oveq2d 5890 . . . . . . . . 9 (((๐ด โˆˆ โ„‚ โˆง ๐ด # 0) โˆง (๐‘€ โˆˆ โ„ โˆง -๐‘€ โˆˆ โ„•) โˆง (๐‘ โˆˆ โ„ โˆง -๐‘ โˆˆ โ„•)) โ†’ (1 / ((1 / (๐ดโ†‘-๐‘€))โ†‘-๐‘)) = (1 / (1 / ((๐ดโ†‘-๐‘€)โ†‘-๐‘))))
90 expcl 10537 . . . . . . . . . . 11 (((๐ดโ†‘-๐‘€) โˆˆ โ„‚ โˆง -๐‘ โˆˆ โ„•0) โ†’ ((๐ดโ†‘-๐‘€)โ†‘-๐‘) โˆˆ โ„‚)
9175, 83, 90syl2anc 411 . . . . . . . . . 10 (((๐ด โˆˆ โ„‚ โˆง ๐ด # 0) โˆง (๐‘€ โˆˆ โ„ โˆง -๐‘€ โˆˆ โ„•) โˆง (๐‘ โˆˆ โ„ โˆง -๐‘ โˆˆ โ„•)) โ†’ ((๐ดโ†‘-๐‘€)โ†‘-๐‘) โˆˆ โ„‚)
92 expap0i 10551 . . . . . . . . . . 11 (((๐ดโ†‘-๐‘€) โˆˆ โ„‚ โˆง (๐ดโ†‘-๐‘€) # 0 โˆง -๐‘ โˆˆ โ„ค) โ†’ ((๐ดโ†‘-๐‘€)โ†‘-๐‘) # 0)
9375, 77, 86, 92syl3anc 1238 . . . . . . . . . 10 (((๐ด โˆˆ โ„‚ โˆง ๐ด # 0) โˆง (๐‘€ โˆˆ โ„ โˆง -๐‘€ โˆˆ โ„•) โˆง (๐‘ โˆˆ โ„ โˆง -๐‘ โˆˆ โ„•)) โ†’ ((๐ดโ†‘-๐‘€)โ†‘-๐‘) # 0)
9491, 93recrecapd 8741 . . . . . . . . 9 (((๐ด โˆˆ โ„‚ โˆง ๐ด # 0) โˆง (๐‘€ โˆˆ โ„ โˆง -๐‘€ โˆˆ โ„•) โˆง (๐‘ โˆˆ โ„ โˆง -๐‘ โˆˆ โ„•)) โ†’ (1 / (1 / ((๐ดโ†‘-๐‘€)โ†‘-๐‘))) = ((๐ดโ†‘-๐‘€)โ†‘-๐‘))
95 expmul 10564 . . . . . . . . . . 11 ((๐ด โˆˆ โ„‚ โˆง -๐‘€ โˆˆ โ„•0 โˆง -๐‘ โˆˆ โ„•0) โ†’ (๐ดโ†‘(-๐‘€ ยท -๐‘)) = ((๐ดโ†‘-๐‘€)โ†‘-๐‘))
9667, 72, 83, 95syl3anc 1238 . . . . . . . . . 10 (((๐ด โˆˆ โ„‚ โˆง ๐ด # 0) โˆง (๐‘€ โˆˆ โ„ โˆง -๐‘€ โˆˆ โ„•) โˆง (๐‘ โˆˆ โ„ โˆง -๐‘ โˆˆ โ„•)) โ†’ (๐ดโ†‘(-๐‘€ ยท -๐‘)) = ((๐ดโ†‘-๐‘€)โ†‘-๐‘))
9770, 81mul2negd 8369 . . . . . . . . . . 11 (((๐ด โˆˆ โ„‚ โˆง ๐ด # 0) โˆง (๐‘€ โˆˆ โ„ โˆง -๐‘€ โˆˆ โ„•) โˆง (๐‘ โˆˆ โ„ โˆง -๐‘ โˆˆ โ„•)) โ†’ (-๐‘€ ยท -๐‘) = (๐‘€ ยท ๐‘))
9897oveq2d 5890 . . . . . . . . . 10 (((๐ด โˆˆ โ„‚ โˆง ๐ด # 0) โˆง (๐‘€ โˆˆ โ„ โˆง -๐‘€ โˆˆ โ„•) โˆง (๐‘ โˆˆ โ„ โˆง -๐‘ โˆˆ โ„•)) โ†’ (๐ดโ†‘(-๐‘€ ยท -๐‘)) = (๐ดโ†‘(๐‘€ ยท ๐‘)))
9996, 98eqtr3d 2212 . . . . . . . . 9 (((๐ด โˆˆ โ„‚ โˆง ๐ด # 0) โˆง (๐‘€ โˆˆ โ„ โˆง -๐‘€ โˆˆ โ„•) โˆง (๐‘ โˆˆ โ„ โˆง -๐‘ โˆˆ โ„•)) โ†’ ((๐ดโ†‘-๐‘€)โ†‘-๐‘) = (๐ดโ†‘(๐‘€ ยท ๐‘)))
10089, 94, 993eqtrd 2214 . . . . . . . 8 (((๐ด โˆˆ โ„‚ โˆง ๐ด # 0) โˆง (๐‘€ โˆˆ โ„ โˆง -๐‘€ โˆˆ โ„•) โˆง (๐‘ โˆˆ โ„ โˆง -๐‘ โˆˆ โ„•)) โ†’ (1 / ((1 / (๐ดโ†‘-๐‘€))โ†‘-๐‘)) = (๐ดโ†‘(๐‘€ ยท ๐‘)))
10174, 85, 1003eqtrrd 2215 . . . . . . 7 (((๐ด โˆˆ โ„‚ โˆง ๐ด # 0) โˆง (๐‘€ โˆˆ โ„ โˆง -๐‘€ โˆˆ โ„•) โˆง (๐‘ โˆˆ โ„ โˆง -๐‘ โˆˆ โ„•)) โ†’ (๐ดโ†‘(๐‘€ ยท ๐‘)) = ((๐ดโ†‘๐‘€)โ†‘๐‘))
1021013expia 1205 . . . . . 6 (((๐ด โˆˆ โ„‚ โˆง ๐ด # 0) โˆง (๐‘€ โˆˆ โ„ โˆง -๐‘€ โˆˆ โ„•)) โ†’ ((๐‘ โˆˆ โ„ โˆง -๐‘ โˆˆ โ„•) โ†’ (๐ดโ†‘(๐‘€ ยท ๐‘)) = ((๐ดโ†‘๐‘€)โ†‘๐‘)))
10366, 102jaodan 797 . . . . 5 (((๐ด โˆˆ โ„‚ โˆง ๐ด # 0) โˆง (๐‘€ โˆˆ โ„•0 โˆจ (๐‘€ โˆˆ โ„ โˆง -๐‘€ โˆˆ โ„•))) โ†’ ((๐‘ โˆˆ โ„ โˆง -๐‘ โˆˆ โ„•) โ†’ (๐ดโ†‘(๐‘€ ยท ๐‘)) = ((๐ดโ†‘๐‘€)โ†‘๐‘)))
10439, 103jaod 717 . . . 4 (((๐ด โˆˆ โ„‚ โˆง ๐ด # 0) โˆง (๐‘€ โˆˆ โ„•0 โˆจ (๐‘€ โˆˆ โ„ โˆง -๐‘€ โˆˆ โ„•))) โ†’ ((๐‘ โˆˆ โ„•0 โˆจ (๐‘ โˆˆ โ„ โˆง -๐‘ โˆˆ โ„•)) โ†’ (๐ดโ†‘(๐‘€ ยท ๐‘)) = ((๐ดโ†‘๐‘€)โ†‘๐‘)))
1052, 104sylan2b 287 . . 3 (((๐ด โˆˆ โ„‚ โˆง ๐ด # 0) โˆง ๐‘€ โˆˆ โ„ค) โ†’ ((๐‘ โˆˆ โ„•0 โˆจ (๐‘ โˆˆ โ„ โˆง -๐‘ โˆˆ โ„•)) โ†’ (๐ดโ†‘(๐‘€ ยท ๐‘)) = ((๐ดโ†‘๐‘€)โ†‘๐‘)))
1061, 105biimtrid 152 . 2 (((๐ด โˆˆ โ„‚ โˆง ๐ด # 0) โˆง ๐‘€ โˆˆ โ„ค) โ†’ (๐‘ โˆˆ โ„ค โ†’ (๐ดโ†‘(๐‘€ ยท ๐‘)) = ((๐ดโ†‘๐‘€)โ†‘๐‘)))
107106impr 379 1 (((๐ด โˆˆ โ„‚ โˆง ๐ด # 0) โˆง (๐‘€ โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค)) โ†’ (๐ดโ†‘(๐‘€ ยท ๐‘)) = ((๐ดโ†‘๐‘€)โ†‘๐‘))
Colors of variables: wff set class
