| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elfz2nn0 | GIF version | ||
| Description: Membership in a finite set of sequential nonnegative integers. (Contributed by NM, 16-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
| Ref | Expression |
|---|---|
| elfz2nn0 | ⊢ (𝐾 ∈ (0...𝑁) ↔ (𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝐾 ≤ 𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elnn0uz 9706 | . . . 4 ⊢ (𝐾 ∈ ℕ0 ↔ 𝐾 ∈ (ℤ≥‘0)) | |
| 2 | 1 | anbi1i 458 | . . 3 ⊢ ((𝐾 ∈ ℕ0 ∧ 𝑁 ∈ (ℤ≥‘𝐾)) ↔ (𝐾 ∈ (ℤ≥‘0) ∧ 𝑁 ∈ (ℤ≥‘𝐾))) |
| 3 | eluznn0 9740 | . . . . . 6 ⊢ ((𝐾 ∈ ℕ0 ∧ 𝑁 ∈ (ℤ≥‘𝐾)) → 𝑁 ∈ ℕ0) | |
| 4 | eluzle 9680 | . . . . . . 7 ⊢ (𝑁 ∈ (ℤ≥‘𝐾) → 𝐾 ≤ 𝑁) | |
| 5 | 4 | adantl 277 | . . . . . 6 ⊢ ((𝐾 ∈ ℕ0 ∧ 𝑁 ∈ (ℤ≥‘𝐾)) → 𝐾 ≤ 𝑁) |
| 6 | 3, 5 | jca 306 | . . . . 5 ⊢ ((𝐾 ∈ ℕ0 ∧ 𝑁 ∈ (ℤ≥‘𝐾)) → (𝑁 ∈ ℕ0 ∧ 𝐾 ≤ 𝑁)) |
| 7 | nn0z 9412 | . . . . . . . 8 ⊢ (𝐾 ∈ ℕ0 → 𝐾 ∈ ℤ) | |
| 8 | nn0z 9412 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℤ) | |
| 9 | eluz 9681 | . . . . . . . 8 ⊢ ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ∈ (ℤ≥‘𝐾) ↔ 𝐾 ≤ 𝑁)) | |
| 10 | 7, 8, 9 | syl2an 289 | . . . . . . 7 ⊢ ((𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → (𝑁 ∈ (ℤ≥‘𝐾) ↔ 𝐾 ≤ 𝑁)) |
| 11 | 10 | biimprd 158 | . . . . . 6 ⊢ ((𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → (𝐾 ≤ 𝑁 → 𝑁 ∈ (ℤ≥‘𝐾))) |
| 12 | 11 | impr 379 | . . . . 5 ⊢ ((𝐾 ∈ ℕ0 ∧ (𝑁 ∈ ℕ0 ∧ 𝐾 ≤ 𝑁)) → 𝑁 ∈ (ℤ≥‘𝐾)) |
| 13 | 6, 12 | impbida 596 | . . . 4 ⊢ (𝐾 ∈ ℕ0 → (𝑁 ∈ (ℤ≥‘𝐾) ↔ (𝑁 ∈ ℕ0 ∧ 𝐾 ≤ 𝑁))) |
| 14 | 13 | pm5.32i 454 | . . 3 ⊢ ((𝐾 ∈ ℕ0 ∧ 𝑁 ∈ (ℤ≥‘𝐾)) ↔ (𝐾 ∈ ℕ0 ∧ (𝑁 ∈ ℕ0 ∧ 𝐾 ≤ 𝑁))) |
| 15 | 2, 14 | bitr3i 186 | . 2 ⊢ ((𝐾 ∈ (ℤ≥‘0) ∧ 𝑁 ∈ (ℤ≥‘𝐾)) ↔ (𝐾 ∈ ℕ0 ∧ (𝑁 ∈ ℕ0 ∧ 𝐾 ≤ 𝑁))) |
| 16 | elfzuzb 10161 | . 2 ⊢ (𝐾 ∈ (0...𝑁) ↔ (𝐾 ∈ (ℤ≥‘0) ∧ 𝑁 ∈ (ℤ≥‘𝐾))) | |
| 17 | 3anass 985 | . 2 ⊢ ((𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝐾 ≤ 𝑁) ↔ (𝐾 ∈ ℕ0 ∧ (𝑁 ∈ ℕ0 ∧ 𝐾 ≤ 𝑁))) | |
| 18 | 15, 16, 17 | 3bitr4i 212 | 1 ⊢ (𝐾 ∈ (0...𝑁) ↔ (𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝐾 ≤ 𝑁)) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 ∧ w3a 981 ∈ wcel 2177 class class class wbr 4051 ‘cfv 5280 (class class class)co 5957 0cc0 7945 ≤ cle 8128 ℕ0cn0 9315 ℤcz 9392 ℤ≥cuz 9668 ...cfz 10150 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-pow 4226 ax-pr 4261 ax-un 4488 ax-setind 4593 ax-cnex 8036 ax-resscn 8037 ax-1cn 8038 ax-1re 8039 ax-icn 8040 ax-addcl 8041 ax-addrcl 8042 ax-mulcl 8043 ax-addcom 8045 ax-addass 8047 ax-distr 8049 ax-i2m1 8050 ax-0lt1 8051 ax-0id 8053 ax-rnegex 8054 ax-cnre 8056 ax-pre-ltirr 8057 ax-pre-ltwlin 8058 ax-pre-lttrn 8059 ax-pre-ltadd 8061 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3003 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-int 3892 df-br 4052 df-opab 4114 df-mpt 4115 df-id 4348 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-rn 4694 df-res 4695 df-ima 4696 df-iota 5241 df-fun 5282 df-fn 5283 df-f 5284 df-fv 5288 df-riota 5912 df-ov 5960 df-oprab 5961 df-mpo 5962 df-pnf 8129 df-mnf 8130 df-xr 8131 df-ltxr 8132 df-le 8133 df-sub 8265 df-neg 8266 df-inn 9057 df-n0 9316 df-z 9393 df-uz 9669 df-fz 10151 |
| This theorem is referenced by: elfznn0 10256 elfz3nn0 10257 0elfz 10260 fz0to3un2pr 10265 elfz0ubfz0 10267 elfz0fzfz0 10268 fz0fzelfz0 10269 uzsubfz0 10271 fz0fzdiffz0 10272 elfzmlbm 10273 elfzmlbp 10274 difelfzle 10276 difelfznle 10277 fzofzim 10334 elfzodifsumelfzo 10352 elfzom1elp1fzo 10353 fzo0to42pr 10371 fzo0sn0fzo1 10372 fvinim0ffz 10392 1elfz0hash 10973 swrdlen2 11138 swrdfv2 11139 pfxn0 11164 pfxeq 11172 swrdswrdlem 11180 swrdswrd 11181 prm23lt5 12661 lgsquadlem2 15630 |
| Copyright terms: Public domain | W3C validator |