![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > strressid | GIF version |
Description: Behavior of trivial restriction. (Contributed by Stefan O'Rear, 29-Nov-2014.) (Revised by Jim Kingdon, 17-Jan-2025.) |
Ref | Expression |
---|---|
strressid.b | β’ (π β π΅ = (Baseβπ)) |
strressid.s | β’ (π β π Struct β¨π, πβ©) |
strressid.f | β’ (π β Fun π) |
strressid.bw | β’ (π β (Baseβndx) β dom π) |
Ref | Expression |
---|---|
strressid | β’ (π β (π βΎs π΅) = π) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | strressid.b | . . . . . 6 β’ (π β π΅ = (Baseβπ)) | |
2 | 1 | ineq1d 3335 | . . . . 5 β’ (π β (π΅ β© (Baseβπ)) = ((Baseβπ) β© (Baseβπ))) |
3 | inidm 3344 | . . . . 5 β’ ((Baseβπ) β© (Baseβπ)) = (Baseβπ) | |
4 | 2, 3 | eqtrdi 2226 | . . . 4 β’ (π β (π΅ β© (Baseβπ)) = (Baseβπ)) |
5 | 4 | opeq2d 3785 | . . 3 β’ (π β β¨(Baseβndx), (π΅ β© (Baseβπ))β© = β¨(Baseβndx), (Baseβπ)β©) |
6 | 5 | oveq2d 5890 | . 2 β’ (π β (π sSet β¨(Baseβndx), (π΅ β© (Baseβπ))β©) = (π sSet β¨(Baseβndx), (Baseβπ)β©)) |
7 | strressid.s | . . . 4 β’ (π β π Struct β¨π, πβ©) | |
8 | structex 12473 | . . . 4 β’ (π Struct β¨π, πβ© β π β V) | |
9 | 7, 8 | syl 14 | . . 3 β’ (π β π β V) |
10 | basfn 12519 | . . . . 5 β’ Base Fn V | |
11 | funfvex 5532 | . . . . . 6 β’ ((Fun Base β§ π β dom Base) β (Baseβπ) β V) | |
12 | 11 | funfni 5316 | . . . . 5 β’ ((Base Fn V β§ π β V) β (Baseβπ) β V) |
13 | 10, 9, 12 | sylancr 414 | . . . 4 β’ (π β (Baseβπ) β V) |
14 | 1, 13 | eqeltrd 2254 | . . 3 β’ (π β π΅ β V) |
15 | ressvalsets 12523 | . . 3 β’ ((π β V β§ π΅ β V) β (π βΎs π΅) = (π sSet β¨(Baseβndx), (π΅ β© (Baseβπ))β©)) | |
16 | 9, 14, 15 | syl2anc 411 | . 2 β’ (π β (π βΎs π΅) = (π sSet β¨(Baseβndx), (π΅ β© (Baseβπ))β©)) |
17 | baseid 12515 | . . 3 β’ Base = Slot (Baseβndx) | |
18 | strressid.f | . . 3 β’ (π β Fun π) | |
19 | strressid.bw | . . 3 β’ (π β (Baseβndx) β dom π) | |
20 | 17, 7, 18, 19 | strsetsid 12494 | . 2 β’ (π β π = (π sSet β¨(Baseβndx), (Baseβπ)β©)) |
21 | 6, 16, 20 | 3eqtr4d 2220 | 1 β’ (π β (π βΎs π΅) = π) |
Colors of variables: wff set class |
Syntax hints: β wi 4 = wceq 1353 β wcel 2148 Vcvv 2737 β© cin 3128 β¨cop 3595 class class class wbr 4003 dom cdm 4626 Fun wfun 5210 Fn wfn 5211 βcfv 5216 (class class class)co 5874 Struct cstr 12457 ndxcnx 12458 sSet csts 12459 Basecbs 12461 βΎs cress 12462 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4121 ax-pow 4174 ax-pr 4209 ax-un 4433 ax-setind 4536 ax-cnex 7901 ax-resscn 7902 ax-1cn 7903 ax-1re 7904 ax-icn 7905 ax-addcl 7906 ax-addrcl 7907 ax-mulcl 7908 ax-addcom 7910 ax-addass 7912 ax-distr 7914 ax-i2m1 7915 ax-0lt1 7916 ax-0id 7918 ax-rnegex 7919 ax-cnre 7921 ax-pre-ltirr 7922 ax-pre-ltwlin 7923 ax-pre-lttrn 7924 ax-pre-ltadd 7926 |
This theorem depends on definitions: df-bi 117 df-dc 835 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-reu 2462 df-rab 2464 df-v 2739 df-sbc 2963 df-dif 3131 df-un 3133 df-in 3135 df-ss 3142 df-pw 3577 df-sn 3598 df-pr 3599 df-op 3601 df-uni 3810 df-int 3845 df-br 4004 df-opab 4065 df-mpt 4066 df-id 4293 df-xp 4632 df-rel 4633 df-cnv 4634 df-co 4635 df-dm 4636 df-rn 4637 df-res 4638 df-ima 4639 df-iota 5178 df-fun 5218 df-fn 5219 df-f 5220 df-f1 5221 df-fo 5222 df-f1o 5223 df-fv 5224 df-riota 5830 df-ov 5877 df-oprab 5878 df-mpo 5879 df-pnf 7993 df-mnf 7994 df-xr 7995 df-ltxr 7996 df-le 7997 df-sub 8129 df-neg 8130 df-inn 8919 df-n0 9176 df-z 9253 df-uz 9528 df-fz 10008 df-struct 12463 df-ndx 12464 df-slot 12465 df-base 12467 df-sets 12468 df-iress 12469 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |