ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isgrpinv GIF version

Theorem isgrpinv 13553
Description: Properties showing that a function 𝑀 is the inverse function of a group. (Contributed by NM, 7-Aug-2013.) (Revised by Mario Carneiro, 2-Oct-2015.)
Hypotheses
Ref Expression
grpinv.b 𝐵 = (Base‘𝐺)
grpinv.p + = (+g𝐺)
grpinv.u 0 = (0g𝐺)
grpinv.n 𝑁 = (invg𝐺)
Assertion
Ref Expression
isgrpinv (𝐺 ∈ Grp → ((𝑀:𝐵𝐵 ∧ ∀𝑥𝐵 ((𝑀𝑥) + 𝑥) = 0 ) ↔ 𝑁 = 𝑀))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐺   𝑥, 0   𝑥, +   𝑥,𝑀   𝑥,𝑁

Proof of Theorem isgrpinv
Dummy variable 𝑒 is distinct from all other variables.
StepHypRef Expression
1 grpinv.b . . . . . . . . . 10 𝐵 = (Base‘𝐺)
2 grpinv.p . . . . . . . . . 10 + = (+g𝐺)
3 grpinv.u . . . . . . . . . 10 0 = (0g𝐺)
4 grpinv.n . . . . . . . . . 10 𝑁 = (invg𝐺)
51, 2, 3, 4grpinvval 13542 . . . . . . . . 9 (𝑥𝐵 → (𝑁𝑥) = (𝑒𝐵 (𝑒 + 𝑥) = 0 ))
65ad2antlr 489 . . . . . . . 8 ((((𝐺 ∈ Grp ∧ 𝑀:𝐵𝐵) ∧ 𝑥𝐵) ∧ ((𝑀𝑥) + 𝑥) = 0 ) → (𝑁𝑥) = (𝑒𝐵 (𝑒 + 𝑥) = 0 ))
7 simpr 110 . . . . . . . . 9 ((((𝐺 ∈ Grp ∧ 𝑀:𝐵𝐵) ∧ 𝑥𝐵) ∧ ((𝑀𝑥) + 𝑥) = 0 ) → ((𝑀𝑥) + 𝑥) = 0 )
8 simpllr 534 . . . . . . . . . . 11 ((((𝐺 ∈ Grp ∧ 𝑀:𝐵𝐵) ∧ 𝑥𝐵) ∧ ((𝑀𝑥) + 𝑥) = 0 ) → 𝑀:𝐵𝐵)
9 simplr 528 . . . . . . . . . . 11 ((((𝐺 ∈ Grp ∧ 𝑀:𝐵𝐵) ∧ 𝑥𝐵) ∧ ((𝑀𝑥) + 𝑥) = 0 ) → 𝑥𝐵)
108, 9ffvelcdmd 5744 . . . . . . . . . 10 ((((𝐺 ∈ Grp ∧ 𝑀:𝐵𝐵) ∧ 𝑥𝐵) ∧ ((𝑀𝑥) + 𝑥) = 0 ) → (𝑀𝑥) ∈ 𝐵)
111, 2, 3grpinveu 13537 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ 𝑥𝐵) → ∃!𝑒𝐵 (𝑒 + 𝑥) = 0 )
1211ad4ant13 513 . . . . . . . . . 10 ((((𝐺 ∈ Grp ∧ 𝑀:𝐵𝐵) ∧ 𝑥𝐵) ∧ ((𝑀𝑥) + 𝑥) = 0 ) → ∃!𝑒𝐵 (𝑒 + 𝑥) = 0 )
13 oveq1 5981 . . . . . . . . . . . 12 (𝑒 = (𝑀𝑥) → (𝑒 + 𝑥) = ((𝑀𝑥) + 𝑥))
1413eqeq1d 2218 . . . . . . . . . . 11 (𝑒 = (𝑀𝑥) → ((𝑒 + 𝑥) = 0 ↔ ((𝑀𝑥) + 𝑥) = 0 ))
1514riota2 5951 . . . . . . . . . 10 (((𝑀𝑥) ∈ 𝐵 ∧ ∃!𝑒𝐵 (𝑒 + 𝑥) = 0 ) → (((𝑀𝑥) + 𝑥) = 0 ↔ (𝑒𝐵 (𝑒 + 𝑥) = 0 ) = (𝑀𝑥)))
1610, 12, 15syl2anc 411 . . . . . . . . 9 ((((𝐺 ∈ Grp ∧ 𝑀:𝐵𝐵) ∧ 𝑥𝐵) ∧ ((𝑀𝑥) + 𝑥) = 0 ) → (((𝑀𝑥) + 𝑥) = 0 ↔ (𝑒𝐵 (𝑒 + 𝑥) = 0 ) = (𝑀𝑥)))
177, 16mpbid 147 . . . . . . . 8 ((((𝐺 ∈ Grp ∧ 𝑀:𝐵𝐵) ∧ 𝑥𝐵) ∧ ((𝑀𝑥) + 𝑥) = 0 ) → (𝑒𝐵 (𝑒 + 𝑥) = 0 ) = (𝑀𝑥))
186, 17eqtrd 2242 . . . . . . 7 ((((𝐺 ∈ Grp ∧ 𝑀:𝐵𝐵) ∧ 𝑥𝐵) ∧ ((𝑀𝑥) + 𝑥) = 0 ) → (𝑁𝑥) = (𝑀𝑥))
1918ex 115 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝑀:𝐵𝐵) ∧ 𝑥𝐵) → (((𝑀𝑥) + 𝑥) = 0 → (𝑁𝑥) = (𝑀𝑥)))
2019ralimdva 2577 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑀:𝐵𝐵) → (∀𝑥𝐵 ((𝑀𝑥) + 𝑥) = 0 → ∀𝑥𝐵 (𝑁𝑥) = (𝑀𝑥)))
2120impr 379 . . . 4 ((𝐺 ∈ Grp ∧ (𝑀:𝐵𝐵 ∧ ∀𝑥𝐵 ((𝑀𝑥) + 𝑥) = 0 )) → ∀𝑥𝐵 (𝑁𝑥) = (𝑀𝑥))
221, 4grpinvfng 13543 . . . . 5 (𝐺 ∈ Grp → 𝑁 Fn 𝐵)
23 ffn 5449 . . . . . 6 (𝑀:𝐵𝐵𝑀 Fn 𝐵)
2423ad2antrl 490 . . . . 5 ((𝐺 ∈ Grp ∧ (𝑀:𝐵𝐵 ∧ ∀𝑥𝐵 ((𝑀𝑥) + 𝑥) = 0 )) → 𝑀 Fn 𝐵)
25 eqfnfv 5705 . . . . 5 ((𝑁 Fn 𝐵𝑀 Fn 𝐵) → (𝑁 = 𝑀 ↔ ∀𝑥𝐵 (𝑁𝑥) = (𝑀𝑥)))
2622, 24, 25syl2an2r 597 . . . 4 ((𝐺 ∈ Grp ∧ (𝑀:𝐵𝐵 ∧ ∀𝑥𝐵 ((𝑀𝑥) + 𝑥) = 0 )) → (𝑁 = 𝑀 ↔ ∀𝑥𝐵 (𝑁𝑥) = (𝑀𝑥)))
2721, 26mpbird 167 . . 3 ((𝐺 ∈ Grp ∧ (𝑀:𝐵𝐵 ∧ ∀𝑥𝐵 ((𝑀𝑥) + 𝑥) = 0 )) → 𝑁 = 𝑀)
2827ex 115 . 2 (𝐺 ∈ Grp → ((𝑀:𝐵𝐵 ∧ ∀𝑥𝐵 ((𝑀𝑥) + 𝑥) = 0 ) → 𝑁 = 𝑀))
291, 4grpinvf 13546 . . . 4 (𝐺 ∈ Grp → 𝑁:𝐵𝐵)
301, 2, 3, 4grplinv 13549 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑥𝐵) → ((𝑁𝑥) + 𝑥) = 0 )
3130ralrimiva 2583 . . . 4 (𝐺 ∈ Grp → ∀𝑥𝐵 ((𝑁𝑥) + 𝑥) = 0 )
3229, 31jca 306 . . 3 (𝐺 ∈ Grp → (𝑁:𝐵𝐵 ∧ ∀𝑥𝐵 ((𝑁𝑥) + 𝑥) = 0 ))
33 feq1 5432 . . . 4 (𝑁 = 𝑀 → (𝑁:𝐵𝐵𝑀:𝐵𝐵))
34 fveq1 5602 . . . . . . 7 (𝑁 = 𝑀 → (𝑁𝑥) = (𝑀𝑥))
3534oveq1d 5989 . . . . . 6 (𝑁 = 𝑀 → ((𝑁𝑥) + 𝑥) = ((𝑀𝑥) + 𝑥))
3635eqeq1d 2218 . . . . 5 (𝑁 = 𝑀 → (((𝑁𝑥) + 𝑥) = 0 ↔ ((𝑀𝑥) + 𝑥) = 0 ))
3736ralbidv 2510 . . . 4 (𝑁 = 𝑀 → (∀𝑥𝐵 ((𝑁𝑥) + 𝑥) = 0 ↔ ∀𝑥𝐵 ((𝑀𝑥) + 𝑥) = 0 ))
3833, 37anbi12d 473 . . 3 (𝑁 = 𝑀 → ((𝑁:𝐵𝐵 ∧ ∀𝑥𝐵 ((𝑁𝑥) + 𝑥) = 0 ) ↔ (𝑀:𝐵𝐵 ∧ ∀𝑥𝐵 ((𝑀𝑥) + 𝑥) = 0 )))
3932, 38syl5ibcom 155 . 2 (𝐺 ∈ Grp → (𝑁 = 𝑀 → (𝑀:𝐵𝐵 ∧ ∀𝑥𝐵 ((𝑀𝑥) + 𝑥) = 0 )))
4028, 39impbid 129 1 (𝐺 ∈ Grp → ((𝑀:𝐵𝐵 ∧ ∀𝑥𝐵 ((𝑀𝑥) + 𝑥) = 0 ) ↔ 𝑁 = 𝑀))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1375  wcel 2180  wral 2488  ∃!wreu 2490   Fn wfn 5289  wf 5290  cfv 5294  crio 5926  (class class class)co 5974  Basecbs 12998  +gcplusg 13076  0gc0g 13255  Grpcgrp 13499  invgcminusg 13500
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-coll 4178  ax-sep 4181  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-cnex 8058  ax-resscn 8059  ax-1re 8061  ax-addrcl 8064
This theorem depends on definitions:  df-bi 117  df-3an 985  df-tru 1378  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ral 2493  df-rex 2494  df-reu 2495  df-rmo 2496  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-un 3181  df-in 3183  df-ss 3190  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-int 3903  df-iun 3946  df-br 4063  df-opab 4125  df-mpt 4126  df-id 4361  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-f1 5299  df-fo 5300  df-f1o 5301  df-fv 5302  df-riota 5927  df-ov 5977  df-inn 9079  df-2 9137  df-ndx 13001  df-slot 13002  df-base 13004  df-plusg 13089  df-0g 13257  df-mgm 13355  df-sgrp 13401  df-mnd 13416  df-grp 13502  df-minusg 13503
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator