Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elfz2nn0 | GIF version |
Description: Membership in a finite set of sequential nonnegative integers. (Contributed by NM, 16-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
Ref | Expression |
---|---|
elfz2nn0 | ⊢ (𝐾 ∈ (0...𝑁) ↔ (𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝐾 ≤ 𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elnn0uz 9499 | . . . 4 ⊢ (𝐾 ∈ ℕ0 ↔ 𝐾 ∈ (ℤ≥‘0)) | |
2 | 1 | anbi1i 454 | . . 3 ⊢ ((𝐾 ∈ ℕ0 ∧ 𝑁 ∈ (ℤ≥‘𝐾)) ↔ (𝐾 ∈ (ℤ≥‘0) ∧ 𝑁 ∈ (ℤ≥‘𝐾))) |
3 | eluznn0 9533 | . . . . . 6 ⊢ ((𝐾 ∈ ℕ0 ∧ 𝑁 ∈ (ℤ≥‘𝐾)) → 𝑁 ∈ ℕ0) | |
4 | eluzle 9474 | . . . . . . 7 ⊢ (𝑁 ∈ (ℤ≥‘𝐾) → 𝐾 ≤ 𝑁) | |
5 | 4 | adantl 275 | . . . . . 6 ⊢ ((𝐾 ∈ ℕ0 ∧ 𝑁 ∈ (ℤ≥‘𝐾)) → 𝐾 ≤ 𝑁) |
6 | 3, 5 | jca 304 | . . . . 5 ⊢ ((𝐾 ∈ ℕ0 ∧ 𝑁 ∈ (ℤ≥‘𝐾)) → (𝑁 ∈ ℕ0 ∧ 𝐾 ≤ 𝑁)) |
7 | nn0z 9207 | . . . . . . . 8 ⊢ (𝐾 ∈ ℕ0 → 𝐾 ∈ ℤ) | |
8 | nn0z 9207 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℤ) | |
9 | eluz 9475 | . . . . . . . 8 ⊢ ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ∈ (ℤ≥‘𝐾) ↔ 𝐾 ≤ 𝑁)) | |
10 | 7, 8, 9 | syl2an 287 | . . . . . . 7 ⊢ ((𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → (𝑁 ∈ (ℤ≥‘𝐾) ↔ 𝐾 ≤ 𝑁)) |
11 | 10 | biimprd 157 | . . . . . 6 ⊢ ((𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → (𝐾 ≤ 𝑁 → 𝑁 ∈ (ℤ≥‘𝐾))) |
12 | 11 | impr 377 | . . . . 5 ⊢ ((𝐾 ∈ ℕ0 ∧ (𝑁 ∈ ℕ0 ∧ 𝐾 ≤ 𝑁)) → 𝑁 ∈ (ℤ≥‘𝐾)) |
13 | 6, 12 | impbida 586 | . . . 4 ⊢ (𝐾 ∈ ℕ0 → (𝑁 ∈ (ℤ≥‘𝐾) ↔ (𝑁 ∈ ℕ0 ∧ 𝐾 ≤ 𝑁))) |
14 | 13 | pm5.32i 450 | . . 3 ⊢ ((𝐾 ∈ ℕ0 ∧ 𝑁 ∈ (ℤ≥‘𝐾)) ↔ (𝐾 ∈ ℕ0 ∧ (𝑁 ∈ ℕ0 ∧ 𝐾 ≤ 𝑁))) |
15 | 2, 14 | bitr3i 185 | . 2 ⊢ ((𝐾 ∈ (ℤ≥‘0) ∧ 𝑁 ∈ (ℤ≥‘𝐾)) ↔ (𝐾 ∈ ℕ0 ∧ (𝑁 ∈ ℕ0 ∧ 𝐾 ≤ 𝑁))) |
16 | elfzuzb 9950 | . 2 ⊢ (𝐾 ∈ (0...𝑁) ↔ (𝐾 ∈ (ℤ≥‘0) ∧ 𝑁 ∈ (ℤ≥‘𝐾))) | |
17 | 3anass 972 | . 2 ⊢ ((𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝐾 ≤ 𝑁) ↔ (𝐾 ∈ ℕ0 ∧ (𝑁 ∈ ℕ0 ∧ 𝐾 ≤ 𝑁))) | |
18 | 15, 16, 17 | 3bitr4i 211 | 1 ⊢ (𝐾 ∈ (0...𝑁) ↔ (𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝐾 ≤ 𝑁)) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 ↔ wb 104 ∧ w3a 968 ∈ wcel 2136 class class class wbr 3981 ‘cfv 5187 (class class class)co 5841 0cc0 7749 ≤ cle 7930 ℕ0cn0 9110 ℤcz 9187 ℤ≥cuz 9462 ...cfz 9940 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4099 ax-pow 4152 ax-pr 4186 ax-un 4410 ax-setind 4513 ax-cnex 7840 ax-resscn 7841 ax-1cn 7842 ax-1re 7843 ax-icn 7844 ax-addcl 7845 ax-addrcl 7846 ax-mulcl 7847 ax-addcom 7849 ax-addass 7851 ax-distr 7853 ax-i2m1 7854 ax-0lt1 7855 ax-0id 7857 ax-rnegex 7858 ax-cnre 7860 ax-pre-ltirr 7861 ax-pre-ltwlin 7862 ax-pre-lttrn 7863 ax-pre-ltadd 7865 |
This theorem depends on definitions: df-bi 116 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2296 df-ne 2336 df-nel 2431 df-ral 2448 df-rex 2449 df-reu 2450 df-rab 2452 df-v 2727 df-sbc 2951 df-dif 3117 df-un 3119 df-in 3121 df-ss 3128 df-pw 3560 df-sn 3581 df-pr 3582 df-op 3584 df-uni 3789 df-int 3824 df-br 3982 df-opab 4043 df-mpt 4044 df-id 4270 df-xp 4609 df-rel 4610 df-cnv 4611 df-co 4612 df-dm 4613 df-rn 4614 df-res 4615 df-ima 4616 df-iota 5152 df-fun 5189 df-fn 5190 df-f 5191 df-fv 5195 df-riota 5797 df-ov 5844 df-oprab 5845 df-mpo 5846 df-pnf 7931 df-mnf 7932 df-xr 7933 df-ltxr 7934 df-le 7935 df-sub 8067 df-neg 8068 df-inn 8854 df-n0 9111 df-z 9188 df-uz 9463 df-fz 9941 |
This theorem is referenced by: elfznn0 10045 elfz3nn0 10046 0elfz 10049 fz0to3un2pr 10054 elfz0ubfz0 10056 elfz0fzfz0 10057 fz0fzelfz0 10058 uzsubfz0 10060 fz0fzdiffz0 10061 elfzmlbm 10062 elfzmlbp 10063 difelfzle 10065 difelfznle 10066 fzofzim 10119 elfzodifsumelfzo 10132 elfzom1elp1fzo 10133 fzo0to42pr 10151 fzo0sn0fzo1 10152 fvinim0ffz 10172 1elfz0hash 10715 prm23lt5 12191 |
Copyright terms: Public domain | W3C validator |