ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isgrpinv GIF version

Theorem isgrpinv 13595
Description: Properties showing that a function 𝑀 is the inverse function of a group. (Contributed by NM, 7-Aug-2013.) (Revised by Mario Carneiro, 2-Oct-2015.)
Hypotheses
Ref Expression
grpinv.b 𝐵 = (Base‘𝐺)
grpinv.p + = (+g𝐺)
grpinv.u 0 = (0g𝐺)
grpinv.n 𝑁 = (invg𝐺)
Assertion
Ref Expression
isgrpinv (𝐺 ∈ Grp → ((𝑀:𝐵𝐵 ∧ ∀𝑥𝐵 ((𝑀𝑥) + 𝑥) = 0 ) ↔ 𝑁 = 𝑀))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐺   𝑥, 0   𝑥, +   𝑥,𝑀   𝑥,𝑁

Proof of Theorem isgrpinv
Dummy variable 𝑒 is distinct from all other variables.
StepHypRef Expression
1 grpinv.b . . . . . . . . . 10 𝐵 = (Base‘𝐺)
2 grpinv.p . . . . . . . . . 10 + = (+g𝐺)
3 grpinv.u . . . . . . . . . 10 0 = (0g𝐺)
4 grpinv.n . . . . . . . . . 10 𝑁 = (invg𝐺)
51, 2, 3, 4grpinvval 13584 . . . . . . . . 9 (𝑥𝐵 → (𝑁𝑥) = (𝑒𝐵 (𝑒 + 𝑥) = 0 ))
65ad2antlr 489 . . . . . . . 8 ((((𝐺 ∈ Grp ∧ 𝑀:𝐵𝐵) ∧ 𝑥𝐵) ∧ ((𝑀𝑥) + 𝑥) = 0 ) → (𝑁𝑥) = (𝑒𝐵 (𝑒 + 𝑥) = 0 ))
7 simpr 110 . . . . . . . . 9 ((((𝐺 ∈ Grp ∧ 𝑀:𝐵𝐵) ∧ 𝑥𝐵) ∧ ((𝑀𝑥) + 𝑥) = 0 ) → ((𝑀𝑥) + 𝑥) = 0 )
8 simpllr 534 . . . . . . . . . . 11 ((((𝐺 ∈ Grp ∧ 𝑀:𝐵𝐵) ∧ 𝑥𝐵) ∧ ((𝑀𝑥) + 𝑥) = 0 ) → 𝑀:𝐵𝐵)
9 simplr 528 . . . . . . . . . . 11 ((((𝐺 ∈ Grp ∧ 𝑀:𝐵𝐵) ∧ 𝑥𝐵) ∧ ((𝑀𝑥) + 𝑥) = 0 ) → 𝑥𝐵)
108, 9ffvelcdmd 5773 . . . . . . . . . 10 ((((𝐺 ∈ Grp ∧ 𝑀:𝐵𝐵) ∧ 𝑥𝐵) ∧ ((𝑀𝑥) + 𝑥) = 0 ) → (𝑀𝑥) ∈ 𝐵)
111, 2, 3grpinveu 13579 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ 𝑥𝐵) → ∃!𝑒𝐵 (𝑒 + 𝑥) = 0 )
1211ad4ant13 513 . . . . . . . . . 10 ((((𝐺 ∈ Grp ∧ 𝑀:𝐵𝐵) ∧ 𝑥𝐵) ∧ ((𝑀𝑥) + 𝑥) = 0 ) → ∃!𝑒𝐵 (𝑒 + 𝑥) = 0 )
13 oveq1 6014 . . . . . . . . . . . 12 (𝑒 = (𝑀𝑥) → (𝑒 + 𝑥) = ((𝑀𝑥) + 𝑥))
1413eqeq1d 2238 . . . . . . . . . . 11 (𝑒 = (𝑀𝑥) → ((𝑒 + 𝑥) = 0 ↔ ((𝑀𝑥) + 𝑥) = 0 ))
1514riota2 5984 . . . . . . . . . 10 (((𝑀𝑥) ∈ 𝐵 ∧ ∃!𝑒𝐵 (𝑒 + 𝑥) = 0 ) → (((𝑀𝑥) + 𝑥) = 0 ↔ (𝑒𝐵 (𝑒 + 𝑥) = 0 ) = (𝑀𝑥)))
1610, 12, 15syl2anc 411 . . . . . . . . 9 ((((𝐺 ∈ Grp ∧ 𝑀:𝐵𝐵) ∧ 𝑥𝐵) ∧ ((𝑀𝑥) + 𝑥) = 0 ) → (((𝑀𝑥) + 𝑥) = 0 ↔ (𝑒𝐵 (𝑒 + 𝑥) = 0 ) = (𝑀𝑥)))
177, 16mpbid 147 . . . . . . . 8 ((((𝐺 ∈ Grp ∧ 𝑀:𝐵𝐵) ∧ 𝑥𝐵) ∧ ((𝑀𝑥) + 𝑥) = 0 ) → (𝑒𝐵 (𝑒 + 𝑥) = 0 ) = (𝑀𝑥))
186, 17eqtrd 2262 . . . . . . 7 ((((𝐺 ∈ Grp ∧ 𝑀:𝐵𝐵) ∧ 𝑥𝐵) ∧ ((𝑀𝑥) + 𝑥) = 0 ) → (𝑁𝑥) = (𝑀𝑥))
1918ex 115 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝑀:𝐵𝐵) ∧ 𝑥𝐵) → (((𝑀𝑥) + 𝑥) = 0 → (𝑁𝑥) = (𝑀𝑥)))
2019ralimdva 2597 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑀:𝐵𝐵) → (∀𝑥𝐵 ((𝑀𝑥) + 𝑥) = 0 → ∀𝑥𝐵 (𝑁𝑥) = (𝑀𝑥)))
2120impr 379 . . . 4 ((𝐺 ∈ Grp ∧ (𝑀:𝐵𝐵 ∧ ∀𝑥𝐵 ((𝑀𝑥) + 𝑥) = 0 )) → ∀𝑥𝐵 (𝑁𝑥) = (𝑀𝑥))
221, 4grpinvfng 13585 . . . . 5 (𝐺 ∈ Grp → 𝑁 Fn 𝐵)
23 ffn 5473 . . . . . 6 (𝑀:𝐵𝐵𝑀 Fn 𝐵)
2423ad2antrl 490 . . . . 5 ((𝐺 ∈ Grp ∧ (𝑀:𝐵𝐵 ∧ ∀𝑥𝐵 ((𝑀𝑥) + 𝑥) = 0 )) → 𝑀 Fn 𝐵)
25 eqfnfv 5734 . . . . 5 ((𝑁 Fn 𝐵𝑀 Fn 𝐵) → (𝑁 = 𝑀 ↔ ∀𝑥𝐵 (𝑁𝑥) = (𝑀𝑥)))
2622, 24, 25syl2an2r 597 . . . 4 ((𝐺 ∈ Grp ∧ (𝑀:𝐵𝐵 ∧ ∀𝑥𝐵 ((𝑀𝑥) + 𝑥) = 0 )) → (𝑁 = 𝑀 ↔ ∀𝑥𝐵 (𝑁𝑥) = (𝑀𝑥)))
2721, 26mpbird 167 . . 3 ((𝐺 ∈ Grp ∧ (𝑀:𝐵𝐵 ∧ ∀𝑥𝐵 ((𝑀𝑥) + 𝑥) = 0 )) → 𝑁 = 𝑀)
2827ex 115 . 2 (𝐺 ∈ Grp → ((𝑀:𝐵𝐵 ∧ ∀𝑥𝐵 ((𝑀𝑥) + 𝑥) = 0 ) → 𝑁 = 𝑀))
291, 4grpinvf 13588 . . . 4 (𝐺 ∈ Grp → 𝑁:𝐵𝐵)
301, 2, 3, 4grplinv 13591 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑥𝐵) → ((𝑁𝑥) + 𝑥) = 0 )
3130ralrimiva 2603 . . . 4 (𝐺 ∈ Grp → ∀𝑥𝐵 ((𝑁𝑥) + 𝑥) = 0 )
3229, 31jca 306 . . 3 (𝐺 ∈ Grp → (𝑁:𝐵𝐵 ∧ ∀𝑥𝐵 ((𝑁𝑥) + 𝑥) = 0 ))
33 feq1 5456 . . . 4 (𝑁 = 𝑀 → (𝑁:𝐵𝐵𝑀:𝐵𝐵))
34 fveq1 5628 . . . . . . 7 (𝑁 = 𝑀 → (𝑁𝑥) = (𝑀𝑥))
3534oveq1d 6022 . . . . . 6 (𝑁 = 𝑀 → ((𝑁𝑥) + 𝑥) = ((𝑀𝑥) + 𝑥))
3635eqeq1d 2238 . . . . 5 (𝑁 = 𝑀 → (((𝑁𝑥) + 𝑥) = 0 ↔ ((𝑀𝑥) + 𝑥) = 0 ))
3736ralbidv 2530 . . . 4 (𝑁 = 𝑀 → (∀𝑥𝐵 ((𝑁𝑥) + 𝑥) = 0 ↔ ∀𝑥𝐵 ((𝑀𝑥) + 𝑥) = 0 ))
3833, 37anbi12d 473 . . 3 (𝑁 = 𝑀 → ((𝑁:𝐵𝐵 ∧ ∀𝑥𝐵 ((𝑁𝑥) + 𝑥) = 0 ) ↔ (𝑀:𝐵𝐵 ∧ ∀𝑥𝐵 ((𝑀𝑥) + 𝑥) = 0 )))
3932, 38syl5ibcom 155 . 2 (𝐺 ∈ Grp → (𝑁 = 𝑀 → (𝑀:𝐵𝐵 ∧ ∀𝑥𝐵 ((𝑀𝑥) + 𝑥) = 0 )))
4028, 39impbid 129 1 (𝐺 ∈ Grp → ((𝑀:𝐵𝐵 ∧ ∀𝑥𝐵 ((𝑀𝑥) + 𝑥) = 0 ) ↔ 𝑁 = 𝑀))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1395  wcel 2200  wral 2508  ∃!wreu 2510   Fn wfn 5313  wf 5314  cfv 5318  crio 5959  (class class class)co 6007  Basecbs 13040  +gcplusg 13118  0gc0g 13297  Grpcgrp 13541  invgcminusg 13542
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-cnex 8098  ax-resscn 8099  ax-1re 8101  ax-addrcl 8104
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5960  df-ov 6010  df-inn 9119  df-2 9177  df-ndx 13043  df-slot 13044  df-base 13046  df-plusg 13131  df-0g 13299  df-mgm 13397  df-sgrp 13443  df-mnd 13458  df-grp 13544  df-minusg 13545
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator