| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > strressid | GIF version | ||
| Description: Behavior of trivial restriction. (Contributed by Stefan O'Rear, 29-Nov-2014.) (Revised by Jim Kingdon, 17-Jan-2025.) |
| Ref | Expression |
|---|---|
| strressid.b | ⊢ (𝜑 → 𝐵 = (Base‘𝑊)) |
| strressid.s | ⊢ (𝜑 → 𝑊 Struct 〈𝑀, 𝑁〉) |
| strressid.f | ⊢ (𝜑 → Fun 𝑊) |
| strressid.bw | ⊢ (𝜑 → (Base‘ndx) ∈ dom 𝑊) |
| Ref | Expression |
|---|---|
| strressid | ⊢ (𝜑 → (𝑊 ↾s 𝐵) = 𝑊) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | strressid.b | . . . . . 6 ⊢ (𝜑 → 𝐵 = (Base‘𝑊)) | |
| 2 | 1 | ineq1d 3364 | . . . . 5 ⊢ (𝜑 → (𝐵 ∩ (Base‘𝑊)) = ((Base‘𝑊) ∩ (Base‘𝑊))) |
| 3 | inidm 3373 | . . . . 5 ⊢ ((Base‘𝑊) ∩ (Base‘𝑊)) = (Base‘𝑊) | |
| 4 | 2, 3 | eqtrdi 2245 | . . . 4 ⊢ (𝜑 → (𝐵 ∩ (Base‘𝑊)) = (Base‘𝑊)) |
| 5 | 4 | opeq2d 3816 | . . 3 ⊢ (𝜑 → 〈(Base‘ndx), (𝐵 ∩ (Base‘𝑊))〉 = 〈(Base‘ndx), (Base‘𝑊)〉) |
| 6 | 5 | oveq2d 5941 | . 2 ⊢ (𝜑 → (𝑊 sSet 〈(Base‘ndx), (𝐵 ∩ (Base‘𝑊))〉) = (𝑊 sSet 〈(Base‘ndx), (Base‘𝑊)〉)) |
| 7 | strressid.s | . . . 4 ⊢ (𝜑 → 𝑊 Struct 〈𝑀, 𝑁〉) | |
| 8 | structex 12717 | . . . 4 ⊢ (𝑊 Struct 〈𝑀, 𝑁〉 → 𝑊 ∈ V) | |
| 9 | 7, 8 | syl 14 | . . 3 ⊢ (𝜑 → 𝑊 ∈ V) |
| 10 | basfn 12763 | . . . . 5 ⊢ Base Fn V | |
| 11 | funfvex 5578 | . . . . . 6 ⊢ ((Fun Base ∧ 𝑊 ∈ dom Base) → (Base‘𝑊) ∈ V) | |
| 12 | 11 | funfni 5361 | . . . . 5 ⊢ ((Base Fn V ∧ 𝑊 ∈ V) → (Base‘𝑊) ∈ V) |
| 13 | 10, 9, 12 | sylancr 414 | . . . 4 ⊢ (𝜑 → (Base‘𝑊) ∈ V) |
| 14 | 1, 13 | eqeltrd 2273 | . . 3 ⊢ (𝜑 → 𝐵 ∈ V) |
| 15 | ressvalsets 12769 | . . 3 ⊢ ((𝑊 ∈ V ∧ 𝐵 ∈ V) → (𝑊 ↾s 𝐵) = (𝑊 sSet 〈(Base‘ndx), (𝐵 ∩ (Base‘𝑊))〉)) | |
| 16 | 9, 14, 15 | syl2anc 411 | . 2 ⊢ (𝜑 → (𝑊 ↾s 𝐵) = (𝑊 sSet 〈(Base‘ndx), (𝐵 ∩ (Base‘𝑊))〉)) |
| 17 | baseid 12759 | . . 3 ⊢ Base = Slot (Base‘ndx) | |
| 18 | strressid.f | . . 3 ⊢ (𝜑 → Fun 𝑊) | |
| 19 | strressid.bw | . . 3 ⊢ (𝜑 → (Base‘ndx) ∈ dom 𝑊) | |
| 20 | 17, 7, 18, 19 | strsetsid 12738 | . 2 ⊢ (𝜑 → 𝑊 = (𝑊 sSet 〈(Base‘ndx), (Base‘𝑊)〉)) |
| 21 | 6, 16, 20 | 3eqtr4d 2239 | 1 ⊢ (𝜑 → (𝑊 ↾s 𝐵) = 𝑊) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2167 Vcvv 2763 ∩ cin 3156 〈cop 3626 class class class wbr 4034 dom cdm 4664 Fun wfun 5253 Fn wfn 5254 ‘cfv 5259 (class class class)co 5925 Struct cstr 12701 ndxcnx 12702 sSet csts 12703 Basecbs 12705 ↾s cress 12706 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7989 ax-resscn 7990 ax-1cn 7991 ax-1re 7992 ax-icn 7993 ax-addcl 7994 ax-addrcl 7995 ax-mulcl 7996 ax-addcom 7998 ax-addass 8000 ax-distr 8002 ax-i2m1 8003 ax-0lt1 8004 ax-0id 8006 ax-rnegex 8007 ax-cnre 8009 ax-pre-ltirr 8010 ax-pre-ltwlin 8011 ax-pre-lttrn 8012 ax-pre-ltadd 8014 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-pnf 8082 df-mnf 8083 df-xr 8084 df-ltxr 8085 df-le 8086 df-sub 8218 df-neg 8219 df-inn 9010 df-n0 9269 df-z 9346 df-uz 9621 df-fz 10103 df-struct 12707 df-ndx 12708 df-slot 12709 df-base 12711 df-sets 12712 df-iress 12713 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |