ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvdsval2 GIF version

Theorem dvdsval2 12267
Description: One nonzero integer divides another integer if and only if their quotient is an integer. (Contributed by Jeff Hankins, 29-Sep-2013.)
Assertion
Ref Expression
dvdsval2 ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝑁 ∈ ℤ) → (𝑀𝑁 ↔ (𝑁 / 𝑀) ∈ ℤ))

Proof of Theorem dvdsval2
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 divides 12266 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁 ↔ ∃𝑘 ∈ ℤ (𝑘 · 𝑀) = 𝑁))
213adant2 1021 . 2 ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝑁 ∈ ℤ) → (𝑀𝑁 ↔ ∃𝑘 ∈ ℤ (𝑘 · 𝑀) = 𝑁))
3 zcn 9419 . . . . . . . . . . 11 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
433ad2ant3 1025 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℂ)
54adantr 276 . . . . . . . . 9 (((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝑁 ∈ ℤ) ∧ 𝑘 ∈ ℤ) → 𝑁 ∈ ℂ)
6 zcn 9419 . . . . . . . . . 10 (𝑘 ∈ ℤ → 𝑘 ∈ ℂ)
76adantl 277 . . . . . . . . 9 (((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝑁 ∈ ℤ) ∧ 𝑘 ∈ ℤ) → 𝑘 ∈ ℂ)
8 zcn 9419 . . . . . . . . . . 11 (𝑀 ∈ ℤ → 𝑀 ∈ ℂ)
983ad2ant1 1023 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝑁 ∈ ℤ) → 𝑀 ∈ ℂ)
109adantr 276 . . . . . . . . 9 (((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝑁 ∈ ℤ) ∧ 𝑘 ∈ ℤ) → 𝑀 ∈ ℂ)
11 simpl2 1006 . . . . . . . . . 10 (((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝑁 ∈ ℤ) ∧ 𝑘 ∈ ℤ) → 𝑀 ≠ 0)
12 0z 9425 . . . . . . . . . . . . 13 0 ∈ ℤ
13 zapne 9489 . . . . . . . . . . . . 13 ((𝑀 ∈ ℤ ∧ 0 ∈ ℤ) → (𝑀 # 0 ↔ 𝑀 ≠ 0))
1412, 13mpan2 425 . . . . . . . . . . . 12 (𝑀 ∈ ℤ → (𝑀 # 0 ↔ 𝑀 ≠ 0))
15143ad2ant1 1023 . . . . . . . . . . 11 ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝑁 ∈ ℤ) → (𝑀 # 0 ↔ 𝑀 ≠ 0))
1615adantr 276 . . . . . . . . . 10 (((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝑁 ∈ ℤ) ∧ 𝑘 ∈ ℤ) → (𝑀 # 0 ↔ 𝑀 ≠ 0))
1711, 16mpbird 167 . . . . . . . . 9 (((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝑁 ∈ ℤ) ∧ 𝑘 ∈ ℤ) → 𝑀 # 0)
185, 7, 10, 17divmulap3d 8940 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝑁 ∈ ℤ) ∧ 𝑘 ∈ ℤ) → ((𝑁 / 𝑀) = 𝑘𝑁 = (𝑘 · 𝑀)))
19 eqcom 2211 . . . . . . . 8 (𝑁 = (𝑘 · 𝑀) ↔ (𝑘 · 𝑀) = 𝑁)
2018, 19bitrdi 196 . . . . . . 7 (((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝑁 ∈ ℤ) ∧ 𝑘 ∈ ℤ) → ((𝑁 / 𝑀) = 𝑘 ↔ (𝑘 · 𝑀) = 𝑁))
2120biimprd 158 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝑁 ∈ ℤ) ∧ 𝑘 ∈ ℤ) → ((𝑘 · 𝑀) = 𝑁 → (𝑁 / 𝑀) = 𝑘))
2221impr 379 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝑁 ∈ ℤ) ∧ (𝑘 ∈ ℤ ∧ (𝑘 · 𝑀) = 𝑁)) → (𝑁 / 𝑀) = 𝑘)
23 simprl 529 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝑁 ∈ ℤ) ∧ (𝑘 ∈ ℤ ∧ (𝑘 · 𝑀) = 𝑁)) → 𝑘 ∈ ℤ)
2422, 23eqeltrd 2286 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝑁 ∈ ℤ) ∧ (𝑘 ∈ ℤ ∧ (𝑘 · 𝑀) = 𝑁)) → (𝑁 / 𝑀) ∈ ℤ)
2524rexlimdvaa 2629 . . 3 ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝑁 ∈ ℤ) → (∃𝑘 ∈ ℤ (𝑘 · 𝑀) = 𝑁 → (𝑁 / 𝑀) ∈ ℤ))
26 simpr 110 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝑁 ∈ ℤ) ∧ (𝑁 / 𝑀) ∈ ℤ) → (𝑁 / 𝑀) ∈ ℤ)
27 simp2 1003 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝑁 ∈ ℤ) → 𝑀 ≠ 0)
2827, 15mpbird 167 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝑁 ∈ ℤ) → 𝑀 # 0)
294, 9, 28divcanap1d 8906 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝑁 ∈ ℤ) → ((𝑁 / 𝑀) · 𝑀) = 𝑁)
3029adantr 276 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝑁 ∈ ℤ) ∧ (𝑁 / 𝑀) ∈ ℤ) → ((𝑁 / 𝑀) · 𝑀) = 𝑁)
31 oveq1 5981 . . . . . . 7 (𝑘 = (𝑁 / 𝑀) → (𝑘 · 𝑀) = ((𝑁 / 𝑀) · 𝑀))
3231eqeq1d 2218 . . . . . 6 (𝑘 = (𝑁 / 𝑀) → ((𝑘 · 𝑀) = 𝑁 ↔ ((𝑁 / 𝑀) · 𝑀) = 𝑁))
3332rspcev 2887 . . . . 5 (((𝑁 / 𝑀) ∈ ℤ ∧ ((𝑁 / 𝑀) · 𝑀) = 𝑁) → ∃𝑘 ∈ ℤ (𝑘 · 𝑀) = 𝑁)
3426, 30, 33syl2anc 411 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝑁 ∈ ℤ) ∧ (𝑁 / 𝑀) ∈ ℤ) → ∃𝑘 ∈ ℤ (𝑘 · 𝑀) = 𝑁)
3534ex 115 . . 3 ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝑁 ∈ ℤ) → ((𝑁 / 𝑀) ∈ ℤ → ∃𝑘 ∈ ℤ (𝑘 · 𝑀) = 𝑁))
3625, 35impbid 129 . 2 ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝑁 ∈ ℤ) → (∃𝑘 ∈ ℤ (𝑘 · 𝑀) = 𝑁 ↔ (𝑁 / 𝑀) ∈ ℤ))
372, 36bitrd 188 1 ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝑁 ∈ ℤ) → (𝑀𝑁 ↔ (𝑁 / 𝑀) ∈ ℤ))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 983   = wceq 1375  wcel 2180  wne 2380  wrex 2489   class class class wbr 4062  (class class class)co 5974  cc 7965  0cc0 7967   · cmul 7972   # cap 8696   / cdiv 8787  cz 9414  cdvds 12264
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-sep 4181  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-cnex 8058  ax-resscn 8059  ax-1cn 8060  ax-1re 8061  ax-icn 8062  ax-addcl 8063  ax-addrcl 8064  ax-mulcl 8065  ax-mulrcl 8066  ax-addcom 8067  ax-mulcom 8068  ax-addass 8069  ax-mulass 8070  ax-distr 8071  ax-i2m1 8072  ax-0lt1 8073  ax-1rid 8074  ax-0id 8075  ax-rnegex 8076  ax-precex 8077  ax-cnre 8078  ax-pre-ltirr 8079  ax-pre-ltwlin 8080  ax-pre-lttrn 8081  ax-pre-apti 8082  ax-pre-ltadd 8083  ax-pre-mulgt0 8084  ax-pre-mulext 8085
This theorem depends on definitions:  df-bi 117  df-3or 984  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-nel 2476  df-ral 2493  df-rex 2494  df-reu 2495  df-rmo 2496  df-rab 2497  df-v 2781  df-sbc 3009  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-int 3903  df-br 4063  df-opab 4125  df-id 4361  df-po 4364  df-iso 4365  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-iota 5254  df-fun 5296  df-fv 5302  df-riota 5927  df-ov 5977  df-oprab 5978  df-mpo 5979  df-pnf 8151  df-mnf 8152  df-xr 8153  df-ltxr 8154  df-le 8155  df-sub 8287  df-neg 8288  df-reap 8690  df-ap 8697  df-div 8788  df-inn 9079  df-n0 9338  df-z 9415  df-dvds 12265
This theorem is referenced by:  dvdsval3  12268  nndivdvds  12273  fsumdvds  12319  divconjdvds  12326  3dvds  12341  zeo3  12345  evend2  12366  oddp1d2  12367  fldivndvdslt  12414  bitsmod  12433  divgcdz  12458  dvdsgcdidd  12481  mulgcd  12503  sqgcd  12516  lcmgcdlem  12565  mulgcddvds  12582  qredeu  12585  prmind2  12608  isprm5lem  12629  divgcdodd  12631  divnumden  12684  hashdvds  12709  hashgcdlem  12726  pythagtriplem19  12771  pcprendvds2  12780  pcpremul  12782  pc2dvds  12819  pcz  12821  dvdsprmpweqle  12826  pcadd  12829  pcmptdvds  12834  fldivp1  12837  pockthlem  12845  4sqlem8  12874  4sqlem9  12875  4sqlem12  12891  4sqlem14  12893  znidomb  14587  lgseisenlem1  15714  lgsquad2lem1  15725  lgsquad3  15728  m1lgs  15729  2sqlem3  15761  2sqlem8  15767
  Copyright terms: Public domain W3C validator