![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fsum1p | GIF version |
Description: Separate out the first term in a finite sum. (Contributed by NM, 3-Jan-2006.) (Revised by Mario Carneiro, 23-Apr-2014.) |
Ref | Expression |
---|---|
fsumm1.1 | ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) |
fsumm1.2 | ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ) |
fsum1p.3 | ⊢ (𝑘 = 𝑀 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
fsum1p | ⊢ (𝜑 → Σ𝑘 ∈ (𝑀...𝑁)𝐴 = (𝐵 + Σ𝑘 ∈ ((𝑀 + 1)...𝑁)𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fsumm1.1 | . . . . . . 7 ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) | |
2 | eluzel2 9564 | . . . . . . 7 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ ℤ) | |
3 | 1, 2 | syl 14 | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ ℤ) |
4 | fzsn 10098 | . . . . . 6 ⊢ (𝑀 ∈ ℤ → (𝑀...𝑀) = {𝑀}) | |
5 | 3, 4 | syl 14 | . . . . 5 ⊢ (𝜑 → (𝑀...𝑀) = {𝑀}) |
6 | 5 | ineq1d 3350 | . . . 4 ⊢ (𝜑 → ((𝑀...𝑀) ∩ ((𝑀 + 1)...𝑁)) = ({𝑀} ∩ ((𝑀 + 1)...𝑁))) |
7 | 3 | zred 9406 | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ ℝ) |
8 | 7 | ltp1d 8918 | . . . . 5 ⊢ (𝜑 → 𝑀 < (𝑀 + 1)) |
9 | fzdisj 10084 | . . . . 5 ⊢ (𝑀 < (𝑀 + 1) → ((𝑀...𝑀) ∩ ((𝑀 + 1)...𝑁)) = ∅) | |
10 | 8, 9 | syl 14 | . . . 4 ⊢ (𝜑 → ((𝑀...𝑀) ∩ ((𝑀 + 1)...𝑁)) = ∅) |
11 | 6, 10 | eqtr3d 2224 | . . 3 ⊢ (𝜑 → ({𝑀} ∩ ((𝑀 + 1)...𝑁)) = ∅) |
12 | eluzfz1 10063 | . . . . . 6 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ (𝑀...𝑁)) | |
13 | 1, 12 | syl 14 | . . . . 5 ⊢ (𝜑 → 𝑀 ∈ (𝑀...𝑁)) |
14 | fzsplit 10083 | . . . . 5 ⊢ (𝑀 ∈ (𝑀...𝑁) → (𝑀...𝑁) = ((𝑀...𝑀) ∪ ((𝑀 + 1)...𝑁))) | |
15 | 13, 14 | syl 14 | . . . 4 ⊢ (𝜑 → (𝑀...𝑁) = ((𝑀...𝑀) ∪ ((𝑀 + 1)...𝑁))) |
16 | 5 | uneq1d 3303 | . . . 4 ⊢ (𝜑 → ((𝑀...𝑀) ∪ ((𝑀 + 1)...𝑁)) = ({𝑀} ∪ ((𝑀 + 1)...𝑁))) |
17 | 15, 16 | eqtrd 2222 | . . 3 ⊢ (𝜑 → (𝑀...𝑁) = ({𝑀} ∪ ((𝑀 + 1)...𝑁))) |
18 | eluzelz 9568 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ ℤ) | |
19 | 1, 18 | syl 14 | . . . 4 ⊢ (𝜑 → 𝑁 ∈ ℤ) |
20 | 3, 19 | fzfigd 10464 | . . 3 ⊢ (𝜑 → (𝑀...𝑁) ∈ Fin) |
21 | fsumm1.2 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ) | |
22 | 11, 17, 20, 21 | fsumsplit 11450 | . 2 ⊢ (𝜑 → Σ𝑘 ∈ (𝑀...𝑁)𝐴 = (Σ𝑘 ∈ {𝑀}𝐴 + Σ𝑘 ∈ ((𝑀 + 1)...𝑁)𝐴)) |
23 | fsum1p.3 | . . . . . 6 ⊢ (𝑘 = 𝑀 → 𝐴 = 𝐵) | |
24 | 23 | eleq1d 2258 | . . . . 5 ⊢ (𝑘 = 𝑀 → (𝐴 ∈ ℂ ↔ 𝐵 ∈ ℂ)) |
25 | 21 | ralrimiva 2563 | . . . . 5 ⊢ (𝜑 → ∀𝑘 ∈ (𝑀...𝑁)𝐴 ∈ ℂ) |
26 | 24, 25, 13 | rspcdva 2861 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ ℂ) |
