| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elfz2nn0 | GIF version | ||
| Description: Membership in a finite set of sequential nonnegative integers. (Contributed by NM, 16-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
| Ref | Expression |
|---|---|
| elfz2nn0 | ⊢ (𝐾 ∈ (0...𝑁) ↔ (𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝐾 ≤ 𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elnn0uz 9685 | . . . 4 ⊢ (𝐾 ∈ ℕ0 ↔ 𝐾 ∈ (ℤ≥‘0)) | |
| 2 | 1 | anbi1i 458 | . . 3 ⊢ ((𝐾 ∈ ℕ0 ∧ 𝑁 ∈ (ℤ≥‘𝐾)) ↔ (𝐾 ∈ (ℤ≥‘0) ∧ 𝑁 ∈ (ℤ≥‘𝐾))) |
| 3 | eluznn0 9719 | . . . . . 6 ⊢ ((𝐾 ∈ ℕ0 ∧ 𝑁 ∈ (ℤ≥‘𝐾)) → 𝑁 ∈ ℕ0) | |
| 4 | eluzle 9659 | . . . . . . 7 ⊢ (𝑁 ∈ (ℤ≥‘𝐾) → 𝐾 ≤ 𝑁) | |
| 5 | 4 | adantl 277 | . . . . . 6 ⊢ ((𝐾 ∈ ℕ0 ∧ 𝑁 ∈ (ℤ≥‘𝐾)) → 𝐾 ≤ 𝑁) |
| 6 | 3, 5 | jca 306 | . . . . 5 ⊢ ((𝐾 ∈ ℕ0 ∧ 𝑁 ∈ (ℤ≥‘𝐾)) → (𝑁 ∈ ℕ0 ∧ 𝐾 ≤ 𝑁)) |
| 7 | nn0z 9391 | . . . . . . . 8 ⊢ (𝐾 ∈ ℕ0 → 𝐾 ∈ ℤ) | |
| 8 | nn0z 9391 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℤ) | |
| 9 | eluz 9660 | . . . . . . . 8 ⊢ ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ∈ (ℤ≥‘𝐾) ↔ 𝐾 ≤ 𝑁)) | |
| 10 | 7, 8, 9 | syl2an 289 | . . . . . . 7 ⊢ ((𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → (𝑁 ∈ (ℤ≥‘𝐾) ↔ 𝐾 ≤ 𝑁)) |
| 11 | 10 | biimprd 158 | . . . . . 6 ⊢ ((𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → (𝐾 ≤ 𝑁 → 𝑁 ∈ (ℤ≥‘𝐾))) |
| 12 | 11 | impr 379 | . . . . 5 ⊢ ((𝐾 ∈ ℕ0 ∧ (𝑁 ∈ ℕ0 ∧ 𝐾 ≤ 𝑁)) → 𝑁 ∈ (ℤ≥‘𝐾)) |
| 13 | 6, 12 | impbida 596 | . . . 4 ⊢ (𝐾 ∈ ℕ0 → (𝑁 ∈ (ℤ≥‘𝐾) ↔ (𝑁 ∈ ℕ0 ∧ 𝐾 ≤ 𝑁))) |
| 14 | 13 | pm5.32i 454 | . . 3 ⊢ ((𝐾 ∈ ℕ0 ∧ 𝑁 ∈ (ℤ≥‘𝐾)) ↔ (𝐾 ∈ ℕ0 ∧ (𝑁 ∈ ℕ0 ∧ 𝐾 ≤ 𝑁))) |
| 15 | 2, 14 | bitr3i 186 | . 2 ⊢ ((𝐾 ∈ (ℤ≥‘0) ∧ 𝑁 ∈ (ℤ≥‘𝐾)) ↔ (𝐾 ∈ ℕ0 ∧ (𝑁 ∈ ℕ0 ∧ 𝐾 ≤ 𝑁))) |
| 16 | elfzuzb 10140 | . 2 ⊢ (𝐾 ∈ (0...𝑁) ↔ (𝐾 ∈ (ℤ≥‘0) ∧ 𝑁 ∈ (ℤ≥‘𝐾))) | |
| 17 | 3anass 984 | . 2 ⊢ ((𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝐾 ≤ 𝑁) ↔ (𝐾 ∈ ℕ0 ∧ (𝑁 ∈ ℕ0 ∧ 𝐾 ≤ 𝑁))) | |
| 18 | 15, 16, 17 | 3bitr4i 212 | 1 ⊢ (𝐾 ∈ (0...𝑁) ↔ (𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝐾 ≤ 𝑁)) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 ∧ w3a 980 ∈ wcel 2175 class class class wbr 4043 ‘cfv 5270 (class class class)co 5943 0cc0 7924 ≤ cle 8107 ℕ0cn0 9294 ℤcz 9371 ℤ≥cuz 9647 ...cfz 10129 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-setind 4584 ax-cnex 8015 ax-resscn 8016 ax-1cn 8017 ax-1re 8018 ax-icn 8019 ax-addcl 8020 ax-addrcl 8021 ax-mulcl 8022 ax-addcom 8024 ax-addass 8026 ax-distr 8028 ax-i2m1 8029 ax-0lt1 8030 ax-0id 8032 ax-rnegex 8033 ax-cnre 8035 ax-pre-ltirr 8036 ax-pre-ltwlin 8037 ax-pre-lttrn 8038 ax-pre-ltadd 8040 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-reu 2490 df-rab 2492 df-v 2773 df-sbc 2998 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-br 4044 df-opab 4105 df-mpt 4106 df-id 4339 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-ima 4687 df-iota 5231 df-fun 5272 df-fn 5273 df-f 5274 df-fv 5278 df-riota 5898 df-ov 5946 df-oprab 5947 df-mpo 5948 df-pnf 8108 df-mnf 8109 df-xr 8110 df-ltxr 8111 df-le 8112 df-sub 8244 df-neg 8245 df-inn 9036 df-n0 9295 df-z 9372 df-uz 9648 df-fz 10130 |
| This theorem is referenced by: elfznn0 10235 elfz3nn0 10236 0elfz 10239 fz0to3un2pr 10244 elfz0ubfz0 10246 elfz0fzfz0 10247 fz0fzelfz0 10248 uzsubfz0 10250 fz0fzdiffz0 10251 elfzmlbm 10252 elfzmlbp 10253 difelfzle 10255 difelfznle 10256 fzofzim 10310 elfzodifsumelfzo 10328 elfzom1elp1fzo 10329 fzo0to42pr 10347 fzo0sn0fzo1 10348 fvinim0ffz 10368 1elfz0hash 10949 prm23lt5 12528 lgsquadlem2 15497 |
| Copyright terms: Public domain | W3C validator |