ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fsum1p GIF version

Theorem fsum1p 11461
Description: Separate out the first term in a finite sum. (Contributed by NM, 3-Jan-2006.) (Revised by Mario Carneiro, 23-Apr-2014.)
Hypotheses
Ref Expression
fsumm1.1 (𝜑𝑁 ∈ (ℤ𝑀))
fsumm1.2 ((𝜑𝑘 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ)
fsum1p.3 (𝑘 = 𝑀𝐴 = 𝐵)
Assertion
Ref Expression
fsum1p (𝜑 → Σ𝑘 ∈ (𝑀...𝑁)𝐴 = (𝐵 + Σ𝑘 ∈ ((𝑀 + 1)...𝑁)𝐴))
Distinct variable groups:   𝐵,𝑘   𝑘,𝑀   𝑘,𝑁   𝜑,𝑘
Allowed substitution hint:   𝐴(𝑘)

Proof of Theorem fsum1p
StepHypRef Expression
1 fsumm1.1 . . . . . . 7 (𝜑𝑁 ∈ (ℤ𝑀))
2 eluzel2 9564 . . . . . . 7 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
31, 2syl 14 . . . . . 6 (𝜑𝑀 ∈ ℤ)
4 fzsn 10098 . . . . . 6 (𝑀 ∈ ℤ → (𝑀...𝑀) = {𝑀})
53, 4syl 14 . . . . 5 (𝜑 → (𝑀...𝑀) = {𝑀})
65ineq1d 3350 . . . 4 (𝜑 → ((𝑀...𝑀) ∩ ((𝑀 + 1)...𝑁)) = ({𝑀} ∩ ((𝑀 + 1)...𝑁)))
73zred 9406 . . . . . 6 (𝜑𝑀 ∈ ℝ)
87ltp1d 8918 . . . . 5 (𝜑𝑀 < (𝑀 + 1))
9 fzdisj 10084 . . . . 5 (𝑀 < (𝑀 + 1) → ((𝑀...𝑀) ∩ ((𝑀 + 1)...𝑁)) = ∅)
108, 9syl 14 . . . 4 (𝜑 → ((𝑀...𝑀) ∩ ((𝑀 + 1)...𝑁)) = ∅)
116, 10eqtr3d 2224 . . 3 (𝜑 → ({𝑀} ∩ ((𝑀 + 1)...𝑁)) = ∅)
12 eluzfz1 10063 . . . . . 6 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ (𝑀...𝑁))
131, 12syl 14 . . . . 5 (𝜑𝑀 ∈ (𝑀...𝑁))
14 fzsplit 10083 . . . . 5 (𝑀 ∈ (𝑀...𝑁) → (𝑀...𝑁) = ((𝑀...𝑀) ∪ ((𝑀 + 1)...𝑁)))
1513, 14syl 14 . . . 4 (𝜑 → (𝑀...𝑁) = ((𝑀...𝑀) ∪ ((𝑀 + 1)...𝑁)))
165uneq1d 3303 . . . 4 (𝜑 → ((𝑀...𝑀) ∪ ((𝑀 + 1)...𝑁)) = ({𝑀} ∪ ((𝑀 + 1)...𝑁)))
1715, 16eqtrd 2222 . . 3 (𝜑 → (𝑀...𝑁) = ({𝑀} ∪ ((𝑀 + 1)...𝑁)))
18 eluzelz 9568 . . . . 5 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
191, 18syl 14 . . . 4 (𝜑𝑁 ∈ ℤ)
203, 19fzfigd 10464 . . 3 (𝜑 → (𝑀...𝑁) ∈ Fin)
21 fsumm1.2 . . 3 ((𝜑𝑘 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ)
2211, 17, 20, 21fsumsplit 11450 . 2 (𝜑 → Σ𝑘 ∈ (𝑀...𝑁)𝐴 = (Σ𝑘 ∈ {𝑀}𝐴 + Σ𝑘 ∈ ((𝑀 + 1)...𝑁)𝐴))
23 fsum1p.3 . . . . . 6 (𝑘 = 𝑀𝐴 = 𝐵)
2423eleq1d 2258 . . . . 5 (𝑘 = 𝑀 → (𝐴 ∈ ℂ ↔ 𝐵 ∈ ℂ))
2521ralrimiva 2563 . . . . 5 (𝜑 → ∀𝑘 ∈ (𝑀...𝑁)𝐴 ∈ ℂ)
2624, 25, 13rspcdva 2861 . . . 4 (𝜑𝐵 ∈ ℂ)
2723sumsn 11454 . . . 4 ((𝑀 ∈ ℤ ∧ 𝐵 ∈ ℂ) → Σ𝑘 ∈ {𝑀}𝐴 = 𝐵)