27 | 23 | sumsn 11454 | . . . 4 ⊢ ((𝑀 ∈ ℤ ∧ 𝐵 ∈ ℂ) → Σ𝑘 ∈ {𝑀}𝐴 = 𝐵) |
28 | 3, 26, 27 | syl2anc 411 | . . 3 ⊢ (𝜑 → Σ𝑘 ∈ {𝑀}𝐴 = 𝐵) |
29 | 28 | oveq1d 5912 | . 2 ⊢ (𝜑 → (Σ𝑘 ∈ {𝑀}𝐴 + Σ𝑘 ∈ ((𝑀 + 1)...𝑁)𝐴) = (𝐵 + Σ𝑘 ∈ ((𝑀 + 1)...𝑁)𝐴)) |
30 | 22, 29 | eqtrd 2222 | 1 ⊢ (𝜑 → Σ𝑘 ∈ (𝑀...𝑁)𝐴 = (𝐵 + Σ𝑘 ∈ ((𝑀 + 1)...𝑁)𝐴)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2160 ∪ cun 3142 ∩ cin 3143 ∅c0 3437 {csn 3607 class class class wbr 4018 ‘cfv 5235 (class class class)co 5897 ℂcc 7840 1c1 7843 + caddc 7845 < clt 8023 ℤcz 9284 ℤ≥cuz 9559 ...cfz 10040 Σcsu 11396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-coll 4133 ax-sep 4136 ax-nul 4144 ax-pow 4192 ax-pr 4227 ax-un 4451 ax-setind 4554 ax-iinf 4605 ax-cnex 7933 ax-resscn 7934 ax-1cn 7935 ax-1re 7936 ax-icn 7937 ax-addcl 7938 ax-addrcl 7939 ax-mulcl 7940 ax-mulrcl 7941 ax-addcom 7942 ax-mulcom 7943 ax-addass 7944 ax-mulass 7945 ax-distr 7946 ax-i2m1 7947 ax-0lt1 7948 ax-1rid 7949 ax-0id 7950 ax-rnegex 7951 ax-precex 7952 ax-cnre 7953 ax-pre-ltirr 7954 ax-pre-ltwlin 7955 ax-pre-lttrn 7956 ax-pre-apti 7957 ax-pre-ltadd 7958 ax-pre-mulgt0 7959 ax-pre-mulext 7960 ax-arch 7961 ax-caucvg 7962 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-nel 2456 df-ral 2473 df-rex 2474 df-reu 2475 df-rmo 2476 df-rab 2477 df-v 2754 df-sbc 2978 df-csb 3073 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-nul 3438 df-if 3550 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-int 3860 df-iun 3903 df-br 4019 df-opab 4080 df-mpt 4081 df-tr 4117 df-id 4311 df-po 4314 df-iso 4315 df-iord 4384 df-on 4386 df-ilim 4387 df-suc 4389 df-iom 4608 df-xp 4650 df-rel 4651 df-cnv 4652 df-co 4653 df-dm 4654 df-rn 4655 df-res 4656 df-ima 4657 df-iota 5196 df-fun 5237 df-fn 5238 df-f 5239 df-f1 5240 df-fo 5241 df-f1o 5242 df-fv 5243 df-isom 5244 df-riota 5852 df-ov 5900 df-oprab 5901 df-mpo 5902 df-1st 6166 df-2nd 6167 df-recs 6331 df-irdg 6396 df-frec 6417 df-1o 6442 df-oadd 6446 df-er 6560 df-en 6768 df-dom 6769 df-fin 6770 df-pnf 8025 df-mnf 8026 df-xr 8027 df-ltxr 8028 df-le 8029 df-sub 8161 df-neg 8162 df-reap 8563 df-ap 8570 df-div 8661 df-inn 8951 df-2 9009 df-3 9010 df-4 9011 df-n0 9208 df-z 9285 df-uz 9560 df-q 9652 df-rp 9686 df-fz 10041 df-fzo 10175 df-seqfrec 10479 df-exp 10554 df-ihash 10791 df-cj 10886 df-re 10887 df-im 10888 df-rsqrt 11042 df-abs 11043 df-clim 11322 df-sumdc 11397 |
This theorem is referenced by: telfsumo 11509 fsumparts 11513 arisum2 11542 |
Copyright terms: Public domain | W3C validator |