ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fsum1p GIF version

Theorem fsum1p 11564
Description: Separate out the first term in a finite sum. (Contributed by NM, 3-Jan-2006.) (Revised by Mario Carneiro, 23-Apr-2014.)
Hypotheses
Ref Expression
fsumm1.1 (𝜑𝑁 ∈ (ℤ𝑀))
fsumm1.2 ((𝜑𝑘 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ)
fsum1p.3 (𝑘 = 𝑀𝐴 = 𝐵)
Assertion
Ref Expression
fsum1p (𝜑 → Σ𝑘 ∈ (𝑀...𝑁)𝐴 = (𝐵 + Σ𝑘 ∈ ((𝑀 + 1)...𝑁)𝐴))
Distinct variable groups:   𝐵,𝑘   𝑘,𝑀   𝑘,𝑁   𝜑,𝑘
Allowed substitution hint:   𝐴(𝑘)

Proof of Theorem fsum1p
StepHypRef Expression
1 fsumm1.1 . . . . . . 7 (𝜑𝑁 ∈ (ℤ𝑀))
2 eluzel2 9600 . . . . . . 7 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
31, 2syl 14 . . . . . 6 (𝜑𝑀 ∈ ℤ)
4 fzsn 10135 . . . . . 6 (𝑀 ∈ ℤ → (𝑀...𝑀) = {𝑀})
53, 4syl 14 . . . . 5 (𝜑 → (𝑀...𝑀) = {𝑀})
65ineq1d 3360 . . . 4 (𝜑 → ((𝑀...𝑀) ∩ ((𝑀 + 1)...𝑁)) = ({𝑀} ∩ ((𝑀 + 1)...𝑁)))
73zred 9442 . . . . . 6 (𝜑𝑀 ∈ ℝ)
87ltp1d 8951 . . . . 5 (𝜑𝑀 < (𝑀 + 1))
9 fzdisj 10121 . . . . 5 (𝑀 < (𝑀 + 1) → ((𝑀...𝑀) ∩ ((𝑀 + 1)...𝑁)) = ∅)
108, 9syl 14 . . . 4 (𝜑 → ((𝑀...𝑀) ∩ ((𝑀 + 1)...𝑁)) = ∅)
116, 10eqtr3d 2228 . . 3 (𝜑 → ({𝑀} ∩ ((𝑀 + 1)...𝑁)) = ∅)
12 eluzfz1 10100 . . . . . 6 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ (𝑀...𝑁))
131, 12syl 14 . . . . 5 (𝜑𝑀 ∈ (𝑀...𝑁))
14 fzsplit 10120 . . . . 5 (𝑀 ∈ (𝑀...𝑁) → (𝑀...𝑁) = ((𝑀...𝑀) ∪ ((𝑀 + 1)...𝑁)))
1513, 14syl 14 . . . 4 (𝜑 → (𝑀...𝑁) = ((𝑀...𝑀) ∪ ((𝑀 + 1)...𝑁)))
165uneq1d 3313 . . . 4 (𝜑 → ((𝑀...𝑀) ∪ ((𝑀 + 1)...𝑁)) = ({𝑀} ∪ ((𝑀 + 1)...𝑁)))
1715, 16eqtrd 2226 . . 3 (𝜑 → (𝑀...𝑁) = ({𝑀} ∪ ((𝑀 + 1)...𝑁)))
18 eluzelz 9604 . . . . 5 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
191, 18syl 14 . . . 4 (𝜑𝑁 ∈ ℤ)
203, 19fzfigd 10505 . . 3 (𝜑 → (𝑀...𝑁) ∈ Fin)
21 fsumm1.2 . . 3 ((𝜑𝑘 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ)
2211, 17, 20, 21fsumsplit 11553 . 2 (𝜑 → Σ𝑘 ∈ (𝑀...𝑁)𝐴 = (Σ𝑘 ∈ {𝑀}𝐴 + Σ𝑘 ∈ ((𝑀 + 1)...𝑁)𝐴))
23 fsum1p.3 . . . . . 6 (𝑘 = 𝑀𝐴 = 𝐵)
2423eleq1d 2262 . . . . 5 (𝑘 = 𝑀 → (𝐴 ∈ ℂ ↔ 𝐵 ∈ ℂ))
2521ralrimiva 2567 . . . . 5 (𝜑 → ∀𝑘 ∈ (𝑀...𝑁)𝐴 ∈ ℂ)
2624, 25, 13rspcdva 2870 . . . 4 (𝜑𝐵 ∈ ℂ)
2723sumsn 11557 . . . 4 ((𝑀 ∈ ℤ ∧ 𝐵 ∈ ℂ) → Σ𝑘 ∈ {𝑀}𝐴 = 𝐵)
283, 26, 27syl2anc 411 . . 3 (𝜑 → Σ𝑘 ∈ {𝑀}𝐴 = 𝐵)
2928oveq1d 5934 . 2 (𝜑 → (Σ𝑘 ∈ {𝑀}𝐴 + Σ𝑘 ∈ ((𝑀 + 1)...𝑁)𝐴) = (𝐵 + Σ𝑘 ∈ ((𝑀 + 1)...𝑁)𝐴))
3022, 29eqtrd 2226 1 (𝜑 → Σ𝑘 ∈ (𝑀...𝑁)𝐴 = (𝐵 + Σ𝑘 ∈ ((𝑀 + 1)...𝑁)𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2164  cun 3152  cin 3153  c0 3447  {csn 3619   class class class wbr 4030  cfv 5255  (class class class)co 5919  cc 7872  1c1 7875   + caddc 7877   < clt 8056  cz 9320  cuz 9595  ...cfz 10077  Σcsu 11499
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-mulrcl 7973  ax-addcom 7974  ax-mulcom 7975  ax-addass 7976  ax-mulass 7977  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-1rid 7981  ax-0id 7982  ax-rnegex 7983  ax-precex 7984  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-apti 7989  ax-pre-ltadd 7990  ax-pre-mulgt0 7991  ax-pre-mulext 7992  ax-arch 7993  ax-caucvg 7994
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-if 3559  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-id 4325  df-po 4328  df-iso 4329  df-iord 4398  df-on 4400  df-ilim 4401  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-recs 6360  df-irdg 6425  df-frec 6446  df-1o 6471  df-oadd 6475  df-er 6589  df-en 6797  df-dom 6798  df-fin 6799  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-reap 8596  df-ap 8603  df-div 8694  df-inn 8985  df-2 9043  df-3 9044  df-4 9045  df-n0 9244  df-z 9321  df-uz 9596  df-q 9688  df-rp 9723  df-fz 10078  df-fzo 10212  df-seqfrec 10522  df-exp 10613  df-ihash 10850  df-cj 10989  df-re 10990  df-im 10991  df-rsqrt 11145  df-abs 11146  df-clim 11425  df-sumdc 11500
This theorem is referenced by:  telfsumo  11612  fsumparts  11616  arisum2  11645
  Copyright terms: Public domain W3C validator