Proof of Theorem expmulzap
| Step | Hyp | Ref
| Expression |
| 1 | | elznn0nn 9340 |
. . 3
⊢ (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℕ0 ∨
(𝑁 ∈ ℝ ∧
-𝑁 ∈
ℕ))) |
| 2 | | elznn0nn 9340 |
. . . 4
⊢ (𝑀 ∈ ℤ ↔ (𝑀 ∈ ℕ0 ∨
(𝑀 ∈ ℝ ∧
-𝑀 ∈
ℕ))) |
| 3 | | expmul 10676 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0) → (𝐴↑(𝑀 · 𝑁)) = ((𝐴↑𝑀)↑𝑁)) |
| 4 | 3 | 3expia 1207 |
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0)
→ (𝑁 ∈
ℕ0 → (𝐴↑(𝑀 · 𝑁)) = ((𝐴↑𝑀)↑𝑁))) |
| 5 | 4 | adantlr 477 |
. . . . . 6
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ 𝑀 ∈ ℕ0) → (𝑁 ∈ ℕ0
→ (𝐴↑(𝑀 · 𝑁)) = ((𝐴↑𝑀)↑𝑁))) |
| 6 | | simp2l 1025 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → 𝑀 ∈
ℝ) |
| 7 | 6 | recnd 8055 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → 𝑀 ∈
ℂ) |
| 8 | | simp3 1001 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈
ℕ0) |
| 9 | 8 | nn0cnd 9304 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈
ℂ) |
| 10 | 7, 9 | mulneg1d 8437 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → (-𝑀 · 𝑁) = -(𝑀 · 𝑁)) |
| 11 | 10 | oveq2d 5938 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → (𝐴↑(-𝑀 · 𝑁)) = (𝐴↑-(𝑀 · 𝑁))) |
| 12 | | simp1l 1023 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → 𝐴 ∈
ℂ) |
| 13 | | simp2r 1026 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → -𝑀 ∈
ℕ) |
| 14 | 13 | nnnn0d 9302 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → -𝑀 ∈
ℕ0) |
| 15 | | expmul 10676 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℂ ∧ -𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0) → (𝐴↑(-𝑀 · 𝑁)) = ((𝐴↑-𝑀)↑𝑁)) |
| 16 | 12, 14, 8, 15 | syl3anc 1249 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → (𝐴↑(-𝑀 · 𝑁)) = ((𝐴↑-𝑀)↑𝑁)) |
| 17 | 11, 16 | eqtr3d 2231 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → (𝐴↑-(𝑀 · 𝑁)) = ((𝐴↑-𝑀)↑𝑁)) |
| 18 | 17 | oveq2d 5938 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → (1 /
(𝐴↑-(𝑀 · 𝑁))) = (1 / ((𝐴↑-𝑀)↑𝑁))) |
| 19 | | expcl 10649 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℂ ∧ -𝑀 ∈ ℕ0)
→ (𝐴↑-𝑀) ∈
ℂ) |
| 20 | 12, 14, 19 | syl2anc 411 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → (𝐴↑-𝑀) ∈ ℂ) |
| 21 | | simp1r 1024 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → 𝐴 # 0) |
| 22 | 13 | nnzd 9447 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → -𝑀 ∈
ℤ) |
| 23 | | expap0i 10663 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ -𝑀 ∈ ℤ) → (𝐴↑-𝑀) # 0) |
| 24 | 12, 21, 22, 23 | syl3anc 1249 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → (𝐴↑-𝑀) # 0) |
| 25 | 8 | nn0zd 9446 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈
ℤ) |
| 26 | | exprecap 10672 |
. . . . . . . . . 10
⊢ (((𝐴↑-𝑀) ∈ ℂ ∧ (𝐴↑-𝑀) # 0 ∧ 𝑁 ∈ ℤ) → ((1 / (𝐴↑-𝑀))↑𝑁) = (1 / ((𝐴↑-𝑀)↑𝑁))) |
| 27 | 20, 24, 25, 26 | syl3anc 1249 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → ((1 /
(𝐴↑-𝑀))↑𝑁) = (1 / ((𝐴↑-𝑀)↑𝑁))) |
| 28 | 18, 27 | eqtr4d 2232 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → (1 /
(𝐴↑-(𝑀 · 𝑁))) = ((1 / (𝐴↑-𝑀))↑𝑁)) |
| 29 | 7, 9 | mulcld 8047 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → (𝑀 · 𝑁) ∈ ℂ) |
| 30 | 14, 8 | nn0mulcld 9307 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → (-𝑀 · 𝑁) ∈
ℕ0) |
| 31 | 10, 30 | eqeltrrd 2274 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → -(𝑀 · 𝑁) ∈
ℕ0) |
| 32 | | expineg2 10640 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ ((𝑀 · 𝑁) ∈ ℂ ∧ -(𝑀 · 𝑁) ∈ ℕ0)) → (𝐴↑(𝑀 · 𝑁)) = (1 / (𝐴↑-(𝑀 · 𝑁)))) |
| 33 | 12, 21, 29, 31, 32 | syl22anc 1250 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → (𝐴↑(𝑀 · 𝑁)) = (1 / (𝐴↑-(𝑀 · 𝑁)))) |
| 34 | | expineg2 10640 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℂ ∧ -𝑀 ∈ ℕ0)) → (𝐴↑𝑀) = (1 / (𝐴↑-𝑀))) |
| 35 | 12, 21, 7, 14, 34 | syl22anc 1250 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → (𝐴↑𝑀) = (1 / (𝐴↑-𝑀))) |
| 36 | 35 | oveq1d 5937 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → ((𝐴↑𝑀)↑𝑁) = ((1 / (𝐴↑-𝑀))↑𝑁)) |
| 37 | 28, 33, 36 | 3eqtr4d 2239 |
. . . . . . 7
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → (𝐴↑(𝑀 · 𝑁)) = ((𝐴↑𝑀)↑𝑁)) |
| 38 | 37 | 3expia 1207 |
. . . . . 6
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ)) → (𝑁 ∈ ℕ0 → (𝐴↑(𝑀 · 𝑁)) = ((𝐴↑𝑀)↑𝑁))) |
| 39 | 5, 38 | jaodan 798 |
. . . . 5
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℕ0 ∨ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ))) → (𝑁 ∈ ℕ0
→ (𝐴↑(𝑀 · 𝑁)) = ((𝐴↑𝑀)↑𝑁))) |
| 40 | | simp2 1000 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ 𝑀 ∈ ℕ0 ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → 𝑀 ∈
ℕ0) |
| 41 | 40 | nn0cnd 9304 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ 𝑀 ∈ ℕ0 ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → 𝑀 ∈
ℂ) |
| 42 | | simp3l 1027 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ 𝑀 ∈ ℕ0 ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → 𝑁 ∈
ℝ) |
| 43 | 42 | recnd 8055 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ 𝑀 ∈ ℕ0 ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → 𝑁 ∈
ℂ) |
| 44 | 41, 43 | mulneg2d 8438 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ 𝑀 ∈ ℕ0 ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (𝑀 · -𝑁) = -(𝑀 · 𝑁)) |
| 45 | 44 | oveq2d 5938 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ 𝑀 ∈ ℕ0 ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (𝐴↑(𝑀 · -𝑁)) = (𝐴↑-(𝑀 · 𝑁))) |
| 46 | | simp1l 1023 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ 𝑀 ∈ ℕ0 ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → 𝐴 ∈
ℂ) |
| 47 | | simp3r 1028 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ 𝑀 ∈ ℕ0 ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → -𝑁 ∈
ℕ) |
| 48 | 47 | nnnn0d 9302 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ 𝑀 ∈ ℕ0 ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → -𝑁 ∈
ℕ0) |
| 49 | | expmul 10676 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0
∧ -𝑁 ∈
ℕ0) → (𝐴↑(𝑀 · -𝑁)) = ((𝐴↑𝑀)↑-𝑁)) |
| 50 | 46, 40, 48, 49 | syl3anc 1249 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ 𝑀 ∈ ℕ0 ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (𝐴↑(𝑀 · -𝑁)) = ((𝐴↑𝑀)↑-𝑁)) |
| 51 | 45, 50 | eqtr3d 2231 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ 𝑀 ∈ ℕ0 ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (𝐴↑-(𝑀 · 𝑁)) = ((𝐴↑𝑀)↑-𝑁)) |
| 52 | 51 | oveq2d 5938 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ 𝑀 ∈ ℕ0 ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (1 /
(𝐴↑-(𝑀 · 𝑁))) = (1 / ((𝐴↑𝑀)↑-𝑁))) |
| 53 | | simp1r 1024 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ 𝑀 ∈ ℕ0 ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → 𝐴 # 0) |
| 54 | 41, 43 | mulcld 8047 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ 𝑀 ∈ ℕ0 ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (𝑀 · 𝑁) ∈ ℂ) |
| 55 | 40, 48 | nn0mulcld 9307 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ 𝑀 ∈ ℕ0 ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (𝑀 · -𝑁) ∈
ℕ0) |
| 56 | 44, 55 | eqeltrrd 2274 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ 𝑀 ∈ ℕ0 ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → -(𝑀 · 𝑁) ∈
ℕ0) |
| 57 | 46, 53, 54, 56, 32 | syl22anc 1250 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ 𝑀 ∈ ℕ0 ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (𝐴↑(𝑀 · 𝑁)) = (1 / (𝐴↑-(𝑀 · 𝑁)))) |
| 58 | | expcl 10649 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0)
→ (𝐴↑𝑀) ∈
ℂ) |
| 59 | 46, 40, 58 | syl2anc 411 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ 𝑀 ∈ ℕ0 ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (𝐴↑𝑀) ∈ ℂ) |
| 60 | 40 | nn0zd 9446 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ 𝑀 ∈ ℕ0 ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → 𝑀 ∈
ℤ) |
| 61 | | expap0i 10663 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝑀 ∈ ℤ) → (𝐴↑𝑀) # 0) |
| 62 | 46, 53, 60, 61 | syl3anc 1249 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ 𝑀 ∈ ℕ0 ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (𝐴↑𝑀) # 0) |
| 63 | | expineg2 10640 |
. . . . . . . . 9
⊢ ((((𝐴↑𝑀) ∈ ℂ ∧ (𝐴↑𝑀) # 0) ∧ (𝑁 ∈ ℂ ∧ -𝑁 ∈ ℕ0)) → ((𝐴↑𝑀)↑𝑁) = (1 / ((𝐴↑𝑀)↑-𝑁))) |
| 64 | 59, 62, 43, 48, 63 | syl22anc 1250 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ 𝑀 ∈ ℕ0 ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → ((𝐴↑𝑀)↑𝑁) = (1 / ((𝐴↑𝑀)↑-𝑁))) |
| 65 | 52, 57, 64 | 3eqtr4d 2239 |
. . . . . . 7
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ 𝑀 ∈ ℕ0 ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (𝐴↑(𝑀 · 𝑁)) = ((𝐴↑𝑀)↑𝑁)) |
| 66 | 65 | 3expia 1207 |
. . . . . 6
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ 𝑀 ∈ ℕ0) → ((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) → (𝐴↑(𝑀 · 𝑁)) = ((𝐴↑𝑀)↑𝑁))) |
| 67 | | simp1l 1023 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → 𝐴 ∈ ℂ) |
| 68 | | simp1r 1024 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → 𝐴 # 0) |
| 69 | | simp2l 1025 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → 𝑀 ∈ ℝ) |
| 70 | 69 | recnd 8055 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → 𝑀 ∈ ℂ) |
| 71 | | simp2r 1026 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → -𝑀 ∈ ℕ) |
| 72 | 71 | nnnn0d 9302 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → -𝑀 ∈
ℕ0) |
| 73 | 67, 68, 70, 72, 34 | syl22anc 1250 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (𝐴↑𝑀) = (1 / (𝐴↑-𝑀))) |
| 74 | 73 | oveq1d 5937 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → ((𝐴↑𝑀)↑𝑁) = ((1 / (𝐴↑-𝑀))↑𝑁)) |
| 75 | 67, 72, 19 | syl2anc 411 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (𝐴↑-𝑀) ∈ ℂ) |
| 76 | 71 | nnzd 9447 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → -𝑀 ∈ ℤ) |
| 77 | 67, 68, 76, 23 | syl3anc 1249 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (𝐴↑-𝑀) # 0) |
| 78 | 75, 77 | recclapd 8808 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (1 / (𝐴↑-𝑀)) ∈ ℂ) |
| 79 | 75, 77 | recap0d 8809 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (1 / (𝐴↑-𝑀)) # 0) |
| 80 | | simp3l 1027 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → 𝑁 ∈ ℝ) |
| 81 | 80 | recnd 8055 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → 𝑁 ∈ ℂ) |
