ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elfz2nn0 GIF version

Theorem elfz2nn0 10304
Description: Membership in a finite set of sequential nonnegative integers. (Contributed by NM, 16-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.)
Assertion
Ref Expression
elfz2nn0 (𝐾 ∈ (0...𝑁) ↔ (𝐾 ∈ ℕ0𝑁 ∈ ℕ0𝐾𝑁))

Proof of Theorem elfz2nn0
StepHypRef Expression
1 elnn0uz 9756 . . . 4 (𝐾 ∈ ℕ0𝐾 ∈ (ℤ‘0))
21anbi1i 458 . . 3 ((𝐾 ∈ ℕ0𝑁 ∈ (ℤ𝐾)) ↔ (𝐾 ∈ (ℤ‘0) ∧ 𝑁 ∈ (ℤ𝐾)))
3 eluznn0 9790 . . . . . 6 ((𝐾 ∈ ℕ0𝑁 ∈ (ℤ𝐾)) → 𝑁 ∈ ℕ0)
4 eluzle 9730 . . . . . . 7 (𝑁 ∈ (ℤ𝐾) → 𝐾𝑁)
54adantl 277 . . . . . 6 ((𝐾 ∈ ℕ0𝑁 ∈ (ℤ𝐾)) → 𝐾𝑁)
63, 5jca 306 . . . . 5 ((𝐾 ∈ ℕ0𝑁 ∈ (ℤ𝐾)) → (𝑁 ∈ ℕ0𝐾𝑁))
7 nn0z 9462 . . . . . . . 8 (𝐾 ∈ ℕ0𝐾 ∈ ℤ)
8 nn0z 9462 . . . . . . . 8 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
9 eluz 9731 . . . . . . . 8 ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ∈ (ℤ𝐾) ↔ 𝐾𝑁))
107, 8, 9syl2an 289 . . . . . . 7 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑁 ∈ (ℤ𝐾) ↔ 𝐾𝑁))
1110biimprd 158 . . . . . 6 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → (𝐾𝑁𝑁 ∈ (ℤ𝐾)))
1211impr 379 . . . . 5 ((𝐾 ∈ ℕ0 ∧ (𝑁 ∈ ℕ0𝐾𝑁)) → 𝑁 ∈ (ℤ𝐾))
136, 12impbida 598 . . . 4 (𝐾 ∈ ℕ0 → (𝑁 ∈ (ℤ𝐾) ↔ (𝑁 ∈ ℕ0𝐾𝑁)))
1413pm5.32i 454 . . 3 ((𝐾 ∈ ℕ0𝑁 ∈ (ℤ𝐾)) ↔ (𝐾 ∈ ℕ0 ∧ (𝑁 ∈ ℕ0𝐾𝑁)))
152, 14bitr3i 186 . 2 ((𝐾 ∈ (ℤ‘0) ∧ 𝑁 ∈ (ℤ𝐾)) ↔ (𝐾 ∈ ℕ0 ∧ (𝑁 ∈ ℕ0𝐾𝑁)))
16 elfzuzb 10211 . 2 (𝐾 ∈ (0...𝑁) ↔ (𝐾 ∈ (ℤ‘0) ∧ 𝑁 ∈ (ℤ𝐾)))
17 3anass 1006 . 2 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ0𝐾𝑁) ↔ (𝐾 ∈ ℕ0 ∧ (𝑁 ∈ ℕ0𝐾𝑁)))
1815, 16, 173bitr4i 212 1 (𝐾 ∈ (0...𝑁) ↔ (𝐾 ∈ ℕ0𝑁 ∈ ℕ0𝐾𝑁))
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105  w3a 1002  wcel 2200   class class class wbr 4082  cfv 5317  (class class class)co 6000  0cc0 7995  cle 8178  0cn0 9365  cz 9442  cuz 9718  ...cfz 10200
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-addcom 8095  ax-addass 8097  ax-distr 8099  ax-i2m1 8100  ax-0lt1 8101  ax-0id 8103  ax-rnegex 8104  ax-cnre 8106  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109  ax-pre-ltadd 8111
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-sub 8315  df-neg 8316  df-inn 9107  df-n0 9366  df-z 9443  df-uz 9719  df-fz 10201
This theorem is referenced by:  elfznn0  10306  elfz3nn0  10307  0elfz  10310  fz0to3un2pr  10315  elfz0ubfz0  10317  elfz0fzfz0  10318  fz0fzelfz0  10319  uzsubfz0  10321  fz0fzdiffz0  10322  elfzmlbm  10323  elfzmlbp  10324  difelfzle  10326  difelfznle  10327  fzofzim  10384  elfzodifsumelfzo  10402  elfzom1elp1fzo  10403  fzo0to42pr  10421  fzo0sn0fzo1  10422  fvinim0ffz  10442  1elfz0hash  11023  swrdlen2  11189  swrdfv2  11190  pfxn0  11215  pfxeq  11223  swrdswrdlem  11231  swrdswrd  11232  swrdccatin1  11252  pfxccatin12lem1  11255  pfxccatin12lem2  11258  pfxccatin12lem3  11259  pfxccatin12  11260  pfxccat3  11261  swrdccat  11262  pfxccat3a  11265  swrdccat3blem  11266  prm23lt5  12781  lgsquadlem2  15751
  Copyright terms: Public domain W3C validator