ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bl2in GIF version

Theorem bl2in 13988
Description: Two balls are disjoint if they don't overlap. (Contributed by NM, 11-Mar-2007.) (Revised by Mario Carneiro, 23-Aug-2015.)
Assertion
Ref Expression
bl2in (((𝐷 ∈ (Metβ€˜π‘‹) ∧ 𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑅 ≀ ((𝑃𝐷𝑄) / 2))) β†’ ((𝑃(ballβ€˜π·)𝑅) ∩ (𝑄(ballβ€˜π·)𝑅)) = βˆ…)

Proof of Theorem bl2in
StepHypRef Expression
1 simpl1 1000 . . 3 (((𝐷 ∈ (Metβ€˜π‘‹) ∧ 𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑅 ≀ ((𝑃𝐷𝑄) / 2))) β†’ 𝐷 ∈ (Metβ€˜π‘‹))
2 metxmet 13940 . . 3 (𝐷 ∈ (Metβ€˜π‘‹) β†’ 𝐷 ∈ (∞Metβ€˜π‘‹))
31, 2syl 14 . 2 (((𝐷 ∈ (Metβ€˜π‘‹) ∧ 𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑅 ≀ ((𝑃𝐷𝑄) / 2))) β†’ 𝐷 ∈ (∞Metβ€˜π‘‹))
4 simpl2 1001 . 2 (((𝐷 ∈ (Metβ€˜π‘‹) ∧ 𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑅 ≀ ((𝑃𝐷𝑄) / 2))) β†’ 𝑃 ∈ 𝑋)
5 simpl3 1002 . 2 (((𝐷 ∈ (Metβ€˜π‘‹) ∧ 𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑅 ≀ ((𝑃𝐷𝑄) / 2))) β†’ 𝑄 ∈ 𝑋)
6 rexr 8005 . . 3 (𝑅 ∈ ℝ β†’ 𝑅 ∈ ℝ*)
76ad2antrl 490 . 2 (((𝐷 ∈ (Metβ€˜π‘‹) ∧ 𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑅 ≀ ((𝑃𝐷𝑄) / 2))) β†’ 𝑅 ∈ ℝ*)
8 simprl 529 . . . . 5 (((𝐷 ∈ (Metβ€˜π‘‹) ∧ 𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑅 ≀ ((𝑃𝐷𝑄) / 2))) β†’ 𝑅 ∈ ℝ)
9 rexadd 9854 . . . . 5 ((𝑅 ∈ ℝ ∧ 𝑅 ∈ ℝ) β†’ (𝑅 +𝑒 𝑅) = (𝑅 + 𝑅))
108, 8, 9syl2anc 411 . . . 4 (((𝐷 ∈ (Metβ€˜π‘‹) ∧ 𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑅 ≀ ((𝑃𝐷𝑄) / 2))) β†’ (𝑅 +𝑒 𝑅) = (𝑅 + 𝑅))
118recnd 7988 . . . . 5 (((𝐷 ∈ (Metβ€˜π‘‹) ∧ 𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑅 ≀ ((𝑃𝐷𝑄) / 2))) β†’ 𝑅 ∈ β„‚)
12112timesd 9163 . . . 4 (((𝐷 ∈ (Metβ€˜π‘‹) ∧ 𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑅 ≀ ((𝑃𝐷𝑄) / 2))) β†’ (2 Β· 𝑅) = (𝑅 + 𝑅))
1310, 12eqtr4d 2213 . . 3 (((𝐷 ∈ (Metβ€˜π‘‹) ∧ 𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑅 ≀ ((𝑃𝐷𝑄) / 2))) β†’ (𝑅 +𝑒 𝑅) = (2 Β· 𝑅))
14 id 19 . . . . . 6 (𝑅 ∈ ℝ β†’ 𝑅 ∈ ℝ)
15 metcl 13938 . . . . . 6 ((𝐷 ∈ (Metβ€˜π‘‹) ∧ 𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋) β†’ (𝑃𝐷𝑄) ∈ ℝ)
16 2re 8991 . . . . . . . 8 2 ∈ ℝ
17 2pos 9012 . . . . . . . 8 0 < 2
1816, 17pm3.2i 272 . . . . . . 7 (2 ∈ ℝ ∧ 0 < 2)
19 lemuldiv2 8841 . . . . . . 7 ((𝑅 ∈ ℝ ∧ (𝑃𝐷𝑄) ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) β†’ ((2 Β· 𝑅) ≀ (𝑃𝐷𝑄) ↔ 𝑅 ≀ ((𝑃𝐷𝑄) / 2)))
