![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > strressid | GIF version |
Description: Behavior of trivial restriction. (Contributed by Stefan O'Rear, 29-Nov-2014.) (Revised by Jim Kingdon, 17-Jan-2025.) |
Ref | Expression |
---|---|
strressid.b | β’ (π β π΅ = (Baseβπ)) |
strressid.s | β’ (π β π Struct β¨π, πβ©) |
strressid.f | β’ (π β Fun π) |
strressid.bw | β’ (π β (Baseβndx) β dom π) |
Ref | Expression |
---|---|
strressid | β’ (π β (π βΎs π΅) = π) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | strressid.b | . . . . . 6 β’ (π β π΅ = (Baseβπ)) | |
2 | 1 | ineq1d 3350 | . . . . 5 β’ (π β (π΅ β© (Baseβπ)) = ((Baseβπ) β© (Baseβπ))) |
3 | inidm 3359 | . . . . 5 β’ ((Baseβπ) β© (Baseβπ)) = (Baseβπ) | |
4 | 2, 3 | eqtrdi 2238 | . . . 4 β’ (π β (π΅ β© (Baseβπ)) = (Baseβπ)) |
5 | 4 | opeq2d 3800 | . . 3 β’ (π β β¨(Baseβndx), (π΅ β© (Baseβπ))β© = β¨(Baseβndx), (Baseβπ)β©) |
6 | 5 | oveq2d 5907 | . 2 β’ (π β (π sSet β¨(Baseβndx), (π΅ β© (Baseβπ))β©) = (π sSet β¨(Baseβndx), (Baseβπ)β©)) |
7 | strressid.s | . . . 4 β’ (π β π Struct β¨π, πβ©) | |
8 | structex 12492 | . . . 4 β’ (π Struct β¨π, πβ© β π β V) | |
9 | 7, 8 | syl 14 | . . 3 β’ (π β π β V) |
10 | basfn 12538 | . . . . 5 β’ Base Fn V | |
11 | funfvex 5547 | . . . . . 6 β’ ((Fun Base β§ π β dom Base) β (Baseβπ) β V) | |
12 | 11 | funfni 5331 | . . . . 5 β’ ((Base Fn V β§ π β V) β (Baseβπ) β V) |
13 | 10, 9, 12 | sylancr 414 | . . . 4 β’ (π β (Baseβπ) β V) |
14 | 1, 13 | eqeltrd 2266 | . . 3 β’ (π β π΅ β V) |
15 | ressvalsets 12542 | . . 3 β’ ((π β V β§ π΅ β V) β (π βΎs π΅) = (π sSet β¨(Baseβndx), (π΅ β© (Baseβπ))β©)) | |
16 | 9, 14, 15 | syl2anc 411 | . 2 β’ (π β (π βΎs π΅) = (π sSet β¨(Baseβndx), (π΅ β© (Baseβπ))β©)) |
17 | baseid 12534 | . . 3 β’ Base = Slot (Baseβndx) | |
18 | strressid.f | . . 3 β’ (π β Fun π) | |
19 | strressid.bw | . . 3 β’ (π β (Baseβndx) β dom π) | |
20 | 17, 7, 18, 19 | strsetsid 12513 | . 2 β’ (π β π = (π sSet β¨(Baseβndx), (Baseβπ)β©)) |
21 | 6, 16, 20 | 3eqtr4d 2232 | 1 β’ (π β (π βΎs π΅) = π) |
Colors of variables: wff set class |
Syntax hints: β wi 4 = wceq 1364 β wcel 2160 Vcvv 2752 β© cin 3143 β¨cop 3610 class class class wbr 4018 dom cdm 4641 Fun wfun 5225 Fn wfn 5226 βcfv 5231 (class class class)co 5891 Struct cstr 12476 ndxcnx 12477 sSet csts 12478 Basecbs 12480 βΎs cress 12481 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-sep 4136 ax-pow 4189 ax-pr 4224 ax-un 4448 ax-setind 4551 ax-cnex 7920 ax-resscn 7921 ax-1cn 7922 ax-1re 7923 ax-icn 7924 ax-addcl 7925 ax-addrcl 7926 ax-mulcl 7927 ax-addcom 7929 ax-addass 7931 ax-distr 7933 ax-i2m1 7934 ax-0lt1 7935 ax-0id 7937 ax-rnegex 7938 ax-cnre 7940 ax-pre-ltirr 7941 ax-pre-ltwlin 7942 ax-pre-lttrn 7943 ax-pre-ltadd 7945 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-nel 2456 df-ral 2473 df-rex 2474 df-reu 2475 df-rab 2477 df-v 2754 df-sbc 2978 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-int 3860 df-br 4019 df-opab 4080 df-mpt 4081 df-id 4308 df-xp 4647 df-rel 4648 df-cnv 4649 df-co 4650 df-dm 4651 df-rn 4652 df-res 4653 df-ima 4654 df-iota 5193 df-fun 5233 df-fn 5234 df-f 5235 df-f1 5236 df-fo 5237 df-f1o 5238 df-fv 5239 df-riota 5847 df-ov 5894 df-oprab 5895 df-mpo 5896 df-pnf 8012 df-mnf 8013 df-xr 8014 df-ltxr 8015 df-le 8016 df-sub 8148 df-neg 8149 df-inn 8938 df-n0 9195 df-z 9272 df-uz 9547 df-fz 10027 df-struct 12482 df-ndx 12483 df-slot 12484 df-base 12486 df-sets 12487 df-iress 12488 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |