| Step | Hyp | Ref
 | Expression | 
| 1 |   | grpinv.b | 
. . . . . . . . . 10
⊢ 𝐵 = (Base‘𝐺) | 
| 2 |   | grpinv.p | 
. . . . . . . . . 10
⊢  + =
(+g‘𝐺) | 
| 3 |   | grpinv.u | 
. . . . . . . . . 10
⊢  0 =
(0g‘𝐺) | 
| 4 |   | grpinv.n | 
. . . . . . . . . 10
⊢ 𝑁 = (invg‘𝐺) | 
| 5 | 1, 2, 3, 4 | grpinvval 13175 | 
. . . . . . . . 9
⊢ (𝑥 ∈ 𝐵 → (𝑁‘𝑥) = (℩𝑒 ∈ 𝐵 (𝑒 + 𝑥) = 0 )) | 
| 6 | 5 | ad2antlr 489 | 
. . . . . . . 8
⊢ ((((𝐺 ∈ Grp ∧ 𝑀:𝐵⟶𝐵) ∧ 𝑥 ∈ 𝐵) ∧ ((𝑀‘𝑥) + 𝑥) = 0 ) → (𝑁‘𝑥) = (℩𝑒 ∈ 𝐵 (𝑒 + 𝑥) = 0 )) | 
| 7 |   | simpr 110 | 
. . . . . . . . 9
⊢ ((((𝐺 ∈ Grp ∧ 𝑀:𝐵⟶𝐵) ∧ 𝑥 ∈ 𝐵) ∧ ((𝑀‘𝑥) + 𝑥) = 0 ) → ((𝑀‘𝑥) + 𝑥) = 0 ) | 
| 8 |   | simpllr 534 | 
. . . . . . . . . . 11
⊢ ((((𝐺 ∈ Grp ∧ 𝑀:𝐵⟶𝐵) ∧ 𝑥 ∈ 𝐵) ∧ ((𝑀‘𝑥) + 𝑥) = 0 ) → 𝑀:𝐵⟶𝐵) | 
| 9 |   | simplr 528 | 
. . . . . . . . . . 11
⊢ ((((𝐺 ∈ Grp ∧ 𝑀:𝐵⟶𝐵) ∧ 𝑥 ∈ 𝐵) ∧ ((𝑀‘𝑥) + 𝑥) = 0 ) → 𝑥 ∈ 𝐵) | 
| 10 | 8, 9 | ffvelcdmd 5698 | 
. . . . . . . . . 10
⊢ ((((𝐺 ∈ Grp ∧ 𝑀:𝐵⟶𝐵) ∧ 𝑥 ∈ 𝐵) ∧ ((𝑀‘𝑥) + 𝑥) = 0 ) → (𝑀‘𝑥) ∈ 𝐵) | 
| 11 | 1, 2, 3 | grpinveu 13170 | 
. . . . . . . . . . 11
⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵) → ∃!𝑒 ∈ 𝐵 (𝑒 + 𝑥) = 0 ) | 
| 12 | 11 | ad4ant13 513 | 
. . . . . . . . . 10
⊢ ((((𝐺 ∈ Grp ∧ 𝑀:𝐵⟶𝐵) ∧ 𝑥 ∈ 𝐵) ∧ ((𝑀‘𝑥) + 𝑥) = 0 ) → ∃!𝑒 ∈ 𝐵 (𝑒 + 𝑥) = 0 ) | 
| 13 |   | oveq1 5929 | 
. . . . . . . . . . . 12
⊢ (𝑒 = (𝑀‘𝑥) → (𝑒 + 𝑥) = ((𝑀‘𝑥) + 𝑥)) | 
| 14 | 13 | eqeq1d 2205 | 
. . . . . . . . . . 11
⊢ (𝑒 = (𝑀‘𝑥) → ((𝑒 + 𝑥) = 0 ↔ ((𝑀‘𝑥) + 𝑥) = 0 )) | 
| 15 | 14 | riota2 5900 | 
. . . . . . . . . 10
⊢ (((𝑀‘𝑥) ∈ 𝐵 ∧ ∃!𝑒 ∈ 𝐵 (𝑒 + 𝑥) = 0 ) → (((𝑀‘𝑥) + 𝑥) = 0 ↔
(℩𝑒 ∈
𝐵 (𝑒 + 𝑥) = 0 ) = (𝑀‘𝑥))) | 
| 16 | 10, 12, 15 | syl2anc 411 | 
. . . . . . . . 9
⊢ ((((𝐺 ∈ Grp ∧ 𝑀:𝐵⟶𝐵) ∧ 𝑥 ∈ 𝐵) ∧ ((𝑀‘𝑥) + 𝑥) = 0 ) → (((𝑀‘𝑥) + 𝑥) = 0 ↔
(℩𝑒 ∈
𝐵 (𝑒 + 𝑥) = 0 ) = (𝑀‘𝑥))) | 
| 17 | 7, 16 | mpbid 147 | 
. . . . . . . 8
⊢ ((((𝐺 ∈ Grp ∧ 𝑀:𝐵⟶𝐵) ∧ 𝑥 ∈ 𝐵) ∧ ((𝑀‘𝑥) + 𝑥) = 0 ) →
(℩𝑒 ∈
𝐵 (𝑒 + 𝑥) = 0 ) = (𝑀‘𝑥)) | 
| 18 | 6, 17 | eqtrd 2229 | 
. . . . . . 7
⊢ ((((𝐺 ∈ Grp ∧ 𝑀:𝐵⟶𝐵) ∧ 𝑥 ∈ 𝐵) ∧ ((𝑀‘𝑥) + 𝑥) = 0 ) → (𝑁‘𝑥) = (𝑀‘𝑥)) | 
| 19 | 18 | ex 115 | 
. . . . . 6
⊢ (((𝐺 ∈ Grp ∧ 𝑀:𝐵⟶𝐵) ∧ 𝑥 ∈ 𝐵) → (((𝑀‘𝑥) + 𝑥) = 0 → (𝑁‘𝑥) = (𝑀‘𝑥))) | 
| 20 | 19 | ralimdva 2564 | 
. . . . 5
⊢ ((𝐺 ∈ Grp ∧ 𝑀:𝐵⟶𝐵) → (∀𝑥 ∈ 𝐵 ((𝑀‘𝑥) + 𝑥) = 0 → ∀𝑥 ∈ 𝐵 (𝑁‘𝑥) = (𝑀‘𝑥))) | 
| 21 | 20 | impr 379 | 
. . . 4
⊢ ((𝐺 ∈ Grp ∧ (𝑀:𝐵⟶𝐵 ∧ ∀𝑥 ∈ 𝐵 ((𝑀‘𝑥) + 𝑥) = 0 )) → ∀𝑥 ∈ 𝐵 (𝑁‘𝑥) = (𝑀‘𝑥)) | 
| 22 | 1, 4 | grpinvfng 13176 | 
. . . . 5
⊢ (𝐺 ∈ Grp → 𝑁 Fn 𝐵) | 
| 23 |   | ffn 5407 | 
. . . . . 6
⊢ (𝑀:𝐵⟶𝐵 → 𝑀 Fn 𝐵) | 
| 24 | 23 | ad2antrl 490 | 
. . . . 5
⊢ ((𝐺 ∈ Grp ∧ (𝑀:𝐵⟶𝐵 ∧ ∀𝑥 ∈ 𝐵 ((𝑀‘𝑥) + 𝑥) = 0 )) → 𝑀 Fn 𝐵) | 
| 25 |   | eqfnfv 5659 | 
. . . . 5
⊢ ((𝑁 Fn 𝐵 ∧ 𝑀 Fn 𝐵) → (𝑁 = 𝑀 ↔ ∀𝑥 ∈ 𝐵 (𝑁‘𝑥) = (𝑀‘𝑥))) | 
| 26 | 22, 24, 25 | syl2an2r 595 | 
. . . 4
⊢ ((𝐺 ∈ Grp ∧ (𝑀:𝐵⟶𝐵 ∧ ∀𝑥 ∈ 𝐵 ((𝑀‘𝑥) + 𝑥) = 0 )) → (𝑁 = 𝑀 ↔ ∀𝑥 ∈ 𝐵 (𝑁‘𝑥) = (𝑀‘𝑥))) | 
| 27 | 21, 26 | mpbird 167 | 
. . 3
⊢ ((𝐺 ∈ Grp ∧ (𝑀:𝐵⟶𝐵 ∧ ∀𝑥 ∈ 𝐵 ((𝑀‘𝑥) + 𝑥) = 0 )) → 𝑁 = 𝑀) | 
| 28 | 27 | ex 115 | 
. 2
⊢ (𝐺 ∈ Grp → ((𝑀:𝐵⟶𝐵 ∧ ∀𝑥 ∈ 𝐵 ((𝑀‘𝑥) + 𝑥) = 0 ) → 𝑁 = 𝑀)) | 
| 29 | 1, 4 | grpinvf 13179 | 
. . . 4
⊢ (𝐺 ∈ Grp → 𝑁:𝐵⟶𝐵) | 
| 30 | 1, 2, 3, 4 | grplinv 13182 | 
. . . . 5
⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵) → ((𝑁‘𝑥) + 𝑥) = 0 ) | 
| 31 | 30 | ralrimiva 2570 | 
. . . 4
⊢ (𝐺 ∈ Grp → ∀𝑥 ∈ 𝐵 ((𝑁‘𝑥) + 𝑥) = 0 ) | 
| 32 | 29, 31 | jca 306 | 
. . 3
⊢ (𝐺 ∈ Grp → (𝑁:𝐵⟶𝐵 ∧ ∀𝑥 ∈ 𝐵 ((𝑁‘𝑥) + 𝑥) = 0 )) | 
| 33 |   | feq1 5390 | 
. . . 4
⊢ (𝑁 = 𝑀 → (𝑁:𝐵⟶𝐵 ↔ 𝑀:𝐵⟶𝐵)) | 
| 34 |   | fveq1 5557 | 
. . . . . . 7
⊢ (𝑁 = 𝑀 → (𝑁‘𝑥) = (𝑀‘𝑥)) | 
| 35 | 34 | oveq1d 5937 | 
. . . . . 6
⊢ (𝑁 = 𝑀 → ((𝑁‘𝑥) + 𝑥) = ((𝑀‘𝑥) + 𝑥)) | 
| 36 | 35 | eqeq1d 2205 | 
. . . . 5
⊢ (𝑁 = 𝑀 → (((𝑁‘𝑥) + 𝑥) = 0 ↔ ((𝑀‘𝑥) + 𝑥) = 0 )) | 
| 37 | 36 | ralbidv 2497 | 
. . . 4
⊢ (𝑁 = 𝑀 → (∀𝑥 ∈ 𝐵 ((𝑁‘𝑥) + 𝑥) = 0 ↔ ∀𝑥 ∈ 𝐵 ((𝑀‘𝑥) + 𝑥) = 0 )) | 
| 38 | 33, 37 | anbi12d 473 | 
. . 3
⊢ (𝑁 = 𝑀 → ((𝑁:𝐵⟶𝐵 ∧ ∀𝑥 ∈ 𝐵 ((𝑁‘𝑥) + 𝑥) = 0 ) ↔ (𝑀:𝐵⟶𝐵 ∧ ∀𝑥 ∈ 𝐵 ((𝑀‘𝑥) + 𝑥) = 0 ))) | 
| 39 | 32, 38 | syl5ibcom 155 | 
. 2
⊢ (𝐺 ∈ Grp → (𝑁 = 𝑀 → (𝑀:𝐵⟶𝐵 ∧ ∀𝑥 ∈ 𝐵 ((𝑀‘𝑥) + 𝑥) = 0 ))) | 
| 40 | 28, 39 | impbid 129 | 
1
⊢ (𝐺 ∈ Grp → ((𝑀:𝐵⟶𝐵 ∧ ∀𝑥 ∈ 𝐵 ((𝑀‘𝑥) + 𝑥) = 0 ) ↔ 𝑁 = 𝑀)) |