2018, 19mp3an3 1326 . . . . . 6 ((𝑅 ∈ ℝ ∧ (𝑃𝐷𝑄) ∈ ℝ) β†’ ((2 Β· 𝑅) ≀ (𝑃𝐷𝑄) ↔ 𝑅 ≀ ((𝑃𝐷𝑄) / 2)))
2114, 15, 20syl2anr 290 . . . . 5 (((𝐷 ∈ (Metβ€˜π‘‹) ∧ 𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋) ∧ 𝑅 ∈ ℝ) β†’ ((2 Β· 𝑅) ≀ (𝑃𝐷𝑄) ↔ 𝑅 ≀ ((𝑃𝐷𝑄) / 2)))
2221biimprd 158 . . . 4 (((𝐷 ∈ (Metβ€˜π‘‹) ∧ 𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋) ∧ 𝑅 ∈ ℝ) β†’ (𝑅 ≀ ((𝑃𝐷𝑄) / 2) β†’ (2 Β· 𝑅) ≀ (𝑃𝐷𝑄)))
2322impr 379 . . 3 (((𝐷 ∈ (Metβ€˜π‘‹) ∧ 𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑅 ≀ ((𝑃𝐷𝑄) / 2))) β†’ (2 Β· 𝑅) ≀ (𝑃𝐷𝑄))
2413, 23eqbrtrd 4027 . 2 (((𝐷 ∈ (Metβ€˜π‘‹) ∧ 𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑅 ≀ ((𝑃𝐷𝑄) / 2))) β†’ (𝑅 +𝑒 𝑅) ≀ (𝑃𝐷𝑄))
25 bldisj 13986 . 2 (((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋) ∧ (𝑅 ∈ ℝ* ∧ 𝑅 ∈ ℝ* ∧ (𝑅 +𝑒 𝑅) ≀ (𝑃𝐷𝑄))) β†’ ((𝑃(ballβ€˜π·)𝑅) ∩ (𝑄(ballβ€˜π·)𝑅)) = βˆ…)
263, 4, 5, 7, 7, 24, 25syl33anc 1253 1 (((𝐷 ∈ (Metβ€˜π‘‹) ∧ 𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑅 ≀ ((𝑃𝐷𝑄) / 2))) β†’ ((𝑃(ballβ€˜π·)𝑅) ∩ (𝑄(ballβ€˜π·)𝑅)) = βˆ…)
Colors of variables: wff set class
Syntax hints:   β†’ wi 4   ∧ wa 104   ↔ wb 105   ∧ w3a 978   = wceq 1353   ∈ wcel 2148   ∩ cin 3130  βˆ…c0 3424   class class class wbr 4005  β€˜cfv 5218  (class class class)co 5877  β„cr 7812  0cc0 7813   + caddc 7816   Β· cmul 7818  β„*cxr 7993   < clt 7994   ≀ cle 7995   / cdiv 8631  2c2 8972   +𝑒 cxad 9772  βˆžMetcxmet 13525  Metcmet 13526  ballcbl 13527
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-mulrcl 7912  ax-addcom 7913  ax-mulcom 7914  ax-addass 7915  ax-mulass 7916  ax-distr 7917  ax-i2m1 7918  ax-0lt1 7919  ax-1rid 7920  ax-0id 7921  ax-rnegex 7922  ax-precex 7923  ax-cnre 7924  ax-pre-ltirr 7925  ax-pre-ltwlin 7926  ax-pre-lttrn 7927  ax-pre-apti 7928  ax-pre-ltadd 7929  ax-pre-mulgt0 7930  ax-pre-mulext 7931
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-if 3537  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-po 4298  df-iso 4299  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-fv 5226  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-1st 6143  df-2nd 6144  df-map 6652  df-pnf 7996  df-mnf 7997  df-xr 7998  df-ltxr 7999  df-le 8000  df-sub 8132  df-neg 8133  df-reap 8534  df-ap 8541  df-div 8632  df-2 8980  df-xadd 9775  df-psmet 13532  df-xmet 13533  df-met 13534  df-bl 13535
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator