| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dvdsval2 | GIF version | ||
| Description: One nonzero integer divides another integer if and only if their quotient is an integer. (Contributed by Jeff Hankins, 29-Sep-2013.) |
| Ref | Expression |
|---|---|
| dvdsval2 | ⊢ ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝑁 ∈ ℤ) → (𝑀 ∥ 𝑁 ↔ (𝑁 / 𝑀) ∈ ℤ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | divides 12144 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∥ 𝑁 ↔ ∃𝑘 ∈ ℤ (𝑘 · 𝑀) = 𝑁)) | |
| 2 | 1 | 3adant2 1019 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝑁 ∈ ℤ) → (𝑀 ∥ 𝑁 ↔ ∃𝑘 ∈ ℤ (𝑘 · 𝑀) = 𝑁)) |
| 3 | zcn 9384 | . . . . . . . . . . 11 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℂ) | |
| 4 | 3 | 3ad2ant3 1023 | . . . . . . . . . 10 ⊢ ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℂ) |
| 5 | 4 | adantr 276 | . . . . . . . . 9 ⊢ (((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝑁 ∈ ℤ) ∧ 𝑘 ∈ ℤ) → 𝑁 ∈ ℂ) |
| 6 | zcn 9384 | . . . . . . . . . 10 ⊢ (𝑘 ∈ ℤ → 𝑘 ∈ ℂ) | |
| 7 | 6 | adantl 277 | . . . . . . . . 9 ⊢ (((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝑁 ∈ ℤ) ∧ 𝑘 ∈ ℤ) → 𝑘 ∈ ℂ) |
| 8 | zcn 9384 | . . . . . . . . . . 11 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ ℂ) | |
| 9 | 8 | 3ad2ant1 1021 | . . . . . . . . . 10 ⊢ ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝑁 ∈ ℤ) → 𝑀 ∈ ℂ) |
| 10 | 9 | adantr 276 | . . . . . . . . 9 ⊢ (((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝑁 ∈ ℤ) ∧ 𝑘 ∈ ℤ) → 𝑀 ∈ ℂ) |
| 11 | simpl2 1004 | . . . . . . . . . 10 ⊢ (((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝑁 ∈ ℤ) ∧ 𝑘 ∈ ℤ) → 𝑀 ≠ 0) | |
| 12 | 0z 9390 | . . . . . . . . . . . . 13 ⊢ 0 ∈ ℤ | |
| 13 | zapne 9454 | . . . . . . . . . . . . 13 ⊢ ((𝑀 ∈ ℤ ∧ 0 ∈ ℤ) → (𝑀 # 0 ↔ 𝑀 ≠ 0)) | |
| 14 | 12, 13 | mpan2 425 | . . . . . . . . . . . 12 ⊢ (𝑀 ∈ ℤ → (𝑀 # 0 ↔ 𝑀 ≠ 0)) |
| 15 | 14 | 3ad2ant1 1021 | . . . . . . . . . . 11 ⊢ ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝑁 ∈ ℤ) → (𝑀 # 0 ↔ 𝑀 ≠ 0)) |
| 16 | 15 | adantr 276 | . . . . . . . . . 10 ⊢ (((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝑁 ∈ ℤ) ∧ 𝑘 ∈ ℤ) → (𝑀 # 0 ↔ 𝑀 ≠ 0)) |
| 17 | 11, 16 | mpbird 167 | . . . . . . . . 9 ⊢ (((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝑁 ∈ ℤ) ∧ 𝑘 ∈ ℤ) → 𝑀 # 0) |
| 18 | 5, 7, 10, 17 | divmulap3d 8905 | . . . . . . . 8 ⊢ (((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝑁 ∈ ℤ) ∧ 𝑘 ∈ ℤ) → ((𝑁 / 𝑀) = 𝑘 ↔ 𝑁 = (𝑘 · 𝑀))) |
| 19 | eqcom 2208 | . . . . . . . 8 ⊢ (𝑁 = (𝑘 · 𝑀) ↔ (𝑘 · 𝑀) = 𝑁) | |
| 20 | 18, 19 | bitrdi 196 | . . . . . . 7 ⊢ (((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝑁 ∈ ℤ) ∧ 𝑘 ∈ ℤ) → ((𝑁 / 𝑀) = 𝑘 ↔ (𝑘 · 𝑀) = 𝑁)) |
| 21 | 20 | biimprd 158 | . . . . . 6 ⊢ (((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝑁 ∈ ℤ) ∧ 𝑘 ∈ ℤ) → ((𝑘 · 𝑀) = 𝑁 → (𝑁 / 𝑀) = 𝑘)) |
| 22 | 21 | impr 379 | . . . . 5 ⊢ (((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝑁 ∈ ℤ) ∧ (𝑘 ∈ ℤ ∧ (𝑘 · 𝑀) = 𝑁)) → (𝑁 / 𝑀) = 𝑘) |
| 23 | simprl 529 | . . . . 5 ⊢ (((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝑁 ∈ ℤ) ∧ (𝑘 ∈ ℤ ∧ (𝑘 · 𝑀) = 𝑁)) → 𝑘 ∈ ℤ) | |
| 24 | 22, 23 | eqeltrd 2283 | . . . 4 ⊢ (((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝑁 ∈ ℤ) ∧ (𝑘 ∈ ℤ ∧ (𝑘 · 𝑀) = 𝑁)) → (𝑁 / 𝑀) ∈ ℤ) |
| 25 | 24 | rexlimdvaa 2625 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝑁 ∈ ℤ) → (∃𝑘 ∈ ℤ (𝑘 · 𝑀) = 𝑁 → (𝑁 / 𝑀) ∈ ℤ)) |