| 82 | | simp3r 1028 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → -𝑁 ∈ ℕ) |
| 83 | 82 | nnnn0d 9302 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → -𝑁 ∈
ℕ0) |
| 84 | | expineg2 10640 |
. . . . . . . . 9
⊢ ((((1 /
(𝐴↑-𝑀)) ∈ ℂ ∧ (1 / (𝐴↑-𝑀)) # 0) ∧ (𝑁 ∈ ℂ ∧ -𝑁 ∈ ℕ0)) → ((1 /
(𝐴↑-𝑀))↑𝑁) = (1 / ((1 / (𝐴↑-𝑀))↑-𝑁))) |
| 85 | 78, 79, 81, 83, 84 | syl22anc 1250 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → ((1 / (𝐴↑-𝑀))↑𝑁) = (1 / ((1 / (𝐴↑-𝑀))↑-𝑁))) |
| 86 | 82 | nnzd 9447 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → -𝑁 ∈ ℤ) |
| 87 | | exprecap 10672 |
. . . . . . . . . . 11
⊢ (((𝐴↑-𝑀) ∈ ℂ ∧ (𝐴↑-𝑀) # 0 ∧ -𝑁 ∈ ℤ) → ((1 / (𝐴↑-𝑀))↑-𝑁) = (1 / ((𝐴↑-𝑀)↑-𝑁))) |
| 88 | 75, 77, 86, 87 | syl3anc 1249 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → ((1 / (𝐴↑-𝑀))↑-𝑁) = (1 / ((𝐴↑-𝑀)↑-𝑁))) |
| 89 | 88 | oveq2d 5938 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (1 / ((1 / (𝐴↑-𝑀))↑-𝑁)) = (1 / (1 / ((𝐴↑-𝑀)↑-𝑁)))) |
| 90 | | expcl 10649 |
. . . . . . . . . . 11
⊢ (((𝐴↑-𝑀) ∈ ℂ ∧ -𝑁 ∈ ℕ0) → ((𝐴↑-𝑀)↑-𝑁) ∈ ℂ) |
| 91 | 75, 83, 90 | syl2anc 411 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → ((𝐴↑-𝑀)↑-𝑁) ∈ ℂ) |
| 92 | | expap0i 10663 |
. . . . . . . . . . 11
⊢ (((𝐴↑-𝑀) ∈ ℂ ∧ (𝐴↑-𝑀) # 0 ∧ -𝑁 ∈ ℤ) → ((𝐴↑-𝑀)↑-𝑁) # 0) |
| 93 | 75, 77, 86, 92 | syl3anc 1249 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → ((𝐴↑-𝑀)↑-𝑁) # 0) |
| 94 | 91, 93 | recrecapd 8812 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (1 / (1 / ((𝐴↑-𝑀)↑-𝑁))) = ((𝐴↑-𝑀)↑-𝑁)) |
| 95 | | expmul 10676 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℂ ∧ -𝑀 ∈ ℕ0
∧ -𝑁 ∈
ℕ0) → (𝐴↑(-𝑀 · -𝑁)) = ((𝐴↑-𝑀)↑-𝑁)) |
| 96 | 67, 72, 83, 95 | syl3anc 1249 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (𝐴↑(-𝑀 · -𝑁)) = ((𝐴↑-𝑀)↑-𝑁)) |
| 97 | 70, 81 | mul2negd 8439 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (-𝑀 · -𝑁) = (𝑀 · 𝑁)) |
| 98 | 97 | oveq2d 5938 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (𝐴↑(-𝑀 · -𝑁)) = (𝐴↑(𝑀 · 𝑁))) |
| 99 | 96, 98 | eqtr3d 2231 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → ((𝐴↑-𝑀)↑-𝑁) = (𝐴↑(𝑀 · 𝑁))) |
| 100 | 89, 94, 99 | 3eqtrd 2233 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (1 / ((1 / (𝐴↑-𝑀))↑-𝑁)) = (𝐴↑(𝑀 · 𝑁))) |
| 101 | 74, 85, 100 | 3eqtrrd 2234 |
. . . . . . 7
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (𝐴↑(𝑀 · 𝑁)) = ((𝐴↑𝑀)↑𝑁)) |
| 102 | 101 | 3expia 1207 |
. . . . . 6
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ)) → ((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) → (𝐴↑(𝑀 · 𝑁)) = ((𝐴↑𝑀)↑𝑁))) |
| 103 | 66, 102 | jaodan 798 |
. . . . 5
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℕ0 ∨ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ))) →
((𝑁 ∈ ℝ ∧
-𝑁 ∈ ℕ) →
(𝐴↑(𝑀 · 𝑁)) = ((𝐴↑𝑀)↑𝑁))) |
| 104 | 39, 103 | jaod 718 |
. . . 4
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℕ0 ∨ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ))) →
((𝑁 ∈
ℕ0 ∨ (𝑁
∈ ℝ ∧ -𝑁
∈ ℕ)) → (𝐴↑(𝑀 · 𝑁)) = ((𝐴↑𝑀)↑𝑁))) |
| 105 | 2, 104 | sylan2b 287 |
. . 3
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ 𝑀 ∈ ℤ) → ((𝑁 ∈ ℕ0 ∨ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (𝐴↑(𝑀 · 𝑁)) = ((𝐴↑𝑀)↑𝑁))) |
| 106 | 1, 105 | biimtrid 152 |
. 2
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ 𝑀 ∈ ℤ) → (𝑁 ∈ ℤ → (𝐴↑(𝑀 · 𝑁)) = ((𝐴↑𝑀)↑𝑁))) |
| 107 | 106 | impr 379 |
1
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝐴↑(𝑀 · 𝑁)) = ((𝐴↑𝑀)↑𝑁)) |