Syntax hints:   โ†’ wi 4   โˆง wa 104   โˆจ wo 708   โˆง w3a 978   = wceq 1353   โˆˆ wcel 2148   class class class wbr 4003  (class class class)co 5874  โ„‚cc 7808  โ„cr 7809  0cc0 7810  1c1 7811   ยท cmul 7815  -cneg 8128   # cap 8537   / cdiv 8628  โ„•cn 8918  โ„•0cn0 9175  โ„คcz 9252  โ†‘cexp 10518
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4118  ax-sep 4121  ax-nul 4129  ax-pow 4174  ax-pr 4209  ax-un 4433  ax-setind 4536  ax-iinf 4587  ax-cnex 7901  ax-resscn 7902  ax-1cn 7903  ax-1re 7904  ax-icn 7905  ax-addcl 7906  ax-addrcl 7907  ax-mulcl 7908  ax-mulrcl 7909  ax-addcom 7910  ax-mulcom 7911  ax-addass 7912  ax-mulass 7913  ax-distr 7914  ax-i2m1 7915  ax-0lt1 7916  ax-1rid 7917  ax-0id 7918  ax-rnegex 7919  ax-precex 7920  ax-cnre 7921  ax-pre-ltirr 7922  ax-pre-ltwlin 7923  ax-pre-lttrn 7924  ax-pre-apti 7925  ax-pre-ltadd 7926  ax-pre-mulgt0 7927  ax-pre-mulext 7928
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-int 3845  df-iun 3888  df-br 4004  df-opab 4065  df-mpt 4066  df-tr 4102  df-id 4293  df-po 4296  df-iso 4297  df-iord 4366  df-on 4368  df-ilim 4369  df-suc 4371  df-iom 4590  df-xp 4632  df-rel 4633  df-cnv 4634  df-co 4635  df-dm 4636  df-rn 4637  df-res 4638  df-ima 4639  df-iota 5178  df-fun 5218  df-fn 5219  df-f 5220  df-f1 5221  df-fo 5222  df-f1o 5223  df-fv 5224  df-riota 5830  df-ov 5877  df-oprab 5878  df-mpo 5879  df-1st 6140  df-2nd 6141  df-recs 6305  df-frec 6391  df-pnf 7993  df-mnf 7994  df-xr 7995  df-ltxr 7996  df-le 7997  df-sub 8129  df-neg 8130  df-reap 8531  df-ap 8538  df-div 8629  df-inn 8919  df-n0 9176  df-z 9253  df-uz 9528  df-seqfrec 10445  df-exp 10519
This theorem is referenced by:  iexpcyc  10624  lgseisenlem1  14386  m1lgs  14388
  Copyright terms: Public domain W3C validator