ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  expmulzap GIF version

Theorem expmulzap 10743
Description: Product of exponents law for integer exponentiation. (Contributed by Jim Kingdon, 11-Jun-2020.)
Assertion
Ref Expression
expmulzap (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝐴↑(𝑀 · 𝑁)) = ((𝐴𝑀)↑𝑁))

Proof of Theorem expmulzap
StepHypRef Expression
1 elznn0nn 9399 . . 3 (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℕ0 ∨ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)))
2 elznn0nn 9399 . . . 4 (𝑀 ∈ ℤ ↔ (𝑀 ∈ ℕ0 ∨ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ)))
3 expmul 10742 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝐴↑(𝑀 · 𝑁)) = ((𝐴𝑀)↑𝑁))
433expia 1208 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → (𝑁 ∈ ℕ0 → (𝐴↑(𝑀 · 𝑁)) = ((𝐴𝑀)↑𝑁)))
54adantlr 477 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ 𝑀 ∈ ℕ0) → (𝑁 ∈ ℕ0 → (𝐴↑(𝑀 · 𝑁)) = ((𝐴𝑀)↑𝑁)))
6 simp2l 1026 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → 𝑀 ∈ ℝ)
76recnd 8114 . . . . . . . . . . . . 13 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → 𝑀 ∈ ℂ)
8 simp3 1002 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℕ0)
98nn0cnd 9363 . . . . . . . . . . . . 13 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℂ)
107, 9mulneg1d 8496 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → (-𝑀 · 𝑁) = -(𝑀 · 𝑁))
1110oveq2d 5970 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → (𝐴↑(-𝑀 · 𝑁)) = (𝐴↑-(𝑀 · 𝑁)))
12 simp1l 1024 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → 𝐴 ∈ ℂ)
13 simp2r 1027 . . . . . . . . . . . . 13 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → -𝑀 ∈ ℕ)
1413nnnn0d 9361 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → -𝑀 ∈ ℕ0)
15 expmul 10742 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ -𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝐴↑(-𝑀 · 𝑁)) = ((𝐴↑-𝑀)↑𝑁))
1612, 14, 8, 15syl3anc 1250 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → (𝐴↑(-𝑀 · 𝑁)) = ((𝐴↑-𝑀)↑𝑁))
1711, 16eqtr3d 2241 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → (𝐴↑-(𝑀 · 𝑁)) = ((𝐴↑-𝑀)↑𝑁))
1817oveq2d 5970 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → (1 / (𝐴↑-(𝑀 · 𝑁))) = (1 / ((𝐴↑-𝑀)↑𝑁)))
19 expcl 10715 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ -𝑀 ∈ ℕ0) → (𝐴↑-𝑀) ∈ ℂ)
2012, 14, 19syl2anc 411 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → (𝐴↑-𝑀) ∈ ℂ)
21 simp1r 1025 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → 𝐴 # 0)
2213nnzd 9507 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → -𝑀 ∈ ℤ)
23 expap0i 10729 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ -𝑀 ∈ ℤ) → (𝐴↑-𝑀) # 0)
2412, 21, 22, 23syl3anc 1250 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → (𝐴↑-𝑀) # 0)
258nn0zd 9506 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℤ)
26 exprecap 10738 . . . . . . . . . 10 (((𝐴↑-𝑀) ∈ ℂ ∧ (𝐴↑-𝑀) # 0 ∧ 𝑁 ∈ ℤ) → ((1 / (𝐴↑-𝑀))↑𝑁) = (1 / ((𝐴↑-𝑀)↑𝑁)))
2720, 24, 25, 26syl3anc 1250 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → ((1 / (𝐴↑-𝑀))↑𝑁) = (1 / ((𝐴↑-𝑀)↑𝑁)))
2818, 27eqtr4d 2242 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → (1 / (𝐴↑-(𝑀 · 𝑁))) = ((1 / (𝐴↑-𝑀))↑𝑁))
297, 9mulcld 8106 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → (𝑀 · 𝑁) ∈ ℂ)
3014, 8nn0mulcld 9366 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → (-𝑀 · 𝑁) ∈ ℕ0)
3110, 30eqeltrrd 2284 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → -(𝑀 · 𝑁) ∈ ℕ0)
32 expineg2 10706 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ ((𝑀 · 𝑁) ∈ ℂ ∧ -(𝑀 · 𝑁) ∈ ℕ0)) → (𝐴↑(𝑀 · 𝑁)) = (1 / (𝐴↑-(𝑀 · 𝑁))))
3312, 21, 29, 31, 32syl22anc 1251 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → (𝐴↑(𝑀 · 𝑁)) = (1 / (𝐴↑-(𝑀 · 𝑁))))
34 expineg2 10706 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℂ ∧ -𝑀 ∈ ℕ0)) → (𝐴𝑀) = (1 / (𝐴↑-𝑀)))
3512, 21, 7, 14, 34syl22anc 1251 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → (𝐴𝑀) = (1 / (𝐴↑-𝑀)))
3635oveq1d 5969 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → ((𝐴𝑀)↑𝑁) = ((1 / (𝐴↑-𝑀))↑𝑁))
3728, 33, 363eqtr4d 2249 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → (𝐴↑(𝑀 · 𝑁)) = ((𝐴𝑀)↑𝑁))
38373expia 1208 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ)) → (𝑁 ∈ ℕ0 → (𝐴↑(𝑀 · 𝑁)) = ((𝐴𝑀)↑𝑁)))
395, 38jaodan 799 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℕ0 ∨ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ))) → (𝑁 ∈ ℕ0 → (𝐴↑(𝑀 · 𝑁)) = ((𝐴𝑀)↑𝑁)))
40 simp2 1001 . . . . . . . . . . . . 13 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ 𝑀 ∈ ℕ0 ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → 𝑀 ∈ ℕ0)
4140nn0cnd 9363 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ 𝑀 ∈ ℕ0 ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → 𝑀 ∈ ℂ)
42 simp3l 1028 . . . . . . . . . . . . 13 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ 𝑀 ∈ ℕ0 ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → 𝑁 ∈ ℝ)
4342recnd 8114 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ 𝑀 ∈ ℕ0 ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → 𝑁 ∈ ℂ)
4441, 43mulneg2d 8497 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ 𝑀 ∈ ℕ0 ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (𝑀 · -𝑁) = -(𝑀 · 𝑁))
4544oveq2d 5970 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ 𝑀 ∈ ℕ0 ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (𝐴↑(𝑀 · -𝑁)) = (𝐴↑-(𝑀 · 𝑁)))
46 simp1l 1024 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ 𝑀 ∈ ℕ0 ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → 𝐴 ∈ ℂ)
47 simp3r 1029 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ 𝑀 ∈ ℕ0 ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → -𝑁 ∈ ℕ)
4847nnnn0d 9361 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ 𝑀 ∈ ℕ0 ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → -𝑁 ∈ ℕ0)
49 expmul 10742 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0) → (𝐴↑(𝑀 · -𝑁)) = ((𝐴𝑀)↑-𝑁))
5046, 40, 48, 49syl3anc 1250 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ 𝑀 ∈ ℕ0 ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (𝐴↑(𝑀 · -𝑁)) = ((𝐴𝑀)↑-𝑁))
5145, 50eqtr3d 2241 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ 𝑀 ∈ ℕ0 ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (𝐴↑-(𝑀 · 𝑁)) = ((𝐴𝑀)↑-𝑁))
5251oveq2d 5970 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ 𝑀 ∈ ℕ0 ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (1 / (𝐴↑-(𝑀 · 𝑁))) = (1 / ((𝐴𝑀)↑-𝑁)))
53 simp1r 1025 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ 𝑀 ∈ ℕ0 ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → 𝐴 # 0)
5441, 43mulcld 8106 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ 𝑀 ∈ ℕ0 ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (𝑀 · 𝑁) ∈ ℂ)
5540, 48nn0mulcld 9366 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ 𝑀 ∈ ℕ0 ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (𝑀 · -𝑁) ∈ ℕ0)
5644, 55eqeltrrd 2284 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ 𝑀 ∈ ℕ0 ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → -(𝑀 · 𝑁) ∈ ℕ0)
5746, 53, 54, 56, 32syl22anc 1251 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ 𝑀 ∈ ℕ0 ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (𝐴↑(𝑀 · 𝑁)) = (1 / (𝐴↑-(𝑀 · 𝑁))))
58 expcl 10715 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → (𝐴𝑀) ∈ ℂ)
5946, 40, 58syl2anc 411 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ 𝑀 ∈ ℕ0 ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (𝐴𝑀) ∈ ℂ)
6040nn0zd 9506 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ 𝑀 ∈ ℕ0 ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → 𝑀 ∈ ℤ)
61 expap0i 10729 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝑀 ∈ ℤ) → (𝐴𝑀) # 0)
6246, 53, 60, 61syl3anc 1250 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ 𝑀 ∈ ℕ0 ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (𝐴𝑀) # 0)
63 expineg2 10706 . . . . . . . . 9 ((((𝐴𝑀) ∈ ℂ ∧ (𝐴𝑀) # 0) ∧ (𝑁 ∈ ℂ ∧ -𝑁 ∈ ℕ0)) → ((𝐴𝑀)↑𝑁) = (1 / ((𝐴𝑀)↑-𝑁)))
6459, 62, 43, 48, 63syl22anc 1251 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ 𝑀 ∈ ℕ0 ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → ((𝐴𝑀)↑𝑁) = (1 / ((𝐴𝑀)↑-𝑁)))
6552, 57, 643eqtr4d 2249 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ 𝑀 ∈ ℕ0 ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (𝐴↑(𝑀 · 𝑁)) = ((𝐴𝑀)↑𝑁))
66653expia 1208 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ 𝑀 ∈ ℕ0) → ((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) → (𝐴↑(𝑀 · 𝑁)) = ((𝐴𝑀)↑𝑁)))
67 simp1l 1024 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → 𝐴 ∈ ℂ)
68 simp1r 1025 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → 𝐴 # 0)
69 simp2l 1026 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → 𝑀 ∈ ℝ)
7069recnd 8114 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → 𝑀 ∈ ℂ)
71 simp2r 1027 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → -𝑀 ∈ ℕ)
7271nnnn0d 9361 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → -𝑀 ∈ ℕ0)
7367, 68, 70, 72, 34syl22anc 1251 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (𝐴𝑀) = (1 / (𝐴↑-𝑀)))
7473oveq1d 5969 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → ((𝐴𝑀)↑𝑁) = ((1 / (𝐴↑-𝑀))↑𝑁))
7567, 72, 19syl2anc 411 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (𝐴↑-𝑀) ∈ ℂ)
7671nnzd 9507 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → -𝑀 ∈ ℤ)
7767, 68, 76, 23syl3anc 1250 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (𝐴↑-𝑀) # 0)
7875, 77recclapd 8867 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (1 / (𝐴↑-𝑀)) ∈ ℂ)
7975, 77recap0d 8868 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (1 / (𝐴↑-𝑀)) # 0)
80 simp3l 1028 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → 𝑁 ∈ ℝ)
8180recnd 8114 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → 𝑁 ∈ ℂ)
82 simp3r 1029 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → -𝑁 ∈ ℕ)
8382nnnn0d 9361 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → -𝑁 ∈ ℕ0)
84 expineg2 10706 . . . . . . . . 9 ((((1 / (𝐴↑-𝑀)) ∈ ℂ ∧ (1 / (𝐴↑-𝑀)) # 0) ∧ (𝑁 ∈ ℂ ∧ -𝑁 ∈ ℕ0)) → ((1 / (𝐴↑-𝑀))↑𝑁) = (1 / ((1 / (𝐴↑-𝑀))↑-𝑁)))
8578, 79, 81, 83, 84syl22anc 1251 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → ((1 / (𝐴↑-𝑀))↑𝑁) = (1 / ((1 / (𝐴↑-𝑀))↑-𝑁)))
8682nnzd 9507 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → -𝑁 ∈ ℤ)
87 exprecap 10738 . . . . . . . . . . 11 (((𝐴↑-𝑀) ∈ ℂ ∧ (𝐴↑-𝑀) # 0 ∧ -𝑁 ∈ ℤ) → ((1 / (𝐴↑-𝑀))↑-𝑁) = (1 / ((𝐴↑-𝑀)↑-𝑁)))
8875, 77, 86, 87syl3anc 1250 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → ((1 / (𝐴↑-𝑀))↑-𝑁) = (1 / ((𝐴↑-𝑀)↑-𝑁)))
8988oveq2d 5970 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (1 / ((1 / (𝐴↑-𝑀))↑-𝑁)) = (1 / (1 / ((𝐴↑-𝑀)↑-𝑁))))
90 expcl 10715 . . . . . . . . . . 11 (((𝐴↑-𝑀) ∈ ℂ ∧ -𝑁 ∈ ℕ0) → ((𝐴↑-𝑀)↑-𝑁) ∈ ℂ)
9175, 83, 90syl2anc 411 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → ((𝐴↑-𝑀)↑-𝑁) ∈ ℂ)
92 expap0i 10729 . . . . . . . . . . 11 (((𝐴↑-𝑀) ∈ ℂ ∧ (𝐴↑-𝑀) # 0 ∧ -𝑁 ∈ ℤ) → ((𝐴↑-𝑀)↑-𝑁) # 0)
9375, 77, 86, 92syl3anc 1250 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → ((𝐴↑-𝑀)↑-𝑁) # 0)
9491, 93recrecapd 8871 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (1 / (1 / ((𝐴↑-𝑀)↑-𝑁))) = ((𝐴↑-𝑀)↑-𝑁))
95 expmul 10742 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ -𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0) → (𝐴↑(-𝑀 · -𝑁)) = ((𝐴↑-𝑀)↑-𝑁))
9667, 72, 83, 95syl3anc 1250 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (𝐴↑(-𝑀 · -𝑁)) = ((𝐴↑-𝑀)↑-𝑁))
9770, 81mul2negd 8498 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (-𝑀 · -𝑁) = (𝑀 · 𝑁))
9897oveq2d 5970 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (𝐴↑(-𝑀 · -𝑁)) = (𝐴↑(𝑀 · 𝑁)))
9996, 98eqtr3d 2241 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → ((𝐴↑-𝑀)↑-𝑁) = (𝐴↑(𝑀 · 𝑁)))
10089, 94, 993eqtrd 2243 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (1 / ((1 / (𝐴↑-𝑀))↑-𝑁)) = (𝐴↑(𝑀 · 𝑁)))
10174, 85, 1003eqtrrd 2244 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (𝐴↑(𝑀 · 𝑁)) = ((𝐴𝑀)↑𝑁))
1021013expia 1208 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ)) → ((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) → (𝐴↑(𝑀 · 𝑁)) = ((𝐴𝑀)↑𝑁)))
10366, 102jaodan 799 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℕ0 ∨ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ))) → ((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) → (𝐴↑(𝑀 · 𝑁)) = ((𝐴𝑀)↑𝑁)))
10439, 103jaod 719 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℕ0 ∨ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ))) → ((𝑁 ∈ ℕ0 ∨ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (𝐴↑(𝑀 · 𝑁)) = ((𝐴𝑀)↑𝑁)))
1052, 104sylan2b 287 . . 3 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ 𝑀 ∈ ℤ) → ((𝑁 ∈ ℕ0 ∨ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (𝐴↑(𝑀 · 𝑁)) = ((𝐴𝑀)↑𝑁)))
1061, 105biimtrid 152 . 2 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ 𝑀 ∈ ℤ) → (𝑁 ∈ ℤ → (𝐴↑(𝑀 · 𝑁)) = ((𝐴𝑀)↑𝑁)))
107106impr 379 1 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝐴↑(𝑀 · 𝑁)) = ((𝐴𝑀)↑𝑁))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wo 710  w3a 981   = wceq 1373  wcel 2177   class class class wbr 4048  (class class class)co 5954  cc 7936  cr 7937  0cc0 7938  1c1 7939   · cmul 7943  -cneg 8257   # cap 8667   / cdiv 8758  cn 9049  0cn0 9308  cz 9385  cexp 10696
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4164  ax-sep 4167  ax-nul 4175  ax-pow 4223  ax-pr 4258  ax-un 4485  ax-setind 4590  ax-iinf 4641  ax-cnex 8029  ax-resscn 8030  ax-1cn 8031  ax-1re 8032  ax-icn 8033  ax-addcl 8034  ax-addrcl 8035  ax-mulcl 8036  ax-mulrcl 8037  ax-addcom 8038  ax-mulcom 8039  ax-addass 8040  ax-mulass 8041  ax-distr 8042  ax-i2m1 8043  ax-0lt1 8044  ax-1rid 8045  ax-0id 8046  ax-rnegex 8047  ax-precex 8048  ax-cnre 8049  ax-pre-ltirr 8050  ax-pre-ltwlin 8051  ax-pre-lttrn 8052  ax-pre-apti 8053  ax-pre-ltadd 8054  ax-pre-mulgt0 8055  ax-pre-mulext 8056
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3001  df-csb 3096  df-dif 3170  df-un 3172  df-in 3174  df-ss 3181  df-nul 3463  df-if 3574  df-pw 3620  df-sn 3641  df-pr 3642  df-op 3644  df-uni 3854  df-int 3889  df-iun 3932  df-br 4049  df-opab 4111  df-mpt 4112  df-tr 4148  df-id 4345  df-po 4348  df-iso 4349  df-iord 4418  df-on 4420  df-ilim 4421  df-suc 4423  df-iom 4644  df-xp 4686  df-rel 4687  df-cnv 4688  df-co 4689  df-dm 4690  df-rn 4691  df-res 4692  df-ima 4693  df-iota 5238  df-fun 5279  df-fn 5280  df-f 5281  df-f1 5282  df-fo 5283  df-f1o 5284  df-fv 5285  df-riota 5909  df-ov 5957  df-oprab 5958  df-mpo 5959  df-1st 6236  df-2nd 6237  df-recs 6401  df-frec 6487  df-pnf 8122  df-mnf 8123  df-xr 8124  df-ltxr 8125  df-le 8126  df-sub 8258  df-neg 8259  df-reap 8661  df-ap 8668  df-div 8759  df-inn 9050  df-n0 9309  df-z 9386  df-uz 9662  df-seqfrec 10606  df-exp 10697
This theorem is referenced by:  iexpcyc  10802  lgseisenlem1  15597  lgseisenlem4  15600  lgsquadlem1  15604  lgsquad2lem1  15608  m1lgs  15612
  Copyright terms: Public domain W3C validator