283, 26, 27syl2anc 411 . . 3 (𝜑 → Σ𝑘 ∈ {𝑀}𝐴 = 𝐵)
2928oveq1d 5912 . 2 (𝜑 → (Σ𝑘 ∈ {𝑀}𝐴 + Σ𝑘 ∈ ((𝑀 + 1)...𝑁)𝐴) = (𝐵 + Σ𝑘 ∈ ((𝑀 + 1)...𝑁)𝐴))
3022, 29eqtrd 2222 1 (𝜑 → Σ𝑘 ∈ (𝑀...𝑁)𝐴 = (𝐵 + Σ𝑘 ∈ ((𝑀 + 1)...𝑁)𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2160  cun 3142  cin 3143  c0 3437  {csn 3607   class class class wbr 4018  cfv 5235  (class class class)co 5897  cc 7840  1c1 7843   + caddc 7845   < clt 8023  cz 9284  cuz 9559  ...cfz 10040  Σcsu 11396
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-nul 4144  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-iinf 4605  ax-cnex 7933  ax-resscn 7934  ax-1cn 7935  ax-1re 7936  ax-icn 7937  ax-addcl 7938  ax-addrcl 7939  ax-mulcl 7940  ax-mulrcl 7941  ax-addcom 7942  ax-mulcom 7943  ax-addass 7944  ax-mulass 7945  ax-distr 7946  ax-i2m1 7947  ax-0lt1 7948  ax-1rid 7949  ax-0id 7950  ax-rnegex 7951  ax-precex 7952  ax-cnre 7953  ax-pre-ltirr 7954  ax-pre-ltwlin 7955  ax-pre-lttrn 7956  ax-pre-apti 7957  ax-pre-ltadd 7958  ax-pre-mulgt0 7959  ax-pre-mulext 7960  ax-arch 7961  ax-caucvg 7962
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-if 3550  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-tr 4117  df-id 4311  df-po 4314  df-iso 4315  df-iord 4384  df-on 4386  df-ilim 4387  df-suc 4389  df-iom 4608  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-f1 5240  df-fo 5241  df-f1o 5242  df-fv 5243  df-isom 5244  df-riota 5852  df-ov 5900  df-oprab 5901  df-mpo 5902  df-1st 6166  df-2nd 6167  df-recs 6331  df-irdg 6396  df-frec 6417  df-1o 6442  df-oadd 6446  df-er 6560  df-en 6768  df-dom 6769  df-fin 6770  df-pnf 8025  df-mnf 8026  df-xr 8027  df-ltxr 8028  df-le 8029  df-sub 8161  df-neg 8162  df-reap 8563  df-ap 8570  df-div 8661  df-inn 8951  df-2 9009  df-3 9010  df-4 9011  df-n0 9208  df-z 9285  df-uz 9560  df-q 9652  df-rp 9686  df-fz 10041  df-fzo 10175  df-seqfrec 10479  df-exp 10554  df-ihash 10791  df-cj 10886  df-re 10887  df-im 10888  df-rsqrt 11042  df-abs 11043  df-clim 11322  df-sumdc 11397
This theorem is referenced by:  telfsumo  11509  fsumparts  11513  arisum2  11542
  Copyright terms: Public domain W3C validator