| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > strressid | GIF version | ||
| Description: Behavior of trivial restriction. (Contributed by Stefan O'Rear, 29-Nov-2014.) (Revised by Jim Kingdon, 17-Jan-2025.) |
| Ref | Expression |
|---|---|
| strressid.b | ⊢ (𝜑 → 𝐵 = (Base‘𝑊)) |
| strressid.s | ⊢ (𝜑 → 𝑊 Struct 〈𝑀, 𝑁〉) |
| strressid.f | ⊢ (𝜑 → Fun 𝑊) |
| strressid.bw | ⊢ (𝜑 → (Base‘ndx) ∈ dom 𝑊) |
| Ref | Expression |
|---|---|
| strressid | ⊢ (𝜑 → (𝑊 ↾s 𝐵) = 𝑊) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | strressid.b | . . . . . 6 ⊢ (𝜑 → 𝐵 = (Base‘𝑊)) | |
| 2 | 1 | ineq1d 3377 | . . . . 5 ⊢ (𝜑 → (𝐵 ∩ (Base‘𝑊)) = ((Base‘𝑊) ∩ (Base‘𝑊))) |
| 3 | inidm 3386 | . . . . 5 ⊢ ((Base‘𝑊) ∩ (Base‘𝑊)) = (Base‘𝑊) | |
| 4 | 2, 3 | eqtrdi 2255 | . . . 4 ⊢ (𝜑 → (𝐵 ∩ (Base‘𝑊)) = (Base‘𝑊)) |
| 5 | 4 | opeq2d 3832 | . . 3 ⊢ (𝜑 → 〈(Base‘ndx), (𝐵 ∩ (Base‘𝑊))〉 = 〈(Base‘ndx), (Base‘𝑊)〉) |
| 6 | 5 | oveq2d 5973 | . 2 ⊢ (𝜑 → (𝑊 sSet 〈(Base‘ndx), (𝐵 ∩ (Base‘𝑊))〉) = (𝑊 sSet 〈(Base‘ndx), (Base‘𝑊)〉)) |
| 7 | strressid.s | . . . 4 ⊢ (𝜑 → 𝑊 Struct 〈𝑀, 𝑁〉) | |
| 8 | structex 12919 | . . . 4 ⊢ (𝑊 Struct 〈𝑀, 𝑁〉 → 𝑊 ∈ V) | |
| 9 | 7, 8 | syl 14 | . . 3 ⊢ (𝜑 → 𝑊 ∈ V) |
| 10 | basfn 12965 | . . . . 5 ⊢ Base Fn V | |
| 11 | funfvex 5606 | . . . . . 6 ⊢ ((Fun Base ∧ 𝑊 ∈ dom Base) → (Base‘𝑊) ∈ V) | |
| 12 | 11 | funfni 5385 | . . . . 5 ⊢ ((Base Fn V ∧ 𝑊 ∈ V) → (Base‘𝑊) ∈ V) |
| 13 | 10, 9, 12 | sylancr 414 | . . . 4 ⊢ (𝜑 → (Base‘𝑊) ∈ V) |
| 14 | 1, 13 | eqeltrd 2283 | . . 3 ⊢ (𝜑 → 𝐵 ∈ V) |
| 15 | ressvalsets 12971 | . . 3 ⊢ ((𝑊 ∈ V ∧ 𝐵 ∈ V) → (𝑊 ↾s 𝐵) = (𝑊 sSet 〈(Base‘ndx), (𝐵 ∩ (Base‘𝑊))〉)) | |
| 16 | 9, 14, 15 | syl2anc 411 | . 2 ⊢ (𝜑 → (𝑊 ↾s 𝐵) = (𝑊 sSet 〈(Base‘ndx), (𝐵 ∩ (Base‘𝑊))〉)) |
| 17 | baseid 12961 | . . 3 ⊢ Base = Slot (Base‘ndx) | |
| 18 | strressid.f | . . 3 ⊢ (𝜑 → Fun 𝑊) | |
| 19 | strressid.bw | . . 3 ⊢ (𝜑 → (Base‘ndx) ∈ dom 𝑊) | |
| 20 | 17, 7, 18, 19 | strsetsid 12940 | . 2 ⊢ (𝜑 → 𝑊 = (𝑊 sSet 〈(Base‘ndx), (Base‘𝑊)〉)) |
| 21 | 6, 16, 20 | 3eqtr4d 2249 | 1 ⊢ (𝜑 → (𝑊 ↾s 𝐵) = 𝑊) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ∈ wcel 2177 Vcvv 2773 ∩ cin 3169 〈cop 3641 class class class wbr 4051 dom cdm 4683 Fun wfun 5274 Fn wfn 5275 ‘cfv 5280 (class class class)co 5957 Struct cstr 12903 ndxcnx 12904 sSet csts 12905 Basecbs 12907 ↾s cress 12908 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-pow 4226 ax-pr 4261 ax-un 4488 ax-setind 4593 ax-cnex 8036 ax-resscn 8037 ax-1cn 8038 ax-1re 8039 ax-icn 8040 ax-addcl 8041 ax-addrcl 8042 ax-mulcl 8043 ax-addcom 8045 ax-addass 8047 ax-distr 8049 ax-i2m1 8050 ax-0lt1 8051 ax-0id 8053 ax-rnegex 8054 ax-cnre 8056 ax-pre-ltirr 8057 ax-pre-ltwlin 8058 ax-pre-lttrn 8059 ax-pre-ltadd 8061 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3003 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-int 3892 df-br 4052 df-opab 4114 df-mpt 4115 df-id 4348 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-rn 4694 df-res 4695 df-ima 4696 df-iota 5241 df-fun 5282 df-fn 5283 df-f 5284 df-f1 5285 df-fo 5286 df-f1o 5287 df-fv 5288 df-riota 5912 df-ov 5960 df-oprab 5961 df-mpo 5962 df-pnf 8129 df-mnf 8130 df-xr 8131 df-ltxr 8132 df-le 8133 df-sub 8265 df-neg 8266 df-inn 9057 df-n0 9316 df-z 9393 df-uz 9669 df-fz 10151 df-struct 12909 df-ndx 12910 df-slot 12911 df-base 12913 df-sets 12914 df-iress 12915 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |