| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > elfz2nn0 | GIF version | ||
| Description: Membership in a finite set of sequential nonnegative integers. (Contributed by NM, 16-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) | 
| Ref | Expression | 
|---|---|
| elfz2nn0 | ⊢ (𝐾 ∈ (0...𝑁) ↔ (𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝐾 ≤ 𝑁)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | elnn0uz 9639 | . . . 4 ⊢ (𝐾 ∈ ℕ0 ↔ 𝐾 ∈ (ℤ≥‘0)) | |
| 2 | 1 | anbi1i 458 | . . 3 ⊢ ((𝐾 ∈ ℕ0 ∧ 𝑁 ∈ (ℤ≥‘𝐾)) ↔ (𝐾 ∈ (ℤ≥‘0) ∧ 𝑁 ∈ (ℤ≥‘𝐾))) | 
| 3 | eluznn0 9673 | . . . . . 6 ⊢ ((𝐾 ∈ ℕ0 ∧ 𝑁 ∈ (ℤ≥‘𝐾)) → 𝑁 ∈ ℕ0) | |
| 4 | eluzle 9613 | . . . . . . 7 ⊢ (𝑁 ∈ (ℤ≥‘𝐾) → 𝐾 ≤ 𝑁) | |
| 5 | 4 | adantl 277 | . . . . . 6 ⊢ ((𝐾 ∈ ℕ0 ∧ 𝑁 ∈ (ℤ≥‘𝐾)) → 𝐾 ≤ 𝑁) | 
| 6 | 3, 5 | jca 306 | . . . . 5 ⊢ ((𝐾 ∈ ℕ0 ∧ 𝑁 ∈ (ℤ≥‘𝐾)) → (𝑁 ∈ ℕ0 ∧ 𝐾 ≤ 𝑁)) | 
| 7 | nn0z 9346 | . . . . . . . 8 ⊢ (𝐾 ∈ ℕ0 → 𝐾 ∈ ℤ) | |
| 8 | nn0z 9346 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℤ) | |
| 9 | eluz 9614 | . . . . . . . 8 ⊢ ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ∈ (ℤ≥‘𝐾) ↔ 𝐾 ≤ 𝑁)) | |
| 10 | 7, 8, 9 | syl2an 289 | . . . . . . 7 ⊢ ((𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → (𝑁 ∈ (ℤ≥‘𝐾) ↔ 𝐾 ≤ 𝑁)) | 
| 11 | 10 | biimprd 158 | . . . . . 6 ⊢ ((𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → (𝐾 ≤ 𝑁 → 𝑁 ∈ (ℤ≥‘𝐾))) | 
| 12 | 11 | impr 379 | . . . . 5 ⊢ ((𝐾 ∈ ℕ0 ∧ (𝑁 ∈ ℕ0 ∧ 𝐾 ≤ 𝑁)) → 𝑁 ∈ (ℤ≥‘𝐾)) | 
| 13 | 6, 12 | impbida 596 | . . . 4 ⊢ (𝐾 ∈ ℕ0 → (𝑁 ∈ (ℤ≥‘𝐾) ↔ (𝑁 ∈ ℕ0 ∧ 𝐾 ≤ 𝑁))) | 
| 14 | 13 | pm5.32i 454 | . . 3 ⊢ ((𝐾 ∈ ℕ0 ∧ 𝑁 ∈ (ℤ≥‘𝐾)) ↔ (𝐾 ∈ ℕ0 ∧ (𝑁 ∈ ℕ0 ∧ 𝐾 ≤ 𝑁))) | 
| 15 | 2, 14 | bitr3i 186 | . 2 ⊢ ((𝐾 ∈ (ℤ≥‘0) ∧ 𝑁 ∈ (ℤ≥‘𝐾)) ↔ (𝐾 ∈ ℕ0 ∧ (𝑁 ∈ ℕ0 ∧ 𝐾 ≤ 𝑁))) | 
| 16 | elfzuzb 10094 | . 2 ⊢ (𝐾 ∈ (0...𝑁) ↔ (𝐾 ∈ (ℤ≥‘0) ∧ 𝑁 ∈ (ℤ≥‘𝐾))) | |
| 17 | 3anass 984 | . 2 ⊢ ((𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝐾 ≤ 𝑁) ↔ (𝐾 ∈ ℕ0 ∧ (𝑁 ∈ ℕ0 ∧ 𝐾 ≤ 𝑁))) | |
| 18 | 15, 16, 17 | 3bitr4i 212 | 1 ⊢ (𝐾 ∈ (0...𝑁) ↔ (𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝐾 ≤ 𝑁)) | 
| Colors of variables: wff set class | 
| Syntax hints: ∧ wa 104 ↔ wb 105 ∧ w3a 980 ∈ wcel 2167 class class class wbr 4033 ‘cfv 5258 (class class class)co 5922 0cc0 7879 ≤ cle 8062 ℕ0cn0 9249 ℤcz 9326 ℤ≥cuz 9601 ...cfz 10083 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-addcom 7979 ax-addass 7981 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-0id 7987 ax-rnegex 7988 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-ltadd 7995 | 
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 df-inn 8991 df-n0 9250 df-z 9327 df-uz 9602 df-fz 10084 | 
| This theorem is referenced by: elfznn0 10189 elfz3nn0 10190 0elfz 10193 fz0to3un2pr 10198 elfz0ubfz0 10200 elfz0fzfz0 10201 fz0fzelfz0 10202 uzsubfz0 10204 fz0fzdiffz0 10205 elfzmlbm 10206 elfzmlbp 10207 difelfzle 10209 difelfznle 10210 fzofzim 10264 elfzodifsumelfzo 10277 elfzom1elp1fzo 10278 fzo0to42pr 10296 fzo0sn0fzo1 10297 fvinim0ffz 10317 1elfz0hash 10898 prm23lt5 12432 lgsquadlem2 15319 | 
| Copyright terms: Public domain | W3C validator |