![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > elfz2nn0 | GIF version |
Description: Membership in a finite set of sequential nonnegative integers. (Contributed by NM, 16-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
Ref | Expression |
---|---|
elfz2nn0 | ⊢ (𝐾 ∈ (0...𝑁) ↔ (𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝐾 ≤ 𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elnn0uz 9568 | . . . 4 ⊢ (𝐾 ∈ ℕ0 ↔ 𝐾 ∈ (ℤ≥‘0)) | |
2 | 1 | anbi1i 458 | . . 3 ⊢ ((𝐾 ∈ ℕ0 ∧ 𝑁 ∈ (ℤ≥‘𝐾)) ↔ (𝐾 ∈ (ℤ≥‘0) ∧ 𝑁 ∈ (ℤ≥‘𝐾))) |
3 | eluznn0 9602 | . . . . . 6 ⊢ ((𝐾 ∈ ℕ0 ∧ 𝑁 ∈ (ℤ≥‘𝐾)) → 𝑁 ∈ ℕ0) | |
4 | eluzle 9543 | . . . . . . 7 ⊢ (𝑁 ∈ (ℤ≥‘𝐾) → 𝐾 ≤ 𝑁) | |
5 | 4 | adantl 277 | . . . . . 6 ⊢ ((𝐾 ∈ ℕ0 ∧ 𝑁 ∈ (ℤ≥‘𝐾)) → 𝐾 ≤ 𝑁) |
6 | 3, 5 | jca 306 | . . . . 5 ⊢ ((𝐾 ∈ ℕ0 ∧ 𝑁 ∈ (ℤ≥‘𝐾)) → (𝑁 ∈ ℕ0 ∧ 𝐾 ≤ 𝑁)) |
7 | nn0z 9276 | . . . . . . . 8 ⊢ (𝐾 ∈ ℕ0 → 𝐾 ∈ ℤ) | |
8 | nn0z 9276 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℤ) | |
9 | eluz 9544 | . . . . . . . 8 ⊢ ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ∈ (ℤ≥‘𝐾) ↔ 𝐾 ≤ 𝑁)) | |
10 | 7, 8, 9 | syl2an 289 | . . . . . . 7 ⊢ ((𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → (𝑁 ∈ (ℤ≥‘𝐾) ↔ 𝐾 ≤ 𝑁)) |
11 | 10 | biimprd 158 | . . . . . 6 ⊢ ((𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → (𝐾 ≤ 𝑁 → 𝑁 ∈ (ℤ≥‘𝐾))) |
12 | 11 | impr 379 | . . . . 5 ⊢ ((𝐾 ∈ ℕ0 ∧ (𝑁 ∈ ℕ0 ∧ 𝐾 ≤ 𝑁)) → 𝑁 ∈ (ℤ≥‘𝐾)) |
13 | 6, 12 | impbida 596 | . . . 4 ⊢ (𝐾 ∈ ℕ0 → (𝑁 ∈ (ℤ≥‘𝐾) ↔ (𝑁 ∈ ℕ0 ∧ 𝐾 ≤ 𝑁))) |
14 | 13 | pm5.32i 454 | . . 3 ⊢ ((𝐾 ∈ ℕ0 ∧ 𝑁 ∈ (ℤ≥‘𝐾)) ↔ (𝐾 ∈ ℕ0 ∧ (𝑁 ∈ ℕ0 ∧ 𝐾 ≤ 𝑁))) |
15 | 2, 14 | bitr3i 186 | . 2 ⊢ ((𝐾 ∈ (ℤ≥‘0) ∧ 𝑁 ∈ (ℤ≥‘𝐾)) ↔ (𝐾 ∈ ℕ0 ∧ (𝑁 ∈ ℕ0 ∧ 𝐾 ≤ 𝑁))) |
16 | elfzuzb 10022 | . 2 ⊢ (𝐾 ∈ (0...𝑁) ↔ (𝐾 ∈ (ℤ≥‘0) ∧ 𝑁 ∈ (ℤ≥‘𝐾))) | |
17 | 3anass 982 | . 2 ⊢ ((𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝐾 ≤ 𝑁) ↔ (𝐾 ∈ ℕ0 ∧ (𝑁 ∈ ℕ0 ∧ 𝐾 ≤ 𝑁))) | |
18 | 15, 16, 17 | 3bitr4i 212 | 1 ⊢ (𝐾 ∈ (0...𝑁) ↔ (𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝐾 ≤ 𝑁)) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 ↔ wb 105 ∧ w3a 978 ∈ wcel 2148 class class class wbr 4005 ‘cfv 5218 (class class class)co 5878 0cc0 7814 ≤ cle 7996 ℕ0cn0 9179 ℤcz 9256 ℤ≥cuz 9531 ...cfz 10011 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-setind 4538 ax-cnex 7905 ax-resscn 7906 ax-1cn 7907 ax-1re 7908 ax-icn 7909 ax-addcl 7910 ax-addrcl 7911 ax-mulcl 7912 ax-addcom 7914 ax-addass 7916 ax-distr 7918 ax-i2m1 7919 ax-0lt1 7920 ax-0id 7922 ax-rnegex 7923 ax-cnre 7925 ax-pre-ltirr 7926 ax-pre-ltwlin 7927 ax-pre-lttrn 7928 ax-pre-ltadd 7930 |
This theorem depends on definitions: df-bi 117 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-reu 2462 df-rab 2464 df-v 2741 df-sbc 2965 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-int 3847 df-br 4006 df-opab 4067 df-mpt 4068 df-id 4295 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-ima 4641 df-iota 5180 df-fun 5220 df-fn 5221 df-f 5222 df-fv 5226 df-riota 5834 df-ov 5881 df-oprab 5882 df-mpo 5883 df-pnf 7997 df-mnf 7998 df-xr 7999 df-ltxr 8000 df-le 8001 df-sub 8133 df-neg 8134 df-inn 8923 df-n0 9180 df-z 9257 df-uz 9532 df-fz 10012 |
This theorem is referenced by: elfznn0 10117 elfz3nn0 10118 0elfz 10121 fz0to3un2pr 10126 elfz0ubfz0 10128 elfz0fzfz0 10129 fz0fzelfz0 10130 uzsubfz0 10132 fz0fzdiffz0 10133 elfzmlbm 10134 elfzmlbp 10135 difelfzle 10137 difelfznle 10138 fzofzim 10191 elfzodifsumelfzo 10204 elfzom1elp1fzo 10205 fzo0to42pr 10223 fzo0sn0fzo1 10224 fvinim0ffz 10244 1elfz0hash 10789 prm23lt5 12266 |
Copyright terms: Public domain | W3C validator |