ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvdsval2 GIF version

Theorem dvdsval2 11796
Description: One nonzero integer divides another integer if and only if their quotient is an integer. (Contributed by Jeff Hankins, 29-Sep-2013.)
Assertion
Ref Expression
dvdsval2 ((๐‘€ โˆˆ โ„ค โˆง ๐‘€ โ‰  0 โˆง ๐‘ โˆˆ โ„ค) โ†’ (๐‘€ โˆฅ ๐‘ โ†” (๐‘ / ๐‘€) โˆˆ โ„ค))

Proof of Theorem dvdsval2
Dummy variable ๐‘˜ is distinct from all other variables.
StepHypRef Expression
1 divides 11795 . . 3 ((๐‘€ โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค) โ†’ (๐‘€ โˆฅ ๐‘ โ†” โˆƒ๐‘˜ โˆˆ โ„ค (๐‘˜ ยท ๐‘€) = ๐‘))
213adant2 1016 . 2 ((๐‘€ โˆˆ โ„ค โˆง ๐‘€ โ‰  0 โˆง ๐‘ โˆˆ โ„ค) โ†’ (๐‘€ โˆฅ ๐‘ โ†” โˆƒ๐‘˜ โˆˆ โ„ค (๐‘˜ ยท ๐‘€) = ๐‘))
3 zcn 9257 . . . . . . . . . . 11 (๐‘ โˆˆ โ„ค โ†’ ๐‘ โˆˆ โ„‚)
433ad2ant3 1020 . . . . . . . . . 10 ((๐‘€ โˆˆ โ„ค โˆง ๐‘€ โ‰  0 โˆง ๐‘ โˆˆ โ„ค) โ†’ ๐‘ โˆˆ โ„‚)
54adantr 276 . . . . . . . . 9 (((๐‘€ โˆˆ โ„ค โˆง ๐‘€ โ‰  0 โˆง ๐‘ โˆˆ โ„ค) โˆง ๐‘˜ โˆˆ โ„ค) โ†’ ๐‘ โˆˆ โ„‚)
6 zcn 9257 . . . . . . . . . 10 (๐‘˜ โˆˆ โ„ค โ†’ ๐‘˜ โˆˆ โ„‚)
76adantl 277 . . . . . . . . 9 (((๐‘€ โˆˆ โ„ค โˆง ๐‘€ โ‰  0 โˆง ๐‘ โˆˆ โ„ค) โˆง ๐‘˜ โˆˆ โ„ค) โ†’ ๐‘˜ โˆˆ โ„‚)
8 zcn 9257 . . . . . . . . . . 11 (๐‘€ โˆˆ โ„ค โ†’ ๐‘€ โˆˆ โ„‚)
983ad2ant1 1018 . . . . . . . . . 10 ((๐‘€ โˆˆ โ„ค โˆง ๐‘€ โ‰  0 โˆง ๐‘ โˆˆ โ„ค) โ†’ ๐‘€ โˆˆ โ„‚)
109adantr 276 . . . . . . . . 9 (((๐‘€ โˆˆ โ„ค โˆง ๐‘€ โ‰  0 โˆง ๐‘ โˆˆ โ„ค) โˆง ๐‘˜ โˆˆ โ„ค) โ†’ ๐‘€ โˆˆ โ„‚)
11 simpl2 1001 . . . . . . . . . 10 (((๐‘€ โˆˆ โ„ค โˆง ๐‘€ โ‰  0 โˆง ๐‘ โˆˆ โ„ค) โˆง ๐‘˜ โˆˆ โ„ค) โ†’ ๐‘€ โ‰  0)
12 0z 9263 . . . . . . . . . . . . 13 0 โˆˆ โ„ค
13 zapne 9326 . . . . . . . . . . . . 13 ((๐‘€ โˆˆ โ„ค โˆง 0 โˆˆ โ„ค) โ†’ (๐‘€ # 0 โ†” ๐‘€ โ‰  0))
1412, 13mpan2 425 . . . . . . . . . . . 12 (๐‘€ โˆˆ โ„ค โ†’ (๐‘€ # 0 โ†” ๐‘€ โ‰  0))
15143ad2ant1 1018 . . . . . . . . . . 11 ((๐‘€ โˆˆ โ„ค โˆง ๐‘€ โ‰  0 โˆง ๐‘ โˆˆ โ„ค) โ†’ (๐‘€ # 0 โ†” ๐‘€ โ‰  0))
1615adantr 276 . . . . . . . . . 10 (((๐‘€ โˆˆ โ„ค โˆง ๐‘€ โ‰  0 โˆง ๐‘ โˆˆ โ„ค) โˆง ๐‘˜ โˆˆ โ„ค) โ†’ (๐‘€ # 0 โ†” ๐‘€ โ‰  0))
1711, 16mpbird 167 . . . . . . . . 9 (((๐‘€ โˆˆ โ„ค โˆง ๐‘€ โ‰  0 โˆง ๐‘ โˆˆ โ„ค) โˆง ๐‘˜ โˆˆ โ„ค) โ†’ ๐‘€ # 0)
185, 7, 10, 17divmulap3d 8781 . . . . . . . 8 (((๐‘€ โˆˆ โ„ค โˆง ๐‘€ โ‰  0 โˆง ๐‘ โˆˆ โ„ค) โˆง ๐‘˜ โˆˆ โ„ค) โ†’ ((๐‘ / ๐‘€) = ๐‘˜ โ†” ๐‘ = (๐‘˜ ยท ๐‘€)))
19 eqcom 2179 . . . . . . . 8 (๐‘ = (๐‘˜ ยท ๐‘€) โ†” (๐‘˜ ยท ๐‘€) = ๐‘)
2018, 19bitrdi 196 . . . . . . 7 (((๐‘€ โˆˆ โ„ค โˆง ๐‘€ โ‰  0 โˆง ๐‘ โˆˆ โ„ค) โˆง ๐‘˜ โˆˆ โ„ค) โ†’ ((๐‘ / ๐‘€) = ๐‘˜ โ†” (๐‘˜ ยท ๐‘€) = ๐‘))
2120biimprd 158 . . . . . 6 (((๐‘€ โˆˆ โ„ค โˆง ๐‘€ โ‰  0 โˆง ๐‘ โˆˆ โ„ค) โˆง ๐‘˜ โˆˆ โ„ค) โ†’ ((๐‘˜ ยท ๐‘€) = ๐‘ โ†’ (๐‘ / ๐‘€) = ๐‘˜))
2221impr 379 . . . . 5 (((๐‘€ โˆˆ โ„ค โˆง ๐‘€ โ‰  0 โˆง ๐‘ โˆˆ โ„ค) โˆง (๐‘˜ โˆˆ โ„ค โˆง (๐‘˜ ยท ๐‘€) = ๐‘)) โ†’ (๐‘ / ๐‘€) = ๐‘˜)
23 simprl 529 . . . . 5 (((๐‘€ โˆˆ โ„ค โˆง ๐‘€ โ‰  0 โˆง ๐‘ โˆˆ โ„ค) โˆง (๐‘˜ โˆˆ โ„ค โˆง (๐‘˜ ยท ๐‘€) = ๐‘)) โ†’ ๐‘˜ โˆˆ โ„ค)
2422, 23eqeltrd 2254 . . . 4 (((๐‘€ โˆˆ โ„ค โˆง ๐‘€ โ‰  0 โˆง ๐‘ โˆˆ โ„ค) โˆง (๐‘˜ โˆˆ โ„ค โˆง (๐‘˜ ยท ๐‘€) = ๐‘)) โ†’ (๐‘ / ๐‘€) โˆˆ โ„ค)
2524rexlimdvaa 2595 . . 3 ((๐‘€ โˆˆ โ„ค โˆง ๐‘€ โ‰  0 โˆง ๐‘ โˆˆ โ„ค) โ†’ (โˆƒ๐‘˜ โˆˆ โ„ค (๐‘˜ ยท ๐‘€) = ๐‘ โ†’ (๐‘ / ๐‘€) โˆˆ โ„ค))
26 simpr 110 . . . . 5 (((๐‘€ โˆˆ โ„ค โˆง ๐‘€ โ‰  0 โˆง ๐‘ โˆˆ โ„ค) โˆง (๐‘ / ๐‘€) โˆˆ โ„ค) โ†’ (๐‘ / ๐‘€) โˆˆ โ„ค)
27 simp2 998 . . . . . . . 8 ((๐‘€ โˆˆ โ„ค โˆง ๐‘€ โ‰  0 โˆง ๐‘ โˆˆ โ„ค) โ†’ ๐‘€ โ‰  0)
2827, 15mpbird 167 . . . . . . 7 ((๐‘€ โˆˆ โ„ค โˆง ๐‘€ โ‰  0 โˆง ๐‘ โˆˆ โ„ค) โ†’ ๐‘€ # 0)
294, 9, 28divcanap1d 8747 . . . . . 6 ((๐‘€ โˆˆ โ„ค โˆง ๐‘€ โ‰  0 โˆง ๐‘ โˆˆ โ„ค) โ†’ ((๐‘ / ๐‘€) ยท ๐‘€) = ๐‘)
3029adantr 276 . . . . 5 (((๐‘€ โˆˆ โ„ค โˆง ๐‘€ โ‰  0 โˆง ๐‘ โˆˆ โ„ค) โˆง (๐‘ / ๐‘€) โˆˆ โ„ค) โ†’ ((๐‘ / ๐‘€) ยท ๐‘€) = ๐‘)
31 oveq1 5881 . . . . . . 7 (๐‘˜ = (๐‘ / ๐‘€) โ†’ (๐‘˜ ยท ๐‘€) = ((๐‘ / ๐‘€) ยท ๐‘€))
3231eqeq1d 2186 . . . . . 6 (๐‘˜ = (๐‘ / ๐‘€) โ†’ ((๐‘˜ ยท ๐‘€) = ๐‘ โ†” ((๐‘ / ๐‘€) ยท ๐‘€) = ๐‘))
3332rspcev 2841 . . . . 5 (((๐‘ / ๐‘€) โˆˆ โ„ค โˆง ((๐‘ / ๐‘€) ยท ๐‘€) = ๐‘) โ†’ โˆƒ๐‘˜ โˆˆ โ„ค (๐‘˜ ยท ๐‘€) = ๐‘)
3426, 30, 33syl2anc 411 . . . 4 (((๐‘€ โˆˆ โ„ค โˆง ๐‘€ โ‰  0 โˆง ๐‘ โˆˆ โ„ค) โˆง (๐‘ / ๐‘€) โˆˆ โ„ค) โ†’ โˆƒ๐‘˜ โˆˆ โ„ค (๐‘˜ ยท ๐‘€) = ๐‘)
3534ex 115 . . 3 ((๐‘€ โˆˆ โ„ค โˆง ๐‘€ โ‰  0 โˆง ๐‘ โˆˆ โ„ค) โ†’ ((๐‘ / ๐‘€) โˆˆ โ„ค โ†’ โˆƒ๐‘˜ โˆˆ โ„ค (๐‘˜ ยท ๐‘€) = ๐‘))
3625, 35impbid 129 . 2 ((๐‘€ โˆˆ โ„ค โˆง ๐‘€ โ‰  0 โˆง ๐‘ โˆˆ โ„ค) โ†’ (โˆƒ๐‘˜ โˆˆ โ„ค (๐‘˜ ยท ๐‘€) = ๐‘ โ†” (๐‘ / ๐‘€) โˆˆ โ„ค))
372, 36bitrd 188 1 ((๐‘€ โˆˆ โ„ค โˆง ๐‘€ โ‰  0 โˆง ๐‘ โˆˆ โ„ค) โ†’ (๐‘€ โˆฅ ๐‘ โ†” (๐‘ / ๐‘€) โˆˆ โ„ค))
Colors of variables: wff set class
Syntax hints:   โ†’ wi 4   โˆง wa 104   โ†” wb 105   โˆง w3a 978   = wceq 1353   โˆˆ wcel 2148   โ‰  wne 2347  โˆƒwrex 2456   class class class wbr 4003  (class class class)co 5874  โ„‚cc 7808  0cc0 7810   ยท cmul 7815   # cap 8537   / cdiv 8628  โ„คcz 9252   โˆฅ cdvds 11793
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4121  ax-pow 4174  ax-pr 4209  ax-un 4433  ax-setind 4536  ax-cnex 7901  ax-resscn 7902  ax-1cn 7903  ax-1re 7904  ax-icn 7905  ax-addcl 7906  ax-addrcl 7907  ax-mulcl 7908  ax-mulrcl 7909  ax-addcom 7910  ax-mulcom 7911  ax-addass 7912  ax-mulass 7913  ax-distr 7914  ax-i2m1 7915  ax-0lt1 7916  ax-1rid 7917  ax-0id 7918  ax-rnegex 7919  ax-precex 7920  ax-cnre 7921  ax-pre-ltirr 7922  ax-pre-ltwlin 7923  ax-pre-lttrn 7924  ax-pre-apti 7925  ax-pre-ltadd 7926  ax-pre-mulgt0 7927  ax-pre-mulext 7928
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-int 3845  df-br 4004  df-opab 4065  df-id 4293  df-po 4296  df-iso 4297  df-xp 4632  df-rel 4633  df-cnv 4634  df-co 4635  df-dm 4636  df-iota 5178  df-fun 5218  df-fv 5224  df-riota 5830  df-ov 5877  df-oprab 5878  df-mpo 5879  df-pnf 7993  df-mnf 7994  df-xr 7995  df-ltxr 7996  df-le 7997  df-sub 8129  df-neg 8130  df-reap 8531  df-ap 8538  df-div 8629  df-inn 8919  df-n0 9176  df-z 9253  df-dvds 11794
This theorem is referenced by:  dvdsval3  11797  nndivdvds  11802  divconjdvds  11854  zeo3  11872  evend2  11893  oddp1d2  11894  fldivndvdslt  11939  divgcdz  11971  dvdsgcdidd  11994  mulgcd  12016  sqgcd  12029  lcmgcdlem  12076  mulgcddvds  12093  qredeu  12096  prmind2  12119  isprm5lem  12140  divgcdodd  12142  divnumden  12195  hashdvds  12220  hashgcdlem  12237  pythagtriplem19  12281  pcprendvds2  12290  pcpremul  12292  pc2dvds  12328  pcz  12330  dvdsprmpweqle  12335  pcadd  12338  pcmptdvds  12342  fldivp1  12345  pockthlem  12353  4sqlem8  12382  4sqlem9  12383  lgseisenlem1  14420  m1lgs  14422  2sqlem3  14434  2sqlem8  14440
  Copyright terms: Public domain W3C validator