| 26 | simpr 110 | . . . . 5 ⊢ (((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝑁 ∈ ℤ) ∧ (𝑁 / 𝑀) ∈ ℤ) → (𝑁 / 𝑀) ∈ ℤ) | |
| 27 | simp2 1001 | . . . . . . . 8 ⊢ ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝑁 ∈ ℤ) → 𝑀 ≠ 0) | |
| 28 | 27, 15 | mpbird 167 | . . . . . . 7 ⊢ ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝑁 ∈ ℤ) → 𝑀 # 0) |
| 29 | 4, 9, 28 | divcanap1d 8871 | . . . . . 6 ⊢ ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝑁 ∈ ℤ) → ((𝑁 / 𝑀) · 𝑀) = 𝑁) |
| 30 | 29 | adantr 276 | . . . . 5 ⊢ (((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝑁 ∈ ℤ) ∧ (𝑁 / 𝑀) ∈ ℤ) → ((𝑁 / 𝑀) · 𝑀) = 𝑁) |
| 31 | oveq1 5958 | . . . . . . 7 ⊢ (𝑘 = (𝑁 / 𝑀) → (𝑘 · 𝑀) = ((𝑁 / 𝑀) · 𝑀)) | |
| 32 | 31 | eqeq1d 2215 | . . . . . 6 ⊢ (𝑘 = (𝑁 / 𝑀) → ((𝑘 · 𝑀) = 𝑁 ↔ ((𝑁 / 𝑀) · 𝑀) = 𝑁)) |
| 33 | 32 | rspcev 2878 | . . . . 5 ⊢ (((𝑁 / 𝑀) ∈ ℤ ∧ ((𝑁 / 𝑀) · 𝑀) = 𝑁) → ∃𝑘 ∈ ℤ (𝑘 · 𝑀) = 𝑁) |
| 34 | 26, 30, 33 | syl2anc 411 | . . . 4 ⊢ (((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝑁 ∈ ℤ) ∧ (𝑁 / 𝑀) ∈ ℤ) → ∃𝑘 ∈ ℤ (𝑘 · 𝑀) = 𝑁) |
| 35 | 34 | ex 115 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝑁 ∈ ℤ) → ((𝑁 / 𝑀) ∈ ℤ → ∃𝑘 ∈ ℤ (𝑘 · 𝑀) = 𝑁)) |
| 36 | 25, 35 | impbid 129 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝑁 ∈ ℤ) → (∃𝑘 ∈ ℤ (𝑘 · 𝑀) = 𝑁 ↔ (𝑁 / 𝑀) ∈ ℤ)) |
| 37 | 2, 36 | bitrd 188 | 1 ⊢ ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝑁 ∈ ℤ) → (𝑀 ∥ 𝑁 ↔ (𝑁 / 𝑀) ∈ ℤ)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 981 = wceq 1373 ∈ wcel 2177 ≠ wne 2377 ∃wrex 2486 class class class wbr 4047 (class class class)co 5951 ℂcc 7930 0cc0 7932 · cmul 7937 # cap 8661 / cdiv 8752 ℤcz 9379 ∥ cdvds 12142 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4166 ax-pow 4222 ax-pr 4257 ax-un 4484 ax-setind 4589 ax-cnex 8023 ax-resscn 8024 ax-1cn 8025 ax-1re 8026 ax-icn 8027 ax-addcl 8028 ax-addrcl 8029 ax-mulcl 8030 ax-mulrcl 8031 ax-addcom 8032 ax-mulcom 8033 ax-addass 8034 ax-mulass 8035 ax-distr 8036 ax-i2m1 8037 ax-0lt1 8038 ax-1rid 8039 ax-0id 8040 ax-rnegex 8041 ax-precex 8042 ax-cnre 8043 ax-pre-ltirr 8044 ax-pre-ltwlin 8045 ax-pre-lttrn 8046 ax-pre-apti 8047 ax-pre-ltadd 8048 ax-pre-mulgt0 8049 ax-pre-mulext 8050 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3000 df-dif 3169 df-un 3171 df-in 3173 df-ss 3180 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-int 3888 df-br 4048 df-opab 4110 df-id 4344 df-po 4347 df-iso 4348 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-iota 5237 df-fun 5278 df-fv 5284 df-riota 5906 df-ov 5954 df-oprab 5955 df-mpo 5956 df-pnf 8116 df-mnf 8117 df-xr 8118 df-ltxr 8119 df-le 8120 df-sub 8252 df-neg 8253 df-reap 8655 df-ap 8662 df-div 8753 df-inn 9044 df-n0 9303 df-z 9380 df-dvds 12143 |
| This theorem is referenced by: dvdsval3 12146 nndivdvds 12151 fsumdvds 12197 divconjdvds 12204 3dvds 12219 zeo3 12223 evend2 12244 oddp1d2 12245 fldivndvdslt 12292 bitsmod 12311 divgcdz 12336 dvdsgcdidd 12359 mulgcd 12381 sqgcd 12394 lcmgcdlem 12443 mulgcddvds 12460 qredeu 12463 prmind2 12486 isprm5lem 12507 divgcdodd 12509 divnumden 12562 hashdvds 12587 hashgcdlem 12604 pythagtriplem19 12649 pcprendvds2 12658 pcpremul 12660 pc2dvds 12697 pcz 12699 dvdsprmpweqle 12704 pcadd 12707 pcmptdvds 12712 fldivp1 12715 pockthlem 12723 4sqlem8 12752 4sqlem9 12753 4sqlem12 12769 4sqlem14 12771 znidomb 14464 lgseisenlem1 15591 lgsquad2lem1 15602 lgsquad3 15605 m1lgs 15606 2sqlem3 15638 2sqlem8 15644 |
| Copyright terms: Public domain | W3C validator |